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Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices
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The photonic bands of two-dimensional triangular and square lattices composed of circular rods
were classified by means of the group theory based on the symmetry of the lattice structure. Accord-
ing to this classification, it was shown that the uncoupled mode, or the mode that cannot be excited
by an external plane wave, which we previously found for the triangular lattice by the numerical
calculation of the transmittance, is an antisymmetric mode under the relevant mirror reflection, and
this fact is consistent with the observation by Robertson et al. It was also shown that triangular
and square lattices with C6 or C4„symmetry have many other uncoupled modes with relatively low
eigenfrequencies and some of them can be easily identified as the spectral ranges of total reIHection
in spite of their nonzero state density.

Periodic dielectric structures, which are called pho-
tonic crystals or photonic lattices, have attracted much
interests in recent years. The main reason for the
intensive investigations is that a photonic band gap, in
which the existence of any electromagnetic modes is for-
bidden, can be realized by the proper design of the lat-
tice structure. ' ' Many peculiar physical phenomena
due to the photonic band gap, such as the suppression of
spontaneous emission and energy transfer, and local-
ized donor and acceptor modes, ' have been predicted
and some of them were confirmed experimentally. Beside
the emergence of the photonic band gap, the enhanced
state density and the extraordinary low group velocity at
the band edges are expected to bring about many new
possibilities in optical physics.

The band structure of the photonic lattices has been
investigated by observing the transmission spectra of the
specimens. The observed opaque spectral ranges were
successfully compared with the band gaps obtained by
the band calculation performed for the corresponding in-
finite lattices, for which the Bloch s theorem is applica-
ble to the relevant electromagnetic wave equation and
the computational task is much reduced. ' Although
this kind of comparison is correct concerned with the
band gaps, it neglects the effect of the coupling strength
between the incident/transmitted wave and the internal
electromagnetic field at the surface of the specimen, the
energy transfer to Bragg waves, and the interference be-
tween the IIront and the rear surfaces of the specimen.

In fact, our recent calculation of the transmission spec-
tra of a two-dimensional (2D) triangular photonic lat-
tice showed that the modification of the spectra by these
three features is quite pronounced. Especially, we found
the existence of an uncoupled mode, which cannot be ex-
cited by an external plane wave. This fact was confirmed
experimentally for a 2D air-rod lattice formed in a block
of methylpentene polymer in the far-in&ared region.
Our method is based on the Fourier expansion of the in-
ternal field and fully allows for the boundary condition at
the surface of the specimen, and is applicable to any kind

of 2D photonic lattices as long as the wave vector of the
incident field lies in the 2D plane. The existence of un-
coupled modes was first discussed by Robertson et al.
They compared the dispersion relation of a 2D square
lattice observed by their coherent microwave transient
spectroscopy technique with that by the band calcula-
tion, and found that the antisymmetric modes under the
mirror reHection at the plane, which includes the incident
wave vector and is perpendicular to the 2D plane, were
not observed in their experiment. They argued that the
incident plane wave does not excite these antisymmetric
modes because the former is symmetric under the same
mirror reHection, and hence, the effective coupling be-
tween them is zero.

In this paper, we will show by means of a group theo-
retical classification of the photonic bands based on the
symmetry of the lattice structure that the uncoupled
mode in the 2D triangular lattice, which we found by
the numerical calculation of the transmission spectra in
the previous paper, really belongs to the category dis-
cussed by Robertson et al. We will also show that 2D
triangular and square lattices with C6„or C4„symmetry
have many other uncoupled modes and some of them can
be easily identified as spectral ranges of total reHection
in spite of their nonzero state density.

Now, the vector wave equations derived &om
Maxwell's equations can be reduced to two independent
sealer equations when the wave vector lies in the 2D
plane, or in other words, the fields are independent
of the z coordinate. (The z axis is taken as perpendicular
to the 2D plane. ) These two modes are called H polar-
ization, for which the magnetic field is parallel to the z
axis, and E polarization, for which the electric field is
parallel to the z axis, respectively. The magnetic field
for H polarization (H, ) satisfies the next equation:

0 1 0 19 1 0+- H = —H„» e(x~~)» ~y e(x~~) ~y
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whereas the electric field for E polarization (E,) is gov-
erned by the following equation:

(2)

In Eqs. (1) and (2), x~~ is the 2D position vector (z, p),
e(x~~) is the position-dependent dielectric constant, c is
the light velocity in vacuum, and u is the eigenangular
&equency.

Next, we consider the symmetry of the 2D triangu-
lar and square lattice composed of circular rods. The
position-dependent dielectric constant is invariant under
a symmetry operation, which belongs to C6 point group
for the triangular lattice or C4 point group for the square
lattice. Namely, if we denote the symmetry operation by
B,

Re(xi')R ' = e(R xi') e(xi'), (3)

++ ++ ++B'B=E, (4)

where B is the transposed matrix of B and E is the unit
matrix. Using these two relations, we can prove that B
commutes with Z~ and Z~.'

BC~B BLEB

Therefore, any eigenfunction of Z~ or Z~ is an eigen-
function of R as well. So, the conventional classification
of eigenmodes based on the group theory, which is fa-
miliar to the electronic band theory, is applicable to the
present problem.

The 2D Brillouin zone of the triangular lattice pos-
sesses two highly symmetric points beside the I point
at the center of the zone: the J point whose wave vec-
tor is m/a(4/3, 0) and the X point whose wave vector is

m/a(1, I/~3), where the elementary lattice vectors are
denoted by (a, 0) and (a/2, ~3a/2). Table I shows the
symmetry of these points and the irreducible represen-
taions for several low eigen&equencies. The eigen&e-
quencies, which are expressed in a dimensionless form
by the use of the lattice constant a and the light veloc-
ity c, were calculated for plane waves in vacuum whose
wave vectors were reduced to the first Brillouin zone of
the triangular lattice. Because the dielectric constant of
the material that we concider in this paper is not very
large, and hence, the dispersion relation is not very far
&om that in vaccum, we can assign a corresponding irre-
ducible representation to each band of the actual lattice
by consulting this table. Table II shows the compatibil-
ity relation between the irreducible representations for
the above three points and those for the wave vector on
segment I'J and segment I"K. Only one mirror reflection
is defined on these segments because of their low symme-

where R denotes the 2 x 2 matrix representation of the
symmetry operation R. Because B is a rotation or a
mirror reflection operator, B is an orthogonal matrix,
l.e. )

TABLE I. The irreducible representations for the electro-
magnetic waves in vacuum, whose wave vectors are reduced
in the first Brillouin zone of the triangular lattice.

Wave vector
r

Symmetry-
C6

C3„

Cg

u)a/2vrc

2/~3
2

2/3
4/3

2~7/3
I/~3

1

/7/3

Representation
Ag

Az+ Bg+ Ei+ E~
Ag+ Bg+ Eg + Eg

Ag+E
Ag+E

Ag+ Ay+ 2E
Ay+Bi
Ag+ B2

Ag + A2+ Bj.+ B2

TABLE II. The compatibility relations in the triangular
lattice.

Representation at highly
symmetric points

r(A, )
r(Ag)
r(B,)
r(Bg)

r(Bi), r(E2)
J(Ai)
J(A2)
J(E)

X(Ai), X(Bi)
X(Ag), X(B2)

Representation
on segment I'J

A
B
A
B

A+B
A
B

A+B

Representation
on segment I'X

A
B
B
A

A+B

try. In Table II, the wave function (I, or E,) of mode
A on segment I'J (I'X) is symmetric under the mirror
reflection at the plane which includes the z axis and seg-
ment I'J (I'X), whereas that of mode B is antisymmetric
under the same mirror reflection. Therefore, mode B is
identified as an uncoupled mode according to Robertson
et al.

Figures 1(a) and 1(b) show the dispersion relation of
the triangular lattice for H polarization and E polariza-
tion, respectively. The dielectric constants of the circu-
lar rod and the background were assumed to be 1.0 (air)
and 2.1 (methylpentene), respectively. The lattice con-
stant a was taken as 170 pm, and the radius of the rod
was 62.5 pm. The dispersion relation was calculated by
the plane-wave expansion method according to Plihal and
Maradudin with 271 basis plane waves, and the compu-
tational error was estimated as less than 1%%. The mode
assignment obtained &om Tables I and II is also shown
in Figs. 1(a) and 1(b), where notations such as Ai(Bi)
and Ai + Bi mean that the assignment is not rigorously
accomplished with the knowledge of the group theory
alone. The band degeneracy at the highly symmetric
points is consistent with the classification by the group
theory. First, we find that the second lowest band along
the I'-J d.irection for E polarization, which was identified
as an uncoupled mode in the previous paper, is really
mode B. Therefore, the wave function of this mode (E,)
is antisymmetric under the mirror reHection mentioned
above, and this is the reason why it does not couple to
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FIG. 1. The band structure and the reBection spectra of
the 2D triangular lattice composed of circular rods. (a) The
band structure for H polarization, (b) the band structure for
E polarization, and (c) the reflection spectra along the I'-A
direction for both polarizations. The following parameters
were used: the lattice constant a is 170 IMm, the radius of
the rod is 62.5 pm, and the dielectric constants of the rod
and the background are 1.0 (air) and 2.1 (methylpentene),
respectively. For the calculation of the reBectance, we further
assumed that the distance between the surface and the first
layer of the rods is 900 p,m and the number of the layers is
22.

FIG. 2. The band structure and the reBection spectra of
the 2D square lattice composed of circular rods. (a) The
band structure for H polarization, (b) the band structure for
E polarization, and (c) the re8ection spectra along the I'-M
direction for both polarizations. The following parameters
were used: the lattice constant a is 1.17 pm, the radius of the
rod is 0.504 pm, and the dielectric constants of the rod and the
background are 1.0 (air) and 2.72 (PbO glass), respectively.
For the calculation of the reBectance, we further assumed that
the distance between the surface and the first layer of the rods
is 1.0 p,m and the number of the layers is 14.
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Wave vector Symmetry ua/2n c
r c.„ 0

1

2I C4„1/~2
i/10/2

C2 1/2
~5/2
3/2

~is/2

X

Representation
Aj

AI +Bg+E
AI+Bg+E
Ag+Bj. +E
Aj, + B'g + E

A, +A, +B, +B,+2E
A&+ B&

Ag+Ag+ Bg+ Bg
Ag+ Bg

A1+A2+B1+B2

TABLE III. The irreducible representations for the electro-
magnetic waves in vacuum whose wave vectors are reduced in
the 6rst Brillouin zone of the square lattice. Representation at highly

symmetric points
I'(Ai)
r(A, )
r(B,)
I'(B2)
I'(E)

M(Ai), M(Bg)
M(A2), M(Bi)

M(E)
X(Ai), X(Bi)
X(Ag), X(Bg)

Representation
on segment I'M

A
B
B
A

A+B
A
B

A+B

Representation
on segment I'X

A
B
A
B

A+B

A
B

TABLE IV. The compatibility relations in the square lat-
tice.

the external plane wave at normal incidence. Second, we
also 6nd that there are several other &equency ranges
where only a B mode exists. We expect a total reHection
at these ranges in spite of their nonzero state density. As
an example, Fig. 1(c) shows the reflection spectra along
the I'-X direction &om era/2irc = 1.2 to 1.4. These spec-
tra were calculated by the plane-wave expansion method
presented in the previous paperi7 with 1870 basis plane
waves. We assumed that the distance between the sur-
face and the first layer of the circular rods of the specimen
was 900 pm and the number of the layers was 22. Here,
we find a range of high reflectance (more than 0.9) &om
ua/2irc = 1.319 to 1.338 for H polarization and &om
1.282 to 1.330 for E polarization. The spectral range
where only a B mode exsists is &om ~a/2irc = 1.291 to
1.331 for H polarization and &om 1.268 to 1.321 for E
polarization. Therefore, the deviation is less than 2.2'%%uo

and we can conclude that the correspondence between
the spectral ranges of high reQectance and those where
only a B mode exists is good. The wavy patterns below
and above the ranges of total reHection are caused by
the interference between the &ont and the rear surfaces
of the assumed specimen.

Next, we examine the case of the square lattice. There
are two highly symmetric points beside the I' point in
the 2D Brillouin zone of the square 1attice: the M point
whose wave vector is ir/a(1, 1) and the X point whose
wave vector is ir/a(1, 0). Table III shows the symme-
try of these points and the irreducible representaions for
several low eigen&equencies. The eigen&equencies were
calculated for plane waves in vacuum as before. Their
wave vectors were reduced to the erst Brillouin zone of
the square lattice in this case. Table IV shows the com-
patibility relation between the irreducible representations
for the above three points and those for the wave vector
on segment I'M and segment I X. The notation of mode
A and B in Table IV is the same as before, i.e., the wave
function of mode A on segment I'M (I'X) is symmetric
under the mirror reHection at the plane which includes
the z axis and segment I M (I'X), whereas that of mode

B is antisymmetric under the same mirror reHection.
Figures 2(a) and 2(b) show the dispersion relation of

the square lattice. In this case, the dielectric constants
of the circular rod and the background were assumed to
be 1.0 (air) and 2.72 (PbO glass), respectively. The lat-
tice constant a was taken as 1.17 pm, and the radius of
the rod was 0.504 pm. The mode assignment obtained
&om Tables III and IV is also shown in Figs. 2(a) and
2(b). In these figures, we again find several frequency
ranges where only a B mode exists, for which we ex-
pect a tota1 reHection as before. As an example, Fig.
2(c) shows the reflection spectra along the I-M direc-
tion &om ua/2irc = 0.8 to 1.0. Here, we find a range of
high reflectance (more than 0.9) &om ua/2irc = 0.902 to
0.947 for H polarization and &om 0.897 to 0.936 for E
polarization. The spectral range where only a B mode
exists is &om era/2irc = 0.893 to 0.945 for II polarization
and &om 0.888 to 0.932 for E polarization. Therefore,
the correspondence between them is good again. (The
deviation is less than 1.4%.)

En conclusion, we have classi6ed the photonic bands of
the 2D triangular and square lattices composed of circu-
lar rods according to the group theory based on the sym-
metry of the lattice structure. We have shown that the
uncoupled mode in the triangular lattice, which we pre-
viously found by the numerical calculation of the trans-
mittance, is an antisymmetric mode under the relevant
mirror reHection. This fact is consistent with the obser-
vation by Robertson et al. We have also shown that 2D
triangular and square lattices with C6 or C4 symme-
try have many other uncoupled modes and some of them
can be easily identi6ed as the spectral ranges of total
reHection in spite of their nonzero state density.
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