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An eKcient variational procedure to calculate the ground-state properties of the particle-hole
symmetric periodic Anderson model is presented. Expectation values are calculated by using an
approximate scheme. It is shown that the ground-state energy calculated with the one-site approxi-
mation, which essentially is a single-site mean-6eld approximation, is identical to the corresponding
energy obtained by the well-known Gutzwiller wave function using the Gutzwiller approximation.
The two-site approximation, in which intersite correlations are explicitly included, is shown to be a
better approximation than the Gutzwiller approximation.

I. INTRODUCTION

Most of the current interest in the periodic Ander-
son model stems &om its ability to explain to a certain
extent the unusual and exciting properties of the heavy
fermions and related systems. The periodic Ander-
son model has been studied by various microscopic ap-
proaches. Among them, the application of variational
methods has led to considerable insight into the problem.
The general philosophy behind a variational method is to
start from a suitable trial wave function for the ground-
state, evaluate the ground-state energy functional, and
then determine the inherent parameters by minimizing
the energy. The most widely used trial wave function is
of the form

It consists of application of the Gutzwiller projector, g
(to reduce the total number of doubly occupied sites)
on the exact wave function, ~@o), in the absence of cor-
relations. The calculations with the ansatz are difFicult
for strongly correlated electron systems because, here,
one must deal with an infinite product of operators. To
make the calculation tractable one has to follow some ap-
proximation scheme. Among the variety of approximate
variational schemes that have been used to study the
problem, the Gutzwiller approximation is the oldest
and the most widely used approximation which amounts
to the neglect of intersite correlations. Recently, it has
been shown that in the limit of large dimensionality, the
Gutzwiller approximation becomes exact; ' indeed the
intersite correlations decrease if the dimension increases.

In this paper an alternative method simpler than the
Gutzwiller method is used to calculate the ground-state
energy of the particle-hole symmetric periodic Anderson
model. We will show that the one-site ground-state prop-
erties evaluated with our variational wave function are

identical to those obtained by using the Gutzwiller wave
function in terms of the Gutzwiller approximation. This
equivalence holds for all values of couplings and in arbi-
trary dimensions. In the absence of any calculation that
treats the average occupation of correlated f electrons
self-consistently for the asymmetric periodic Anderson
model, comparisions could not be made. However, as
shown in Ref. 23 this method considerably simplifies the
computations and brings out the role of Coulomb corre-
lations in a very transparent manner. We will also show
that the inclusion of intersite correlations gives lower
ground-state energy over the one-site and Gutzwiller ap-
proximations.

In Sec. II we describe the construction of trial wave
function and introduce the method of calculation of the
ground-state energy functional using one-site and two-
site approximations. In Sec. III we give our results for
ground-state energy and comparisons with other meth-
ods.

II. FORMALISM

The periodic Anderson model Hamiltonian is given by

H = Ho+ U) nI;tnt;l.

Here

Ho ——) ei, di, di, + ) E'Iny; + V) (d; f; + H.c).

U refers to the Coulomb interaction between f-electrons
on the same site. The first two terms in Eq. (2) describe
the broad conduction band and the nondispersive f level,
respectively. The third term describes the hybridization
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Here,

between f and conduction electrons. The particle-hole
symmetry, (f, +-f;, f; m ft and d, m dt, dt

d,. ) requires Ey = —U/2, the total density of electrons
per site, n = 2 and the density of both f and d electrons
to be 1.

For the particle-hole symmetric case, the ground-state
wave function in the absence of Coulomb correlations is
given by

The ground-state energy functional for the periodic
Anderson model is

(@.IH I@.)

Here II and IQ, ) are given by Eqs. (2) and (7), respec-
tively.

The calculation of ground-state energy, Eq. (11),
presents a complicated many-body problem, therefore, in
this paper, we perform the calculation by using one-site
and two-site approximations.

(e2q + 4V2)~~2 —
eA,

~2(&2' + 4V2)~~4

and

(e„+4V ) ~

y 2(e' + 4V')'« (6)

I@.) =

At 6nite values of U, the physical space for the corre-
lated electrons may be simply written as a tensor product
over four possible states, singly occupied with spin up and
down, doubly occupied, and empty, at each lattice site i.
To take correlations into account, we introduce an oper-
ator P; on the starting wave function. The starting wave
function, ~g„), is the exact ground-state wave function
for the U = 0 problem with variational functions Q.k and
P& replaced by the appropriate variational functions n~
and Pg . The new variational functions also satisfy the
constraint a& + PI, ——1. The trial ground-state wave
function for the correlated problem is given by

A. One-site apprewimatian

(dt f; ), = R '(dt f; )„ ,

(f,'.d,.).= R. -(f,'.d,.)„., .

(14)

where B ' is given by

8+ 46

8+b(4+b) (15)

In the one-site approximation we replace
(ny;~ny~~, . )„,by (ny;~)(ny~~, )~, , here i g j g
Physically, such an approximation amounts to neglect of
intersite correlations.

The various matrix elements appearing in Eq. (11),
obtained by using one-site approximation, translational
invariance, and spin symmetry are given by

The most general form of the operator P; is given by
and

P, = a —bnf, tnf, .
~ + cnf, g + dn f (8)

/OS
8+b(4+b)

where a, 6, c, and d are variational parameters that de-
pend on U, V, and conduction electron bandwidth. For
the paramagnetic case considered in this work, c = d.

For Rnite values of U, due to the hybridization between
d and f electrons, the density of f and d electrons per site
is not conserved. However, it is reasonable to demand the
conservation of total electron density per site.

() ni;+dd; = ) , ni;+rt, a,
)CT CX AC

P; = 1+b/2(ny, g + ny, g
—2ny, any;g). (10)

where (0); means (vP„-IOI@„)/(vP„Ig„) and (0)„,
means (@ IOI@,)/(g„, I@„,). Equation (9), using trans-
lational invariance, gives either c = b/2 or c = —(20, —
b)/b. In order to have the correct limiting value for the
operator P; at U = 0, only the relevant solution is c = b/2
and a = 1. Correspondingly, we obtain

The ground-state energy, after substituting Q.k and
PI, obtained &om the minimization of the energy func-
tional by imposing the constraint o.&2 +P&2 ——1 through
a I agrange multiplier Ak, is given by

Eg/N = —) Aq —U/2+ 2U/[8+ b(4+ b)]. (16)
k(k f,-

Here

P - Z/2= eg/2 + (eg/2) + V '

V ' = VB ', and 6 is determined from the variational
requirement, BEg/Bb = 0.

At this point it would be interesting to compare
the ground-state energy functional [Eq. (16)] with the
Gutzwiller energy functional. 2 The Gutzwiller energy
functional is given by
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E ""/N = —) Aq —U/2+ Udf,
k(k, ,-

(18)
- 1 2

&k+ &k~ '+4V"'

where A& is same as given by Eq. (17), but with V '
replaced by VG„t, ——V[8df(1 —2df)]2 and d is a varia-
tional parameter, determined by minimizing the energy.
Now, If we put df = 2/[8+ b(4+ b)] in Eq. (18), then
we find that our energy functional [Eq. (16)] becomes
identical to the Gutzwiller energy functional [Eq. (18)].
Furthermore, since both approaches search for the mini-
mum of the ground-state energy in the same parameter
space, they must give the same results at the point of
minimum.

V ' = VB ' and y is given by

Vts1
- Z/2

'

(e~ + +~ )2 + Vts2

BV"x„=cos[k x (B, —Bz)] (4y
2

(29)

B. Two-site approximation III. RESULTS AND DISCUSSIONS

(nfio &fj «r)uc = (nfic )uc(&fj cr)uc +ij Fji I

where

+~i = (A~fj~)uc = ) e'" *' ' (+f&~)uc
k(k.

(20)

Calculation of various matrix elements was carried out
by assuming that R; and R~ in Eq. (20) are nearest
neighbors, translational invariance and spin symmetry.
The two-site results for expectation values are given by

(dt f; ), = R"(dt f, )„„

(f,t d; ), = R"(f,t d; )„, (22)

(f;tf'~f;gf'~). = &"(f,gf'~f;gf'~)-ts (23)

In the two-site approximation we include correlations
on two sites by using

Although the method described in this paper can be
used in any dimension, for simplicity and comparison
with other approaches, we have taken a one-dimensional
model e~ = 2t cos(k—a). Here a is the nearest-neighbor
distance. The values of parameters used are t=0.5 eV,
V//2t = 0.375, and ~R; —Rf ~/a = 1. The ground-state
energy calculated by using one-site [Eq. (16)] and two-
site approximations [Eq. (27)) is shown in Fig. 1. The
ground-state energy obtained by quantum Monte Carlo
and renormalization group are also shown in Fig. 1.

We find that the energy calculated using the wave func-
tion Eq. (7) and one-site approximation are exactly the
same as that obtained by the Gutzwiller wave func-
tion in terms of Gutzwiller approximation. However, it
should be noted that the equivalence of the variational
wave function Eq. (7) with the one-site approximation
and the Gutzwiller wave function with the Gutzwiller ap-
proximation holds for arbitrary dimensions and is inde-
pendent of the values of U, V, t and form of the conduc-
tion electron dispersion [see discussion below Eq. (17)].

A variational principle gives an upper bound on the

where -0.65

R" = 4(2+ b) (8+4b+ b') /A, (24) -0.7

C" = 2(8+4b+b ) —32bE; (4+b) /A, .

A = (8+ 4b+ b ) + 16b (4+ b) E;..

(25)

(26)

-0.75

-0.8
C4

+
-0.85

LU

Once again, the variational functions o.t, and Pi, are
determined &om minimization of the ground-state energy
functional by imposing the constraint n& + PI, = 1
through a Lagrange multiplier Ak . The minimum of
the energy is given by

-0.9

-0.95

0.5 1.5
U

2.5

1E"/N = —) (A„+xi, nfI, ) —U/2+ UC"/4,
k& ky, cr

(27)

where

FIG. 1. [E(U) + U/2j/~R(0)
~

vs U for the symmetric
periodic Anderson model with V/2t=0. 375. E(U) is the
ground-state energy per site and R(0) is the ground-state en-
ergy at U = 0. Our two-site ground-state energy is lower than
the Gutzwiller (Ref. 24).
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ground-state energy and therefore, provides a criterion
for the quality of the wave function. Figure 1 clearly
shows that for large values of U/2t the two-site ground-
state energy is lower than the one-site energy and the
Gutzwiller energy. Hence, the two-site approximation is
a more faithful representation of the ground-state prop-
erties of the particle-hole symmetric periodic Anderson
model.

Numerical calculations ' have clearly indicated the
presence of short-ranged magnetic correlations in the
ground-state. However, in this paper we have considered
only the paramagnetic case. It would be interesting to in-
clude the possibility of antiferromagnetic correlations in
the trial wave function to study the ground-state prop-
erties of the periodic Anderson model.

In this paper we have studied the ground-state proper-
ties of the particle-hole symmetric Anderson model, using
a variational wave function in which the correlations were
included by the introduction of an operator. The calcula-

tion of the expectation values is a very difBcult task. For
this purpose, the calculations were performed by using
one-site and two-site approximations. In the former case,
complete agreement with the Gutzwiller method was ob-
tained. The two-site results show appreciable improve-
ment over the Gutzwiller method. Possible strengths of
this method are as follows: (i) It can be used to study
more complicated models involving strong electron cor-
relations; (ii) it can be straightforwardly generalized to
study more complicated wave functions; (iii) a variety of
intersite spin correlations can be included; and (iv) the
crystal structure e6'ects can also be studied.
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