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Light amplification and localization in randomly layered media with gain
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Light amplification and localization behaviors in randomly layered media with gain are studied using

the transfer-matrix method. It is found that localization is enhanced due to the amplification of coherent

backscattering effect. It is also found that g'0 and ls are the only two relevant parameters in such sys-

tems, where fo is the localization length in the absence of gain and ls is the gain length. The interplay of

go and ls gives rise to two new lengths L„and g. L„,which behaves like (is/0)0', is a manifestation of
the threshold length for the super radiation, which is strongly suppressed in one dimension. g is the lo-

calization length in the presence of gain, which can be described by 1//= 1/go+ 1/ls. Results for dissi-

pative media are also presented.

I. INTRODUCTION

Wave propagation in random media has been the focus
of considerable study in the past decade. ' Recently, it has
been reported that lasing is observed in strongly scatter-
ing media containing laser-active molecules. The cause
of laser action in such nonresonant feedback media is be-
lieved to be related to the increase of photon path length
due to multiple scattering. The theoretical consideration
of laser action in random media actually appeared more
than 25 years ago by Letokhov. He considered the fol-
lowing difFusion equation with a gain term:

=DV P(r, t)+ ttp(r, t),

where P is the photon density, D is the diffusion constant,
c is the light speed, and I is the gain length of the medi-
um, which is twice the inverse of the gain coefBcient. Us-
ing the relation between D and the transport mean free
path l, i.e., D =cl/3, it is easy to see that the threshold
value of l for a nontrivial steady-state solution of Eq. (1)
in a sample of size L is on the order of L /l. In other
words, in a medium with given values of I and l the criti-
cal size for a nontrivial solution of Eq. (1) is on the order
of (ll ) . Here, we denote this critical size by L„as the
condition for a super radiation; i.e., L„=a&(lls ) ', where

a& is a geometrical factor on the order of 1. Physically,
this condition requires that the path length of a photon
traveling across a sample of size L be greater than the
gain length I in order to have a super-radiant emission.
Here we use the term "super radiation" to denote the oc-
currence of lasing in random media. Thus, in the case of
nonresonant feedback, the entire spectrum of modes is
eligible for super radiation. However, the localization
effect has been ignored in the above discussions. In sys-
tems where the coherent backscattering is important, the
presence of gain in the media may also enhance the
coherent backscattering effect, which in turn could
suppress the super radiation and make a localized state
more localized. In the case of weak localization, recent
studies have shown that the amplification of the back-

scattered light could drastically narrow the enhanced
backscattering peak.

The efFects due to localization are best understood in
one dimension. It is well known that in one dimension all
states are localized. The localization length can be
roughly estimated in the following way. Due to the local-
ization effect, the maximally crossed diagrams give nega-
tive contributions 5D to the difFusion constant. In one

dq
dimension, 5D has the form —(c/2m) j " /q, where

the upper cutoff q„ is inversely proportional to the mean
free path 1, or q„=1/l. While the lower cutoff q, is in-

versely proportional to the sample size L. If we define
the localization length go as the size where 5D= D, —
from qi = 1/go, we find go =3. 1/. In the case of electronic
systems, it has also been found that go=(2 —4)l in one di-
mension depending on various definitions of I. Since the
localization length go is only a few mean free paths, there
does not actually exist a region of diffusion in one dimen-
sion and the super-radiant emission is largely suppressed.
Instead of continuous modes, only a finite number of
discrete modes are eligible for super radiation. Some in-
teresting questions are the following. Although being
suppressed, can the super-radiation threshold length L„
manifest itself in other forms? If yes, will such a length
L„exist in the short-wavelength limit, where the mean
free path t' is ill defined? Finally, how does the existence
of the gain length l alter the localization behavior in a
quantitative way? To answer these questions, we have
studied the light amplification and localization behaviors
in one-dimensional (1D) randomly layered media by using
the transfer-matrix method. Recently, the statistical dis-
tribution of the reAection coef5cient has been studied in
1D by using a stochastic approach.

II. . THE MODEL AND TRANSFER-MATRIX
METHOD

In a layer medium with normal incidence, the time-
independent Maxwell equations give the following cou-
pled equations for the electric and magnetic fields,
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BE(z) iron(z)
Bz c

BH(z) icos(z) E z
Bz c

(2)

where H denotes the y component of the magnetic field,
E the x component of the electric field, co is the frequency
of the wave, c is the effective medium speed of the light,
s(z) is the dielectric constant, and p(z) is the magnetic
permeability. Combining the above equations and setting
p(z) = 1 for a nonmagnetic medium, we have the follow-
ing equation for the electric field,

k„2~(")= 1+11 kn+,

k„2~(") =
12

kn+1

k„
kn+1

k„2~(")= 1+22
kn+1

exp(ik„a„),

exp( —ik„a„),

exp(ik„a„),

exp( ik„—a„),

B E(z)+ ~
( )E( ) 0

Bz c
(3)

Consider a randomly layered sample of L, layers with ran-
dom dielectric constant and layer thickness. The dielec-
tric constant e(z) contains both the real and imaginary
parts, i.e., s(z) =E (z') i—E (z") H. ere we assume that the
real part c.

' in the nth layer has the value c„with
c.„=1+cry„,where 0& o. & 1 gives the amplitude of ran-
domness, and g„ is a random number between [ —1, 1].
The imaginary part is assumed to have a constant value—c" across the entire sample. Here a negative imaginary
part denotes the coherent amplification of the field. The
thickness hz of a given layer is assumed to follow an ex-
ponential distribution a exp( —Az /a ), a being the
mean layer thickness. The entire sample is embedded in
a homogeneous medium with light speed c and dielectric
constant unity.

The solution of Eq. (3) in the nth layer has the
form E (z)= A„exp[ik„(z —z„)]+A„exp[ ik„(z ——z„)],
where k„ is a complex wave vector and zn separates the
(n —1)th layer from the nth. In the presence of gain,
c.")0, it is easy to show that the dispersion relation be-
comes

CO nkn= 1 —i
Vn CO

where

(4)

2 1/2

1+

Vn =C 12 2

2

&n .

with

At the interface of two layers, both E and H fields are
continuous. Since the medium is nonmagnetic (p = 1), the
continuity of H implies the continuity of the derivative of
E as can be seen from Eq. (2). Using these boundary
conditions, the following transfer matrix is obtained:

(n) (n)~n+1 ~n 11 ~12 ~n
~(n)

n+1

=1+ J, IE(z)l'dz . (7)

Equation (7) recovers the unitary condition that
T +R = 1 when e"=0. Knowing the function T(L ), the
localization length g can be obtained by taking the
L ~ oo limit of g(L), where 1/g(L) =—

ln[ T(L) ]/(2L).
In the absence of gain, the wave localization behavior

in a randomly layered medium has been studied previous-
ly. ' In the long-wavelength limit (A, =2mc/co))a), the
localization length go is known to follow the 1/co
behavior. However, in the short-wavelength limit (A, & a),
go crosses over to a constant minimum value. Although
the localization length exhibits very different behaviors in
two limits, nevertheless, the study of the power spectrum
of the reAected noise has shown that the localization
length go is the only relevant length in such a system, in-

dependent of the wavelength or randomness. " With the
presence of the gain, the length that sets the amplification
of the field also becomes relevant. This gain length l~ is
given by the inverse of the imaginary part of the wave
vector in Eq. (4). In the small o and s" limit, we obtain
from Eqs. (4) and (5) the expression for the gain length as

lg =2c/E"co. Thus, go and ls are expected to be the only
parameters in this 1D gain medium. It is also expected
that the interaction between go and l will give rise to two
new lengths. It is natural to guess that the localization
length g and the super-radiation threshold length L„
form the new length scales of the problem. In 1D, from
the diffusion theory we have L„=-2.2(ll ) . However,
it is also known that, in the long-wavelength limit,
go-=(2 —4)l. ' Thus, it is natural to replace the mean free
path l by go in the expression of L„, i.e., L„-=(l g )s0
and extend this length scale to the short-wavelength lim-
it. It is shown in the following that the above assump-
tions of two-parameter scaling (go and lg) and the ex-
istence of two new lengths (L„and g) are indeed

where a„ is the thickness of the nth layer. From the
products of these matrices, ~(L )=+„0~'"', we obtain
the transmission and reAection amplitudes of the sample
as t(L)=(~„~~ 2

—r,2r~, )/r22 and r(L)= —r2)/~~2, re-
spectively.

Due to the amplification of the field in the sample, the
flux is no longer a conserved variable. Using Eq. (3), it is
easy to show that the sum of the reQection and transmis-
sion coefBcients satisfies the following equality:

T(L)+&(L)=—It(L) I'+ Ir(L) I'
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confirmed by our extensive numerical simulations. In
what follows, we have set the values of light speed c and
averaged layer thickness a to unity.

III. RESULTS AND DISCUSSIONS
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FICi. 1. For q=0. 5, the probability density P& for the
reQection coe%cient R is plotted as a function of the renormal-
ized variable (R —1)/2q at three renormalized lengths: A=0. 3
(curve A), 0.6 (curve B), and 1.8 (curve C). Different symbols
represent curves obtained from different sets of parameters A,

and o described in the text. The heavy line in curve C is the
steady-state distribution of Eq. (6).

For a given sample of L layers, the probability density
of the transmission and reflection coefficients are calcu-
lated at various wavelengths A, , degrees of randomness o.,
and gain lengths lg. In order to cover both the long- and
short-wavelength limits, we have chosen A, =l/2, 1, 10,
25, and 50.' The values of randomness chosen are
o =0.3, 0.5, and 0.9. For each set of parameters, 10000
configurations are performed. In the absence of gain, the
values of go for the case of rr=0. 3 are found to be
go=515, 516, 861, 2630, and 8900 for the corresponding
A, 's chosen above. In the long-wavelength limit, the ana-
lytic result $0=12/(ohio) gives g&=8438 for A, =50.'
Since this value is only 5% below the actual number, this
is still in the regime of long wavelength. However, for
A, =25, 10, and 1, the analytic formula gives g'&=2109,
338, and 3.4, respectively. This shows clearly the break-
down of the analytic formula as A, becomes smaller. The
crossover between two limits is apparent. The smallest
value of go in all the parameters considered here is go= 34
for the case of A, =—,

' (or 1) and a =0.9.
In the presence of gain, we introduce a dimensionless

parameter q
' as the ratio of the gain length to the local-

ization length to describe the amplification, i.e.,
q =go/lg. For a given value of q and a fixed set of pa-
rameters A, and o, we have calculated the probability den-
sity for the reflection and transmission coefficients at
various values of renormalized sample length A=L/gp.
The results for the case of q =0.5 are shown in Figs. 1
and 2. In Fig. 1, we plot the probability density PA for
the reflection coefficient as a function of a scaled variable
(8 —1)/2q for three different values of A. At A=0. 3,

0.5 l.0
T

1.5 2.0

FIG. 2. For q=0. 5, the probability density F~ for the
transmission coef6cient T is plotted at different renormalized
lengths: A=0. 3 (curve A), 0.6 (curve B), and 1.8 (curve C).
Different symbols represent curves obtained from different sets
of parameters A, and 0. described in the text.

the data of Po 3 calculated for all sets of parameters A. and
o, except the case of go=34, fall into a single curve
(curve A). Siinilarly, curves B and C give the distribution
functions for A=0. 6 and 1.8, respectively. For the case
of go=34, some deviations from curves A, B, and C are
observed. These deviations are due to the relative small-
ness of go. As the value of g~ becomes comparable to the
averaged layer thickness a =1, the scaling breaks down
completely. In curve C, we also plot the analytic result
P obtained from the stochastic Riccati equation in the
white-noise model for an infinite sample. This result,

P R —I

2q
2q 2q

R —1 R —1

is shown by a heavy solid line in curve C. The excellent
agreement between the numerical data of PI 8 and the an-
alytic P„ indicates that a steady-state distribution is
reached when A has the value 1.8. Indeed, with the fur-
ther increment of A, we do not find any significant
change of the distribution. Besides the case of q =0.5,
we have also studied the cases of q =0.1, 0.2, 1, 2.7, 5,
and 10. The scaling of go discussed above holds for all
values of q considered. Although the distribution func-
tion PA has different forms as q varies at small A, they all
converge to P of Eq. (8) after reaching some saturation
length A, (q). The corresponding results of the transmis-
sion coefficient are shown in Fig. 2. At q =0.5, the prob-
ability density I'z is plotted as a function of T for A =0.3
(curve A), 0.6 (curve B), and 1.8 (curve C). Except for the
case of $0=34, the scaling of go holds in the transmission
case too. Since the transmission disappears in an infinite
sample, the trivial saturation distribution of F„ is a delta
function at T=0. However, what is more interesting is
that, as a function of A, the averaged transmission
coefficient ( T(A) ) is an increasing function of A at small
A due to the arnplification efFect. It reaches a maximum
at some AT and then dies off as A~ ao because of the lo-
calization efFect. Thus, the existence of AT is a result of
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competition between amplification and localization
effects.

To determine the saturation length A„we use two
different criteria. First we compute the standard devia-
tion, hz, between P~(x) and P (x) of Eq. (8) in the inter-
val x=(R —1)/2q =[0,10] as a function of A. We
define the saturation length A, as the value of A where
b,„is within 15% of its saturation value. As a comple-
mentary test, we also estimate the saturation in the large
E. limit by considering the distribution in the reciprocal
variable y—=x '=2q/(R —1). Both criteria give con-
sistent results.

In Fig. 3, we plot the saturation length A, obtained
froin the reflection coefficient (solid circles) and the max-
imuin transmission length A z. (solid triangles) from

q =0. 1 to 10 in logarithmic scales. The data of the solid
triangles have similar error bars as those of the solid cir-
cles. Both sets of data agree well with the function q
which is shown by a dashed line. From q =go/lg and
A =L /g'o, both Ls and Lr are indeed the manifestation
of the super-radiation threshold length L„-=(l gg}o
These results also demonstrate that the replacement of 1

by go in fact extends the manifestation of L„ from the
long-wavelength limit to the short-wavelength limit.

The amplification of the coherent backscattering effect
may also reduce the localization length in a gain medium.
A simple expression for the localization length can be de-
rived from the flux production relation of Eq. (7) and
probability density P„ofEq. (8). We assume that both
the right-going A (z) and left-going B (z) of the field E (z)
decay exponentially in magnitude, i.e., ~

A (z)
~

=exp[2(zo —z)/g;] and ~B(z)~ =R; exp[2(zo —z)/g;].
Here the subscript i denotes a particular configuration.
Substituting these expressions for ~A(z)~ and ~B(z)~
into Eq. (7}and integrating from zo =0 to zL = ce, we find

II

R;=1+ (R;+1)I exp( —2z/g;)dz .
C 0

Here, we have ignored the contributions from the cross

terms [ A (z)*B(z)+A (z)B(z) ] in the integral of Eq. (7).
Since the phases of 2 (z) and B (z) vary randomly from
layer to layer, it is plausible to assume that their contri-
bution becomes negligible after integration. After per-
forming the integration, Eq. (9) can be rearranged in the
form

1+ 2
2c R; —1

(10)

By taking the configurational average on both sides
of Eq. (10) and using the relation that (1/(R; —1))= 1/2q obtained from Eq. (8), we obtain
g = ( 1/g; ) ' =go/(1+ q), or 1/g= 1/g'o+ 1/lg. Numeri-
cally, the localization length is obtained by taking the
configurational average of 1/g;(L) = —ln[T;(L)]/2L. In
Fig. 4 we plot the renormalized localization length
gr(1+q)/go as a function of renormalized length
I =L/(l go)

' =Aq, where g'r —=(1/g;(I )) '. We
have renormalized the length L, by the saturation length
so that the localization length gr will converge in a simi-
lar rate to its saturation value as I ~ 00 for different q's.
The results of q =0.5, 1, and 5 are plotted in curves A, B,
and C, respectively. Different symbols in a curve
represent different sets of parameters of A, and tr. These
curves show again the scaling of go for a given q. In the
large A limit, all three curves approach unity. This
confirms our prediction of 1/g= 1/go+1/lg. The reduc-
tion of localization length shown in this simple relation
clearly demonstrates the amplified effect of the coherent
backscattering in a gain medium that enhances the wave
localization. For q =1 and 5, gr becomes negative at
small I because of (ln[T;(I )]))0. Although curves A,
8, and C behave differently at small I, they all show a
maximum change around I —= 1.
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FICx. 3. The saturation length A, (or A, ) for the reAection

coefficient in a gain (or dissipative) medium is plotted as a func-
tion of q as solid circles (or open circles). The solid triangles
represent the maximum transmission length AT in a gain medi-

um. The dashed line shows the function q

FICr. 4. The renornialized localization length gr(l+q)/go is
plotted as a function of renormalized length I =Aq . Curves
A, B, and C are for q =0.5, 1, and 5, respectively. Different
symbols represent curves obtained from different sets of param-
eters A, and o described in the text. Curve D shows the data ob-
tained from a dissipative medium.
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IV. THE CASK GF DISSIPATIVK MEDIA

Finally, we have also carried out similar calculati. ons
for dissipative media. In this case the imaginary part of
the dielectric constant becomes positive with c,

"&0. An
attenuation length can be defined as l, = —2c/E"co. For
any given q =go/I„ the scaling of go is again observed in
the probability density for both the transmission and
reflection coefficients. In the large A limit, the probabili-
ty density for the reflection coefficient approaches a
steady-state distribution

P„(R)=2q exp(2q)exp[ —2q/(1 —R)]/(1 —R)~ . (11)

The saturation length A, for different values of q is plot-
ted with open circles in Fig. 3. Again, a ( I, go )

behavior is seen. However, the averaged transmission
coefficient is a monotonic decaying function of A. The
localization length can be obtained in a similar way as de-
scribed above for the case of amplification. Equations (9)
and (10) are still valid except that s" has a negative value
now. The average value of 1/(1 —R;) can be obtained
from the distribution function Eq. (11) and has the ex-
pression ( 1/(1 —R; ) ) = 1+1/2q. Substituting this rela-
tion into Eq. (10), we find again
g= ( I/g; ) =go/(I+q), or 1/g= 1/g'v+1/I . In fact,
such a relation for the dissipative medium has been sug-
gested previously without any derivation. ' Numerically,
we have randomly picked some sets of data and plotted
the localization length, renormalized by go/(I+q), as a
function of Aq in curve D of Fig. 4. This is apparent
that our derived simple relation for g is indeed valid.

V. CDNCLUSIQNS

In conclusion, we have studied the statistics of
reflection and transmission coefficients and the localiza-
tion behavior in randomly layered media with gain or dis-
sipation. In both cases it is found that only two parame-
ters are relevant, go and I (or l, ), independent of the ran-
domness or the wavelength. This is consistent with the
previous study of the reflected noise power spectrum,
where the localization length go is the only relevant pa-
rameter in describing the wave transport property in one
dimension, not the wavelength or the randomness in-
dependently. The interplay of these two parameters gives
rise to two new lengths. In the case of gain, both the sat-
uration length of the reflection coefficient and the length
for the maximum transmission behave like (l go) . This
is the manifestation of the super radiation, which is large-
ly suppressed as a result of localization. The localization
length is reduced in the presence of gain due to the
enhancement of the coherent backscattering effect. The
localization length is found to follow a simple relation
1/g= 1/go+ I /ls. In the case of dissipation, similar
behaviors are found for the saturation length of the
reflection coefficient and the localization length if we re-
place the gain length l by the attenuation length I, .
Despite all these similarities, there are some major
differences. Unlike the case of gain, the averaged
transmission coefficient is a monotonic decreasing func-
tion of the sample size and does not have a peak. The
sum of the transmission and reflection coefficients is
smaller than 1 in a dissipative medium while larger than
1 and unbounded in a gain medium.
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