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Chaos in resonant-tunneling superlattices
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Spatiotemporal chaos is predicted to occur in n-doped semiconductor superlattices with sequential
resonant tunneling as their main charge transport mechanism. Under dc voltage bias, undamped
time-dependent oscillations of the current (due to the motion and recycling of electric Seld domain
walls) have been observed in recent experiments. Chaos is the result of forcing this natural oscillation
by means of an appropriate external microwave signal.

Nonlinear oscillations and chaos have been predicted
in systems where a predominantly quantum dynamics is
corrected by mean-6eld nonlinear terms due to collective
interactions (Hartree)i or to interactions with classical
subsystems having a widely diferent time scale. 2 These
phenomena are diHerent &om quantum chaos, i.e., the
behavior of quantum systems whose classical counterpart
is chaotic. So far chaotic oscillations have been predicted
for systems with few degrees of &eedom and experimen-
tal evidence is scarce. In this paper we predict chaotic
behavior with loss of spatial coherence in a system with
many degrees of &eedom for which the main transport
mechanism is resonant tunneling: a weakly coupled mul-
tiple quantum well superlattice (SL). As far as we know,
these are the 6rst results on chaotic behavior in SL's. In
contrast to unbiased triple-well heterostructure, our SL
is subject to external dc and ac biases, as was the case
with the two-level system of Ref. 2.

Very recently time-dependent oscillations of the cur-
rent on GaAsiAIAs SL's subject to dc voltage bias have
been found. The oscillations are damped for undoped
photoexcited SL's and undamped for doped SL's with-
out photoexcitation. For large values of the photoexcita-
tion or the doping, there is stable formation of stationary
electric 6eld domains leading to the well-known oscilla-
tory I-V characteristic. According to a discrete drift
model, the current oscillations are caused by the cre-
ation, motion, and recycling of domain walls separating
two electric-6eld domains. ~ This situation is reminiscent
of that found in bulk semiconductor devices with nega-
tive difFerential resistance (NDR), where dc voltage bias
gives rise to high-6eld domain dynamics and the well-
known Gunn oscillations xi, x2 A signi6cant djfFerence is
that the space charge waves are dipoles in the Gunn os-
cillations and charge monopoles in the SL current oscil-
lations. Another is that the Gunn waves are generated
close to the injecting contact whereas the domain walls
appear clearly inside the SL.

Having found a system with a natural oscillation due to
traveling-wave motion, it is natural to ask whether har-
monic forcing would lead to chaos with spatial structure.
The answer is afBrmative. This is also the case for the
periodically driven Gunn diode studied by Mosekilde et
al. Experimental studies have been carried out by Kahn
et al. on ultrapure p-Ge, where the NDR is caused by
negative di8'erential impurity impact ionization, ~5 and

the transition to a chaotic attractor with loss of spatial
coherence has been observed.

We consider a set of weakly interacting quantum wells
(QW's) characterized by average values of the electric
field Z, (t), and the electron density n;(t), with i
1, . . . , N denoting the QW index. This mean-field-like
approach is often justi6ed because the relevant time scale
for the oscillations ( 0.1 ps) is much larger than those
for the tunneling process between adjacent QW's ( 1 ns)
and the relaxation &om excited levels to the ground state
within each QW (~ 1 ps). The one-dixnensional equa-
tions governing the dynamics of the system are the Pois-
son equation averaged over one SL period l, Ampere's
equation for the balance of current density, and the volt-
age bias condition

1 e—(8; —8; i) = —(n; —Nrx),

dE';* + en;v(Z;) = J, (2)

Here e, e, and ND are the average permit tivity,
the electron charge, and the average doping density,
respectively. is The total current density J(t) is the sum
of the displacement current and the electron Qux due
to sequential resonant tunneling en;v(Z;). The effective
electron velocity v(E') exhibits maxixna at the resonant
fields for which the adjacent levels of neighboring QW's
are aligned, as shown in the inset of Fig. 1. The volt-
age V(t) in (3) is the sum of a dc voltage Vs and an
ac microwave signal of relative amplitude A and driving
frequency fg. V(t) = Vs(i + A sin(2n at)). The bound-
ary condition e(Sx —Co)i(el) = nx —N =xxb allows for
a small negative charge accumulation in the 6rst well,
which is taken to be b 10 x N~. The physical ori-
gin of b is that the n-doped SL is typically sandwiched
between two n-doped layers with an excess of electrons,
thereby forming a n+-n-n+ diode. 5 Then some charge
will be transferred froxn the contact to the first QW cre-
ating a small dipole 6eld that will cancel the electron Bow
caused by the di8'erent concentration of electrons at each
side of the 6rst barrier.

To study our equations, it is convenient to render them
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FIG. 1. Bifurcation diagram of the current at times mTg
(for sufBciently large m) vs the driving farce -amplitude, for a
4O-period SL and the golden-mean ratio between natural and
driving frequencies. Windows of chaotic solutions are marked
by arrows. Inset: Dimensionless velocity as a function of
the electric Geld. The point indicates the electric-field value
corresponding to the dc bias V = 1.2 used in the calculations.

dE, 1„'=
N ) .v(E. ) [E. —E'-x+ ~j

j=1
—v(E;) [E; —E, i+ v]+ a~cos(or~),

which we solved numerically by the fourth-order Runge-
Kutta method with the boundary condition Eo ——Eq —vb
and initial conditions E;(0) = V, Vi. As an example,
we consider a GaAs/A1As SL at T=5 K with N=40,
1=13 nxn, tx 2=10 V/cxn, N~ 1.15xlO cm, for
which undamped. time-dependent oscillations of the cur-
rent were first observed. One gets v —0.1, tg„„= 2.7

dimensionless, using the characteristic physical quanti-
ties. As the unit of the electric field E = E/E'x 2, we
adopt the typical electric Geld strength needed to align
the first and. the second electron subbands of the nearest
QW's fx 2. The dimensionless velocity v(E) is obtained
normalizing v(Z) by its value at 8 = fx 2, where it has a
local maxixnum due to resonance in tunneling (see inset of
Fig. 1). The others dimensionless quantities are defined
as follows: the donor concentration v = elND/&Ex
the time r = t/tt„„where tt„„——l/v(E' x2) is the char-
acteristic tunneling time; the dc bias V = Vs/Fx 2/N;
the ac bias amplitude a = AV; the driving &equency

2vr f~tt„„By time. difFerentiating (3) and using
Ampere's law (2), one can express the current density
as

N

J(t) = + —); (~),
2=1

and after its substitution into (2) we obtain a system of
N equations for the electric Geld profiles

ns, and we take V=1.2 (corresponding to V'=7.8 V). The
main features of our numerical results are as follows.

For the dc case (a=O) undamped time-periodic current
oscillations of &equency fo = 9 MHz, (in excellent agree-
ment with the observed value ) set in after a transient
period. The electric Geld and charge pro6les correspond-
ing to one period of the current oscillation are similar
to those found in the undoped case (cf. Fig. 9 in Ref.
9). During each period a domain wall (charge monopole)
is formed inside the SL. It then moves toward the cor-
responding contact. Depending on the applied voltage,
it may or may not reach the end of the SL before it
dissolves and a new monopole is formed starting a new
period of the oscillation. Since in a 40-period SL the
wall moves only a few QW's, it may be hard to distin-
guish this monopole recycling &om a true spatial oscil-
lation of a single monopole. Simulations of longer SL's
(N &100), however, clearly show monopole recycling with
two monopoles coexisting during some part of one cur-
rent oscillation period. The &equency of the oscillation is
mainly deterxnined by the nuxnber of QW's the monopole
moves across (which increases with N) and by the aver-
age drift velocity. ~o

Now consider the ac case. We start with a uniform ini-
tial 6eld pro6le and solve the equations for dc bias. After
a short transient, the self-sustained oscillations set in and
we switch on the ac part of the bias. Our main result is
that the competition between the natural oscillation due
to monopole dynamics and the forcing gives rise to nar-
row windows of spatiotemporal chaos for appropriate val-
ues of V, a, and ~, and that the size and richness of these
windows increases with N. Let us fix the ratio between
the natural frequency fo and the driving frequency f~
at the golden mean (~5 —1)/2. To detect and visualize
the chaotic regions in parameter space, we need to de-
fine a Poincare mapping. The current is a good measure
of the amplitude (norm) of the solutions, which is illus-
trated by the use of current versus voltage characteristics
as bifurcation diagrams. Denoting the period of the ac
bias T" = 2'/~, we adopt as Poincare mapping (for each
value of a) the current at times w = mT~, m = 0, 1, . . .,
(after waiting enough time for the transients to have de-
cayed). The result is the bifurcation diagram in Fig. 1.
Notice the period-doubling sequences that point to the
existence of chaos near their accumulation points. There
we have computed the largest Lyapunov exponent and
found it positive, which confirms chaos within the win-
dows marked by arrows in Fig. 1. The chaotic regions
are interspersed with locking to periodic and quasiperi-
odic regimes. Quasiperiodic routes to chaos have been
found at the 6rst and last windows marked. with arrows in
Fig. 1. Notice that the period. -two orbits span the widest
parameter region &om the narrow chaotic band around
a = 0.01 up to the next chaotic region at a —0.09. For
a & 0.145, the solution is attracted to the period-one
orbit with the driving &equency fd

More insight into the transition between chaotic and
nonchaotic regions of the bifurcation diagram can be
obtained by sweeping-down through it, as follows. We
set ao ——0.16 (the leftmost value in Fig. 1, where there
is period. -one locking) and take an initial field profile
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FIG. 3. Density plots for the electron concentration in a
200-period SL for (a) pure dc bias; and (b) dc and ac biases
with a=0.112. a and y axes correspond to time (in units of
16 t&„„)and QW index, respectively. Darker regions indicate
high electron density and mark the location of the domain
boundary for each time.
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FIG. 2. Electric-Beld values E6 and E36 (at two difFerent
QW's of the 40-period SL) measured at times rnTq for (a)
a=0.088; (b) a=0.101; (c) a=0.14. (d) is a blowup of the
small region inside the rectangle in (c). 10 successive points
have been used to depict each attractor.

(E,j = V. We now solve the problem (5), compute
J = J(mTg), and find out when the solution is peri-
odic within a 10 accuracy. At that time, we stop the
simulation, depict all J correspondent to the period,
store the resulting electric-field profile, and use it as an
initial condition for another simulation with a = ao — a,
La = 2 x 10 4. By repeating this process, we arrive at
chaotic or quasiperiodic regions of a, where the integra-
tion is stopped at a much larger time mTg, with m=h =2000
and only the last 1000 points are depicted, thereby elim-
inating transients. Figure 1 is the result of such a sweep-
down run. The transition points between different re-
gions in the bifurcation diagram are found to be different
when a sweep-up run is made, demonstrating thus hys-
teresis.

To illustrate the spatially chaotic nature of the solu-
tions, we pick arbitrarily two far-away QW's and depict
the simultaneous values of the electric GeM at them af-
ter each period. of the driving force Tg. The resultant
attractors for several amplitudes a are presented in Fig.
2. The first example [Fig 2(a)] sh. ows a chaotic attrac-
tor with layered structure and variation in the density
of points. The chaotic attractor of Fig. 2(b) has several
separate branches almost continuously filled. Finally Fig.
2(c) corresponds to a value of a on the quasiperiodic re-
gion. The closed loop with periodic pattern [see Fig.
2(d)] indicates quasiperiodicity: the orbit fills the attrac-
tor (torus), never closing on itself. The points in the
chaotic attractors cluster with varying density on diff'er-

ent regions, which means that they can be characterized
by their multi&actal dimension D~ (calculated by the
method of Ref. 18). We have found that for the partic-
ular case of Fig. 2(a), D~ decreases &om D —1.57
to D+ = 0.72, going through the capacity dimension
Do = 1.18

Loss of spatial coherence in the chaotic regime is easily
found. in long SL's. Density plots for the electron con-
centration (dark regions mean high electron density) in
a 200-period SL with natural &equency 1.9 MHz are
shown in Fig. 3. The density plots show the transition
&om periodic [Fig. 3(a)] to chaotic domain-wall dynam-
ics with loss of spatial coherence [Fig. 3(b)]. Under dc
and ac d.riving with golden mean &equency ratio, nucle-
ation of monopole wave fronts occurs more frequently:
in addition to long-living waves traveling over almost the
whole SL, there are short-living waves. The two types of
waves are distributed chaotically in space and nucleated
both at the beginning and deep inside the SL. Detailed
calculations show coexistence of up to three monopoles
connecting four electric-Geld. domains during certain time
intervals. We thus have that the loss of spatial coherence
is due to chaotic domain-wall dynamics, as seen in Fig.
3(b).

In conclusion, spatiotemporal chaos is expected to oc-
cur in weakly coupled semiconductor superlattices (with
sequential resonant tunneling as the main transport
mechanism) under appropriate dc and ac voltage biases.
This prediction should be experimentally testable in cur-
rently available n-doped GaAs/A1As samples forming
n+-n-n+ diodes. s
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