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Correlations in coupled electron and hole layers of finite thickness
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The variational multicomponent hypernetted-chain scheme for the double-layer electron-electron
and electron-hole systems developed by us is generalized to the case where the layers have finite
thickness. We have also studied the elementary collective excitations and the region of stability of
these systems as the layer separation is varied. In a single electron layer our result for the bulk
modulus is in good agreement with the available experimental results.

Double layers of two-dimensional (2D) electron and
hole systems have recently been a subject of intense re-
search, because of the novel physical phenomena detected
in these systems. Most of these phenomena are related to
the quantum Hall effect,! but the double electron layer
system has also been used in the measurement of the
compressibility of a single electron gas layer.? Since the
advanced epitaxial growth techniques have made it pos-
sible to fabricate double-layer systems, where the inter-
layer separation is comparable to the distance between
electrons within one plane, the understanding of inter-
layer interactions has become important. These interac-
tions are responsible for the new fractional quantum Hall
(FQH) states,''® and also in the absence of magnetic field
may cause phenomena like possible enhancement of the
Wigner crystallization.*

In this paper, we report our studies of coupled electron-
electron and electron-hole layer systems at zero mag-
netic field. We extend our earlier model, which has been
shown® to be an efficient tool when studying the layered
electron (or hole) systems, to the case of layers with finite
thickness. As a starting point, we use the Jastrow varia-
tional wave function for the multicomponent system:
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where ®,, is the wave function of N, noninteracting par-
ticles of species a. All correlation effects are included
in the functions f,3. Using this wave function and the
hypernetted-chain (HNC) approximation, one can calcu-
late the total energy of the system® and also derive the
Euler-Lagrange equations for the pair-correlation func-
tions gag(r),
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V219ap (1) %] + [Vap (r) + wap ()] [gas (r)]/? = 0,

(2)

where the functions wag(r) are the elements of the matrix
whose Fourier transform is

w(a) = 2L {[S(@M (@)™ - [Sr(a)MSr(a)]™
FMS(@ -1+ [S@ - 1M (3)

The structure functions S,g(q) are obtained as Fourier
transforms of gog(r). In practice, we cast the above equa-
tions into a k-space form, which is then solved iteratively,
using the uncorrelated case as a starting point.®

So far, the layers have been assumed to be strictly two-
dimensional and, therefore, the interparticle potential of
the form

62

Vag(r) = 4

has been used. Here, a and 3 are layer indices and c is the
separation between the layers. The finite thickness of the
layers is modeled by using the Fang-Howard variational
wave function,®

1 —bz
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where z is the coordinate axis perpendicular to the layers.
The optimum value of the variational parameter b is given

by
b= (33rm*e?n/2eh?)'/3, (6)

where m* = 0.067m. is the electron effective mass for
GaAs, n is the electron density, and e is the average
background dielectric constant. The effective electron-
electron interaction can then be written as”
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where
F(q) = [1+§—%+g(%)2] (1+%)—3, (®)

and Jp is the zeroth order Bessel function. This correc-
tion softens the short range divergence of the Coulomb
potential and it is well known from the study of the FQH
(Ref. 7) effect that it reduces both the ground state and
excitation energies. Below, we shall consider its effect
also on the collective excitation energies in the multilayer
systems. The electrons (or holes) on one layer interact
with the electrons on the other layer via the softened
Coulomb potential, but no tunneling between the layers
is allowed.

Since the fundamental quantities in our formalism are
the correlation and structure functions, we begin the dis-
cussion with the interlayer and intralayer correlations.
The correlations in double-layer systems have recently
been studied by Zheng and MacDonald (ZM) (Ref. 8)
and Szymanski et al.? Both groups use an approach based
on the method of Singwi, Tosi, Land, and Sjélander
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FIG. 1. The intralayer correlation functions g1 and inter-
layer correlation functions g1 for (a) the electron-electron and
(b) the electron-hole double-layer system. The solid curves
are the results for a strictly 2D calculation and the dashed
curves result from the calculcation using the finite thickness
correction. The layer separation ¢ = 0.75 in units r a0 = 1,
where ao = eﬁz/moez.
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(STLS),!® which is also extended by Szymanski et al. to
the case of low densities. The other difference between
the two methods is that Szymanski et al. consider layers
with finite thickness, whereas ZM restrict themselves to
the 2D case.

As discussed below, there are some interesting differ-
ences between the results of these two calculations. In
order to trace the origin of these differences, we first
consider the effect of the finite thickness on the pair-
correlation functions. Figure 1(a) shows the interlayer
and intralayer pair-correlation functions for the electron-
electron double-layer system and Fig. 1(b) the corre-
sponding quantities for the electron-hole double-layer
system, both at r, = 3. The layer separation ¢ = 0.75
in units r;ap = 1, which for GaAs corresponds ¢ ~ 25
nm. The effect of the finite layer thickness is clear, al-
though small in both cases. The finite thickness enables
two similar particles to reside at the same position [at
the layer coordinate r = (x,y)], and, therefore, the in-
traplane pair-correlation function g;;(r) is shifted from
zero at the origin. This shift is, however, very small,
in contrast to the result obtained by Szymanski et al.?
They find, for small layer separations, a very large shift
of g11(0) both for the electron-electron and the electron-
hole layer systems. This effect also increases as the den-
sity decreases, i.e., the larger the r,, the larger the shift
at the origin. In Fig. 2, we consider the effect of the
density to the correlation functions for the electron-hole
layer system. In this case, the layers are allowed to have
finite thickness and the curves are plotted for two val-
ues of density; 7, = 3 and 5. The behavior of g11(0) is
again in contrast with that in the work of Szymanski et
al.; here, the smaller the density the smaller the g11(0).
This is the behavior familiar from both 2D (Ref. 11) and
3D (Ref. 12) electron systems. Indeed, our results are in
much better agreement with those of ZM,® where strictly
2D electron-electron and electron-hole layer systems were
considered. However, the finite thickness as such cannot
be responsible for the possible compensation effect dis-
cussed by Szymariski et al.,® i.e., the increase of g;;(0),
because of the formation of an attractive region to the ad-
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FIG. 2. The pair-correlation functions for the electron-hole
double-layer system with layer separation ¢ = 0.75. The den-
sity parameter 7, = 3.0 (solid line) and r, = 5.0 (dashed line).
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jacent layer. In fact, the so called “compensatory effect”
might as well be an artifact of the method used in Ref. 9.
Since this effect is not seen either in our calculations or in
those of ZM,® our calculations seem to confirm the STLS
result. Finally, it should be pointed out that within our
scheme, the intralayer correlation function stays positive
at all values of r, which is of course what is physically
expected.

The collective excitations in layered electron gas sys-
tems have been studied by many authors,'®% usually
using the random phase approximation (RPA) or the
self-consistent field method. A calculation taking into
account the correlations has been presented by Neilson
et al.1® In our scheme, the correlations are taken into ac-
count via the Jastrow wave function and the dispersion
relations for the collective excitations are obtained from
the extended Feynman formula.'® In Fig. 3, we show the
effect of the finite layer thickness on the excitation spec-
trum. It can be seen that at large values of the wave vec-
tor g, the finite thickness has the effect of depressing the
curves towards smaller energy values. The lower acoustic
plasmon branch and the higher optical plasmon branch
tend to coincide at smaller values of ¢ than in the case of
the strictly 2D layers. Contrary to the RPA prediction,4
which states that the acoustic plasmon is Landau damped

at all densities, in our model the acoustic plasmon is de- .

generate with the single particle continuum only at high
densities. At the experimentally relevant density region
(rs = 2 — 5), the acoustic plasmon is free from Landau
damping. The optical branch of the excitation is always
free from Landau damping.

As shown in our previous work,’ the variational HNC
method also enables the calculation of the total energy of
the layer system in terms of the structure factors that are
the Fourier transforms of the pair-correlation functions.
From the formula for the total energy, it is straightfor-
ward to calculate the pressure and compressibility (or
bulk modulus) of the system. Eisenstein et al.? showed
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FIG. 3. The collective excitation spectra for the elec-
tron-hole layer system at r, = 1.0. The layer separation c = 1
and the energy is in units of 1 Ry = e?/2eao. The solid curves
represent the 2D system and the dashed curves the layers with
finite thickness.
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TABLE 1. Density parameter 7, at the zero of bulk modu-
lus for a single electron gas layer.

Hartree-Fock 2.22
Monte Carlo® 2.02
Present (2D) 1.97
Present (finite thickness) 1.69
Experimentb 1.75

®Reference 11.
bPReference 2.

that the compressibility of a single electron gas layer
reaches zero and becomes negative at a certain value of
density. In Table I, we present the values of r, where
the bulk modulus goes to zero, obtained from different
calculations. Owur result for the 2D layer agrees well
with the accurate Monte Carlo calculation of Tanatar
and Ceperley.!! In the experimental situation, the layer
has naturally a finite extension in the z direction. In-
deed, our result from the calculation taking into account
the finite thickness of the layer agrees well with the ex-
perimental results.

As can be seen from the calculation for the single layer,
the thickness of the layers causes a considerable effect to
the bulk modulus. We, therefore, present results for the
bulk moduli of electron-electron and electron-hole layer
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FIG. 4. Bulk modulus (in Ry/p?, where p is the areal den-
sity of the layers) vs the interlayer separation c of the elec-
tron-hole double-layer system for (a) r, = 1.5, (b) rs = 2.0,
and (c) rs = 2.5.
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systems with finite layer thickness. In Fig. 4, we show
these quantities as a function of the layer separation for
three different values of r,. As discussed in an earlier
paper,’ the bulk modulus of the electron-hole system has
a minimum at a certain value of the layer separation.
Figure 4 shows that the shape and position of this min-
imum is almost density independent. We are of course
dealing with a relatively narrow range of densities where,
e.g., the possible charge density waves® do not play any
role. However, also in this region there seems to exist
an instability that manifests itself as the steep rise of the
bulk modulus curves at small layer separations. Whether
this instability is due to the exciton formation!? or some
other mechanism, cannot be concluded on the basis of our
formalism. At very small layer separations, a formalism
that does not take into account the tunneling between
the layers, is naturally unreliable. However, at layer sep-

arations considered in Fig. 4, the tunneling should be
negligible.

In conclusion, we have extended the Jastrow varia-
tional method for the calculation of the pair-correlation
and structure functions in the electron-electron and
electron-hole multilayer systems to the case of layers with
finite thickness. The finite thickness of the layers has
been shown to have a tractable effect both on the cor-
relation functions and the dispersion relation of the col-
lective excitations. Moreover, a quantitative agreement
with experimental results of Eisenstein et al.2 was ob-
tained in the calculation for the bulk modulus of a single
electron gas layer. The electron-hole layer system has
a region of stability as a function of density and layer
separation; at small densities, there exists a charge den-
sity wave instability® and at larger density, the system
becomes unstable at small layer separations.
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