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Electronic structure of (GaAs) (A1As)„superlattices grown in the [211]direction
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The electronic structure of (GaAs) (A1As)„superlattices, with 2((m, n)(13, grown in the [211]
direction is calculated by the local empirical pseudopotential method within the S-matrix implementa-
tion. The calculated results are discussed and compared to those for other growth directions.

Superlattices have traditionally been grown along
high-symmetry directions, mainly [001], and sometimes
[110] and [111]. Recently, however, experimental and
theoretical studies of other growth directions have also
appeared, e.g., for [113],' [211], ' and others. These
higher-index growth directions are considered interesting
for a number of applications. They enable an optimiza-
tion of the normal-incidence intersubband transitions for
infrared photodetectors, ' and offer some advantages
over the conventional growth directions when used in
semiconductor lasers. They also may provide a means for
the fabrication of quantum-wire structures. Note, how-
ever, that while high-index growth usually results in cor-
rugated interfaces leading to quantum-wire formation, it
is also possible to grow essentially perfect Aat-interface
superlattices. '

There have been relatively few detailed theoretical
studies of the electronic band structure of higher-index
superlattices. Most of the calculations of the
conduction-band states in quantum wells grown in the
[211] direction (and also some others) have been made
within the effective-mass approximation. ' Application
of this method is acceptable for the thicker structures
that may be used in photodetectors, but it is not so reli-
able for thin period superlattices. In this paper we
present the electronic band structure of [211]-grown
GaAs/AlAs superlattices at all the important Brillouin-
zone points where low-energy structure is to be expected,
calculated within the S-matrix and empirical pseudopo-
tential frameworks. To our knowledge there have been
no other microscopic calculations for this growth direc-
tion.

The details of the technique we used are described in
our previous papers. ' Briefly, the complex band struc-
tures of the bulk semiconductors, which are the constitu-
ents of the superlattice, are first calculated using the local
empirical pseudopotential theory. These are then used to
calculate the wave-function propagation across the super-
lattice period, which is implemented via the S-matrix for-
rnalism to ensure high stability against evanescent states.
Once the superlattice period S matrix is found, it is recast
into the transfer T matrix, and the Bloch theorem ap-
plied. Both short as well as long superlattice periods may
be treated in this way, without encountering any cornpu-
tational problems. Various states in the superlattice
Brillouin zone are accessed by presetting an appropriate
value of the in-plane projection (kii) of electron wave vec-
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FICr. 1. The interface Brillouin zone for the [211]-oriented
GaAs/AlAs superlattice. Characteristic points I", X, M, and X,
having folded or projected onto them the bulk Brillouin-zone
points, I,X, and L, are also denoted.

tor, within the interface Brillouin zone. The third wave-
vector component, along the superlattice axis, arises from
the calculation.

The (211) interface Brillouin zone is given in Fig. 1.
The interface Brillouin zone is a good indicator of groups
of bulk states that might undergo mixing in a superlattice
electronic state. The most relevant points are the symme-
try points in the irreducible segment I, X, M, and N,
which have projected or folded onto them the most im-
portant bulk Brillouin-zone points I, X, and L.
Specifically, the I' and one pair of X points project into
I, while the other four X points project into the two
equivalent X points. Four L points project into the two
M, and the other four into four N points. Therefore the
low-energy conduction-band superlattice states are ex-
pected to be found at the I, X, M, and N points. We
should note that the inequivalence of, say, M and N
points can be seen as follows. The angles between the su-
perlattice axis and the principal ellipsoidal axes of L val-
leys projected into the M point are 19.5 '

( or 160.6 ) and
90', and for the valleys projected into the X point they
amount to 61.9' (118.1'). It follows therefore that the
L-derived electronic (miniband) structure at M and X
points will be different. Similarly, the corresponding an-
gles for the X-valley ellipsoids projected into I are 35.3
(144.7'), and for those projected into X amount to 65.9
(114.1 ), and therefore the two sets of X-derived mini-
bands will also have different energies. There is the possi-
bility of mixing of the I and Xbulk states in I minibands
(beyond the effective-mass theory), due to their coin-
cident folding in the interface Brillouin zone. Minibands
at points other than I, on the other hand, will be essen-
tially single band (i.e., either X or L) derived, with no
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signi6cant mixing of bulk states.
Numerical calculations were performed using the pseu-

dopotential formfactors of Ref. 10 for both GaAs and
AlAs. For the wave-function propagation and matching

at interfaces, 63 two-dimensional plane waves were used,
corresponding to 89 three-dimensional reciprocal-lattice
vectors. The valence-band-edge discontinuity assumed in
the calculations was 0.45 eV, in accordance with the ex-

TABLE I. Electron energies in {GaAs} {A1As}„superlattices grown in the [211)direction. For each
(m, n) combination the first five lines give the lowest conduction-band states at I, X, M, and N interface
Brillouin-zone points, and the sixth line gives the highest valence-band states at I . The character of the
conduction-band states at- I is given in brackets. All the energies are in eV units, and are measured
from the conduction-band edge of GaAs. Numbers of GaAs monolayers (m) and of AlAs monolayer
(n) in a superlattice period vary vertically and horizontally, respectively.
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perimental data. The corresponding values of
conduction-band discontinuities at I, X, and L points
were 0.842, —0.245, and 0.215 eV, respectively (the "—"
sign indicating that the X point is lower in A1As}. When
compared to the corresponding values obtained by apply-
ing the "65/35" rule to the experimentally measured
band gaps of GaAs and A1As, " the discontinuities at I
and X are about right, and the value for L is twice as
large. However, ab initio calculations predict the discon-
tinuity at l. to be -0.5 eV (e.g., Ref. 12). Thus the above
value appearing in our calculations lies in between the ex-
perimental and ab initio theoretical values. Finally, the
spin-orbit coupling constants were chosen so that the
split-off bands in GaAs and AlAs were 0.35 and 0.32 eV
below the corresponding valence-band maxima, respec-
tively.

The energies of the lowest conduction-band states
(miniband bottoms) at I, X, M, and N points of the inter-
face Brillouin zone, as well as the topm. ost valence mini-
band at 1, were calculated for all (GaAs} (A1As)„super-
lattices in the range 2~(m, n) ~8. (Actually, both the
lowest I -derived and lowest X-derived minibands were
found at the I' point. ) The thickness of one monolayer in
the [211]direction is a /2v'6=0. 153 nm, where a is the
cubic lattice constant. Although some doubts may be
cast on the reliability of the empirical pseudopotential ap-
proach when dealing with very thin layers, comprising
say 2 ML (in view of the fact that this approach does not
account for the charge redistribution), previous experi-
ence with [001], [110],and [111]superlattices9'3 indi-
cates that results are at least qualitatively correct even for
layers as thin as that.

The results of the present calculations at selected k~~

values are given in Table I. All the energies (including
those of the valence-band states) are measured from the
conduction-band edge of GaAs at I . The states at X, I,
and N interface Brillouin-zone points are always off the
center of the superlattice Brillouin zone. Therefore,
when the lowest miniband bottom occurs at any of these
points the superlattice is an indirect-band-gap material.
The lowest-energy bulk I -derived state at the I point al-
ways corresponds to the center of the superlattice Bril-
louin zone (and, if it lies absolutely lowest, makes the par-
ticular superlattice a direct-band-gap material). On the
other hand, the extrema of bulk X-derived minibands at
I are at the superlattice Brillouin-zone center when
m +n is even, and at Brillouin-zone edges when m +n is
odd. Thus, an m +n =even superlattice with the abso-
lutely lowest X-derived miniband at I is a quasidirect-
band-gap material. There may be some difhculty in clas-
sifying the lowest superlattice state as I or X derived if
the two minibands lie at energies close to each other (and
hence show strong I"-Xmixing) at the center of the super-
lattice Brillouin zone. In other words, in such cases mini-
bands cannot be reliably classi6ed from simply knowing
the relative contributions of bulk states in the superlattice
state wave function. It would become necessary to inves-
tigate the dispersion of such minibands ofF' the zone
center.

An inspection of the results given in Table I reveals
that the lowest conduction-band superlattice state occurs
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FIG. 2. The dispersion of the lowest I -derived and two
lowest X-derived conduction minibands in a direct gap
(m =n =10) and a quasidirect gap (m =n =11)
CxaAs/A1As[211] superlattice. The energies are measured as in
Table I.

in either the I or X minibands, the L-derived minibands
at M and N points always lying higher. The I -derived
miniband is the lowest for a/I m )n superlattices, giving
a direct band gap, while those with m & n in the range ex-
plored have either an indirect or a quasidirect gap, as ex-
plained above. It is interesting to note a nonsmooth or
even nonmonotonic (decaying oscillatory) behavior of X-
derived I or X miniband energies as the number of A1As
monolayers increases. The same is observed for L-
derived M and X minibands as the number of GaAs
rnonolayers increases. These features are clearly not in
accordance with the effective-mass well-barrier picture.
This is due to the microscopic cell-periodic parts of the
wave functions and the need to match them over the su-
perlattice interfaces. Also worth noting is that the lowest
bulk X-derived miniband at X is slightly higher than the
corresponding one at I . In the language of effective-mass
theory this is because the X-valley ellipsoids projected
onto X are somewhat more tilted than those projected
onto I, thus having a smaller effective mass in the quant-
ization direction.

Looking at the main diagonal of Table I (m =n), we
note that the thin-period [211](GaAs)„(A1As}„superlat-
tices (n ~7) have a quasidirect band gap, the lowest
conduction-band state being the X-derived miniband at
the I point. This lowest state is rather purely X in char-
acter if n &7, in spite of the possibility of I -X mixing.
For n =7, however, there is a sizable contribution from
the bulk I state in the lowest superlattice state, but it is
still more X derived. For n =8 the [211](GaAs)„(A1As)„
superlattice becomes a direct-band-gap material, al-
though very marginally (by 1 meV only). There is a large
amount of bulk state mixing here, with the I and X bulk
states making approximately equal contributions to the
lowest superlattice state. As a partial extension of Table
I, we also made calculations for the diagonal
m =n =9-13 cases. The energies of I - and X-derived
miniband bottoms at I are found to be E&=0.340 eV,
E&=0.32S eV for n =9; Ez =0.320 eV, E+=0.331 eV
for n =10; E&=0.328 eV, EX=0.310 eV for n =11;
Ez =0.302 eV, E~ =0.321 eV for n =12; and Ez =0.294
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eV, Ex=0.316 eV for n =13. Similarly to n =7 and 8,
the n =9—11 cases show a high degree of I -X mixing,
but for n =12 and beyond the lowest superlattice state is
almost purely I in character. Therefore the [211]-grown
(GaAs)„(A1As)„superlattices for n (7 have a quasidirect
band gap, those with n & 11 have a direct gap, and the
cases n =7—11 show an oscillatory quasidirect-direct
behavior, though in fact they cannot be quite unambigu-
ously classified because of roughly even contributions of
bulk I" and X states to the lowest superlattice state at the
center of the superlattice Brillouin zone. As for the top-
most valence-band state, in all the cases it is.heavy-hole-
like, displaying a smooth dependence on the superlattice
parameters, as expected from the well-barrier picture. In
respect to the oscillatory behavior of miniband energies
as the superlattice period varies, and to the changeover to
direct band gap for sufficiently large n, the [211] super-
lattices are more similar to [001], [110],and [113]than
to [111]ones (e.g., Refs. 2, 3, 9, and 13).

Examples of the band structures (conduction bands
only) of direct-gap (m =n = 10) and quasidirect-gap
(m =n =11) superlattices are given in Fig. 2. It is in-
teresting to note that in the former case the more disper-
sive I'-derived miniband is intersected by two less disper-

sive X-derived minibands, but anticrossing behavior
occurs only with the second X miniband. In the
m =n = 11 (quasidirect gap) case, the lowest X' miniband
is always below the T'-derived one, but anticrossing
behavior with the second X miniband remains.

In conclusion, the electronic band structure of [211]-
grown (GaAs) (A1As) „superlattices was calculated
within the empirical pseudopotential framework. It is
found that short-period (n (7) (GaAs)„(A1As)„superlat-
tices have a quasidirect band gap, with the lowest mini-
band being bulk X derived. The type of band gap in the
superlattices with 7 ~ m =n ~ 11 oscillates between
quasidirect (for odd n) and direct (even n), although this
classification is somewhat ambiguous because of strong
mixing of I and X bulk states in the lowest miniband su-
perlattice states. Superlattices with m =n ~12 are pre-
dicted to have a direct band gap. If m & n, even by a sin-
gle monolayer, the band gap is always direct.
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