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Electron-electron-interaction-induced instability in double quantum-wire structures
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The tendency of a double quantum-wire electron system towards a charge-density-wave instability is
examined in the framework of linear-response theory. %e choose model parameters that approximate
realistic structures based on GaAs/Al„oa& As materials. Local-field e8'ects associated with exchange
and correlation are treated self-consistently. It is found that the uniform double quantum-wire electron
system at low temperature is unstable under conditions of low density and su%ciently close proximity of
the quantum wires.

Advances in nanometer-scale semiconductor device fa-
brication technology have made possible the controlled
realization of strongly confined electron systems. Among
many interesting problems posed by these systems are the
effects of the electron-electron interaction on the proper-
ties of quantum wires (dynamically one-dimensional elec-
tron systems), which have been studied extensively both
experimentally and theoretically. ' Very recently, the
interaction between electrons in multiple parallel quan-
tum wires in close proximity has become a topic of con-
siderable interest. " It is expected that the coupling
between electrons confined to different quantum wires
could dramatically change the collective modes of the
system. Experimentally, electron transfer by tunneling
between parallel quantum wires has been demonstrated
and devices based on this effect have been proposed. '

For low electron density and close proximity of the wires,
long-wavelength charge-density-wave (CDW) instabilities
have been predicted.

Using a linear response formalism, Swierkovski, Neil-
son, and Szymanski' studied a dynamically two-
dimensional double-layer electron liquid system and
found that the interlayer interaction could enhance the
system's tendency towards Wigner crystallization, or to-
wards the formation of a CDW depending on the electron
density, if the distance between the parallel layers is
sufBciently small. To account for exchange and correla-
tion effects within the individual electron sheets, these au-
thors utilized results of a Monte Carlo calculation of the
local-field corrections. ' Considering the case of dynami-
cally one-dimensional systems, Gold studied an analyti-
cal model based on a cylindrically symmetric, uniform
charge distribution for the electrons in a quantum wire.
Using the Hubbard approximation for local-field effects,
he found a long-wavelength CDW instability in double
quantum-wire structures. By calculating the total elec-
tron energy, Wu and Ruden' also found that a system
composed of two parallel quantum wires in close proxim-
ity is unstable at low density. Their result is qualitatively
related to the q =0 limit of Gold's model.

One of the characteristics of a one-dimensional elec-
tron system is its intrinsic tendency towards a Peierls in-

stability. ' Owing to the simple geometry of the Fermi
surface, perfect nesting for a transition wave vector 2kF
occurs (kz =~n/2, where n is the linear electron density).
At zero temperature, this results in a divergence of the
susceptibility of the noninteracting electron system at
2kF, a precursor to a CDW instability with wavelength
A, =m. /kz. ' The singularity of the independent electron
susceptibility is eliminated by thermal fluctuations and by
collisional broadening, I, due, e.g., to the presence of im-
purities. ' ' It has been shown, however, that a strong
peak at q =2kF remains if kT~0. 1EF and I ~0.1EF.'

In this paper we explore the effect of the electron-
electron interaction on the static density response func-
tion of a double quantum-wire system at zero tempera-
ture. The double quantum-wire structure consists of two
parallel dynamically one-dimensional electron systems.
For numerical simplicity, most previous work employed
models with either hard boundary conditions in the plane
perpendicular to the wire axes or ideal cylindrical sym-
metries, or both. ' ' ' At low electron density, only
the lowest one-dimensional subband is occupied, and, as
suggested by self-consistent calculations, real systems
typically have relatively soft confining potential in the
directions perpendicular to the wire axes. For cases
based on GaAs/Al„Ga& „As heterostructures, the
confinement in the direction parallel to the interface in-
duced by a gate potential is considerably weaker than the
confinement perpendicular to the interface. "' We
choose Gaussian envelope wave functions with indepen-
dently adjustable half-widths along the two orthogonal
directions for our model structure,

Iy

FIG. 1. Schematic cross-sectional diagram of the double quantum-
wire structure.
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(x)=(&a/m' ) exp[ —
—,'a [x+(a/2)] j,

q) (y)=(&ay/n'~ ) exp[ —
—,'(ay) y j, (1)

(z)=(1/&L )exp[iq, zj,
where L, is the normalization length and a is the center-
to-center spacing of the two quantum wires labeled 1 and
2. These wave functions can approximate realistic, nu-
merically calculated wave functions and yet retain helpful
simplicity for calculating Coulomb matrix elements. Fig-
ure 1 displays a cross section of the wave functions in the
xy plane at their half-width positions for a typical choice
of a and y. In the calculations to be presented in this pa-
per we used a=1.177a~ ' and y=2. 5. Expressed in
terms of the effective Bohr radius a~ (a&=100 A for
GaAs), these parameters assign las and 0.4as half-
widths to the envelope wave functions along the x and y
directions, respectively.

The intrawire Coulomb interaction can be written as

V„(q)= Vzz(q)

2

fdz dr dr' exp [ iqz j

Iq. )(x)qy)(y)q ~(x')q, ~(y') I'

[z +(x —x') +(y —y') ]'i

where dr=dx dy and e is the background dielectric con-
stant. After transformation the last equation becomes

V&&(q)= f r dr f dOKO(qr)
EW 0 0

Xexp[ —
—,'a r jexp[ —,'a r (1—y ) sin Oj, (3)

where X0 is the modified Bessel function. With the
same notation the interwire Coulomb interaction is given
by

e Iq &(x)q, &(y)y„z(x')q»(y')I'
V~z(q)= Vz&(q)= f dz dr dr'exp[iqz j z z z &&z[z +(x —x') +(y —y') ]'i

f dr f derKO(qr)exp[ —
—,'a (rcos8+a) j exp[ ,'a y r sin (9j . ——

E'& 0 0
(4)

The linear response of the double-wire system is de-
scribed by a matrix equation,

'(q, co)5n(q, a) )=P'"'(q, co),

1/X»(q ~)
X (S~) V

V)z(q)

1/x|1(q ~)

where 5n=[5n„5nz] represents density fiuctuations in
wires 1 and 2, and, P'"'=—[P&"',Pz"'] stands for the exter-
nal potential applied to them. The inverse response func-
tion matrix is written as

where g&&(q, co)=yzz(q, co) is the response function of a
single wire. We assume equa1 electron densities in both
wires. The coupled equations (5) can be transformed into
two uncoupled equations describing the linear response of
two independent modes: y~'(q, co)5n~(q, co)=@~'(q,co),
where 5n+(q, co)= 5n&( qco—)+ 5n z( qco), and @+"(q,co)
—=P;"'(q, co)+Pz"'(q, co). The modes with subscripts + and

correspond to in-phase and out-of-phase density
modulations in the two wires, respectively. As discussed
in Ref. 13, the out-of-phase mode can be dramatically
affected by the interaction V&z(q). We write the ap-
propriate response functions yz(q, co) in explicit form as
obtained in Refs. 8 and 13,

y~(q, co) =yP(q, co)/(1+ [ V„(q)[1 —G], (q)] V]z(q)[ —G,z(q)] jyP q, co» .

In the last equation yp(q, co) is the susceptibility of a
noninteracting one-dimensional electron gas, which can
e.g. , be found in Ref. 7. In our calculations, to be
presented here, we use GaAs material parameters
m'=0. 068mo and a=13. G»(q) and G&z(q) are the
local-field corrections (LFC's) for the intrawire and in-
terwire interactions, respectively. If the two wires have
negligible overlap, G,z(q) is expected to be very small. '
In our calculations G,z(q) was neglected.

The static susceptibility y (q) is singular when the in-
trawire local-field effect makes a complete cancellation
between interwire and intrawire interactions possible.
Evidently the q dependence of the local-6eld corrections
plays a crucial role. To determine G»(q), we employed

I

the scheme developed by Sing wi, Tosi, Land, and
Sjolander (STLS). ' The one-dimensional version of this
method is'

S (q) = f de Imp(q, co), (7)
nm 0

xp(q, ~)
x(q ~)= (8)

1+V„(q)[1—G(q)]yP(q, ~) '

G (q) = ——f [S(q —q') —1], (9)
n — 2~ qV»(q)

where S(q) is the static structure factor, and
G (q):—G» (q). Solving the set of Eqs. (7)—(9) self-
consistently allows us to determine the LFC factors in
what we will refer to as the STLS scheme.
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FIG. 2. Local-field corre~
the STLS m

correction factors vs wave vector cal 1 t d bcuae y
method for several lineal densities, na =0.08 0.1 0.1

and 0.20 in r
.13, 0.16,

n . , in order of highest to lowest curve. The dashed curve
represents the LFC in the Hubbard approximation.

exci
As discussed in Refs. 1 and 21, both single-parti 1 -1'k
'tations and long-wavelength plasmonlike excitations

are included in determining S(q) and G ( ). Fi
s ows the LFC factor evaluated for several densities. It
also depicts as a dashed line the LFC factor obtained in
t e one-dimensional Hubbard approxim t'xima ion using our
model wave functions, which is expressed as

GH(q)= —,'[&ii(V q'+k~)/Vi)(q) J . (10)

Both methods agree well in the long-wavelength limit.
From this dia ris diagram one can easily see, however, that the
STLS approach yields stronger LFC's for all q. As shown
in Ref. 2 and in our calculations, the STLS m h d

e u ar approximation yield similar asymptotic
behavior for large q at high density.

q is plotted in Fig. 3 for different wire separations.
a q = z in nonin-Because of the intrinsic instability at =2k

teracting one-dimensional electron systems, our calcula-
tions reveal that y (2k~) diverges if the separation be-
tween the wires becomes suKciently small and the elec-
tron density becomes sufBciently low. Roughly we find

FIG. 4. A series of out-of--of-p ase static response functions at small
spacings for na& =0.15 vs lo

' nsa sma er

are 2.64, 2.63 2.62
vs og&o q . e corresponding spacings lott d

, and 2.618a&, in order of bottom to top curve
po e

this to be the case when na ~0.5 over most of the range
of paramaters studied. In addition, as seen in Fig. 4, for a
density of naive=0. 15 (r = 1 lna =6.67) h, t ere is anoth-
er resonance in th

=10 k
—3 —4

e response function between
q = F and 10 k~. Further study shows that this
resonance can also diverge. However f fi d dor a xe ensity

e sma q ivergence occurs at a wire separati ion srna er11

an a required to achieve divergence at q =2k~. For
e response peak atexample, for a density of r =6.25 th

3. 1

splits into two first-order poles ata a spacing of
. 16a~, while the peak between q =10 kz and 10 kz

remains finite down to a wire separation of 2.4a~. Since
the divergence in the static response function implies a
transition to a di6'erent state beyo d 1'on inear response, we
conclude that the long-wavelength 1singu arity of y (q)
cannot be reached.

Figure 5 shows the critical density at which the diver-
gences of y q occur as a function of the interwierwire spac-
ing. e solid line rejects the parameters for w'hich an
instabilit at 2ki i y a ~ occurs. Above this line we expect the
uniform, two-wire electron system to be stable. Th

e curve in the unstable region represents the diver-
s a e. e
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gence of y (q) at small q, which would occur at smaller
spacing and lower density if the system had not under-
gone a transition to a q =2k~ CDW. We can identify this
singularity over only a limited range of n and a values.
The reason is that for high density the required interwire
spacing decreases so much that wave-function overlap be-
comes significant and one should take into account the
interwire LFC. Over the range of critical parameters
shown in Fig. 5 the relative overlap is always less than
8%. For lower density, one of the first-order poles of

(q) originating at 2k+ propagates to sufficiently small

q so that it covers the small-q resonance before its diver-
gence occurs. Hence the latter divergence cannot be ob-
served.

Our calculations suggest a predominant CDW instabil-
ity that occurs at q =2k+. As shown in Fig. 2, the LFC
factors in the Hubbard approximation can never exceed
half unity. Consequently, the tendency towards an insta-
bility at large q is underestimated in the Hubbard approx-
imation. In our calculation the LFC factor Gii(q) can
reach values close to unity for low densities. In addition
to the strong dependence on density, the LFC also de-
pends on the geometric shape of the envelope functions.

The STLS method was developed for three-dimensional
electron systems at metallic and moderately lower densi-
ties. In applying it to a one-dimensional system and go-
ing to very low density (r, ) 16), according to our calcu-
lations, it yields unphysical results. Fortunately, the
STLS method can be successfully applied in the density
range of principal interest. We neglected the LFC com-
ponent associated with the interwire interaction. It is ob-
vious from Eq. (6) that G|2(q) will cause the effective in-
terwire interaction to be smaller than V,2(q); hence for
fixed density the critical spacing at which the instability
occurs would be smaller than predicted by our current
calculation. Similarly, the effects of nonzero temperature

and level broadening' are expected to shift critical wire
spacing and electron density to smaller values. However,
this shift will remain small as long as yP(q) remains
strongly peaked at 2k+. For example, at a separation of
a =3.5az the critical density for the instability is shifted
from naz =0.145 to na~ =0.12 if I =kT=0. 1E+.

While our calculations can only indicate a tendency to-
wards a CDW instability and cannot predict its ampli-
tude 5n, it is interesting to consider the consequences of
its actual formation. Of particular relevance, and experi-
mentally accessible, are the transport properties of this
system. Clearly, a CDW in a system such as the one de-
scribed above would be pinned by the Coulomb potentials
of remote ionized donors in the Al Ga& As layer. It is
easy to see that the interaction with a single Coulomb
center at distances di and d2 from the quantum wires im-
plies a potential energy which is approximately given by

V (a) =&rre 5n cos(a)[(1/Qkzdi ) expt —2kFd, J

—( 1/+ kid z ) exp I 2kzd2 —
I ] .

Here a is the phase of the charge-density wave. Trans-
port can occur either via tunneling or via activated pro-
cess, ' and leads to nonlinear current-voltage charac-
teristics. Indeed, this type of transport was first suggested
as a possible explanation for strong periodic conductance
oscillations observed in Si/SiO2-based quantum wires.
It should be noted, however, that the nonlinearities asso-
ciated with CDW transport may be masked by other tun-
neling processes that occur if the quantum-wire system
breaks up into a sequence of quantum dots as is to be ex-
pected when potential Auctuations are large.
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