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Persistent currents induced by spin-orbit coupling in one-dimensional mesoscopic rings
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The effect of spin-orbit (SO) coupling of the electrons moving in a nonsymmetrical confining potential
on the persistent currents in one-dimensional mesoscopic rings is investigated. Our results show that a
momentum-dependent effective magnetic field could be induced by the spin-orbit coupling. This leads to
a persistent-current contribution. The direction and the amplitude of this current depend on the param-
eters of SO coupling. An interesting result is that the dependence of this current on the coupling param-
eters has the steplike characteristics. The condition of adiabatic approximation is also discussed.

The persistent equilibrium current occurring in an iso-
lated mesoscopic ring threaded axially by Aharonov-
Bohm (AB) fiux was predicted by Biittiker, Imry, and
Landauer' in 1983, and was demonstrated in three recent
experiments. Although the phenomenon of persistent
current has been extensively studied, a satisfactory ex-
planation for the experimental results has so far not been
found. It is generally believed that the amplitudes of
current predicted by theoretical models are smaller than
the experimental values. The large discrepancy between
the measured current amplitude and theories has intro-
duced many open questions. The effect due to spin-orbit
(SO) coupling is one of questions in the field. It has been
widely accepted that spin-orbit interaction may play an
important role in persistent current, for example in the
sign and period of the currents. ' ' The magnetoresis-
tance and Berry's phase induced by spin-orbit coupling in
low-dimensional or lowered symmetry conductors were
discussed by Aronov and Lyanda-Geller, and the latter
author also predicted striking topological transitions in
Berry's phase interference effects.

Recently, Zhou, Li, and Xue have shown that
Aronov's Hamiltonian is not Hermitian, and introduced
a more realistic model by adding a confining potential
such that one-dimensional (1D) effects are phenomeno-
logically taken into account, thus giving a Hermitian
Hamiltonian model for electrons confined in a one-
dimensional ring, and a spin-orbit coupling that can be
induced by the confining potential. Of course, the per-
sistent current determinated by this Hamiltonian is an in-
teresting question. In addition, an adiabatic approxima-
tion is made in Ref. 7, and Stern has obtained a precise
criterion to decide whether this approximation is valid. '

Stern considers an electron with a magnetic moment p
subject to a magnetic field B in a quasi-one-dimensional
ring of the radius a. For the electrons at the Fermi level,
the condition for the adiabatic approximation is
pBa/Vz » 1, where V~ is the Fermi velocity. In the case
discussed in Ref. 7, the adiabatic condition is equivalent
to cop co )+2col." For the sake of convenience, here we
use the notations of Ref. 7, namely co =iri/2ma, where co,
is the Larmor frequency; coo=fiP/2a, where iriP is the
spin-orbit coupling coefficient in the ring, and
l =n —

—,'+ Pl/0 » 1. Estimations show that for an InAs
ring of 5 pm radius and 60 nm width

(m =0.023mo, g = 15, the spin-orbit coefficient
iriP =6.0X10 ' eV cm = 9.6X10 ' JM, the 2D elec-
tron density is taken as N, = 10' cm, and Ef =0. 1 eV),
the values of co, co„and cop are as follows: co=1.0X10
Hz, coo=9. 14X10 Hz, and co, =1.32X 10' Hz (for

g =15 and B=100 Gs). Therefore, coo/2col =4.57/l ((1
and co, /2col =66.0/l «1 [because of l =+Ef/Aco=10
(Ref. 11)]. Thus the adiabatic approximation is invalid in
many normal metal or semiconductor rings.

Reference 12 presents an exact solution by diagonaliz-
ing a Hamiltonian which is similar to Aronov s Hamil-
tonian in Ref. 7 using the well-known Bogoliubov trans-
formation. In this paper we obtain an exact solution of
the energy eigenvalue problem and persistent current in
the system whose Hamiltonian was derived in Ref. 9.
Our results show that the spin-orbit interaction makes
important contributions to the persistent current. At
zero temperature, the persistent currents are the sum of
parts Iso induced by spin-orbit coupling and Izz induced
by the A-B magnetic Aux. The results also show that the
direction of Is& depends on the parameter of the SO cou-
pling, hence the SO coupling can increase or decrease the
total currents. The most interesting result is that Iso
varies steplike with the parameters co& and co2 increasing,
where co

&
and m2 are parameters which express the

strength of the spin-orbit coupling. This steplike charac-
teristic of Iso versus co, and co2 has a close relationship
with the topological transitions predicted in Ref. 8.

We start from the Hamiltonian derived in Ref. 9, the
Hamiltonian for a single electron of mass m, charge —e,
and spin —,', as given by

+%co,(o„cos8+o sin8)( id/d8+P/P —
)

l %co) a+ (o. sin8 —cr cos8)+A'co o i +—
2 x

Here A'co, =A' a, /4m c r, A'coz=A az/4m c r,
a, =(a' b')Uo, and az=(a—b)Uo Using t—he sam.e ap-
proaches as in Ref. 12, Hamiltonian (2) in the second
quantization representation is given by
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8=y E„.CJ.C„.
na

+g b,„(C„+C(„+))+C(„+,) C„+),

where

I~B(P)—g 1~(m) giB

where
= f1p) ( 11 +y /yp ) + (r&co2( n +y /(t)p ) p~he

((r =+1), (3)
(4)lI), „=1)leo((n+—,'+P/lt)p) .

Hamiltonian (3) can be diagonalized by the well-known
Bogoliubov transformation

n n Cn+ ~n C(n+I)—
P =V C ++U C(

So(~l&~2) Q ~ A(m)+X ~lB(n)

and

K Co) /(CO P)2) (18)

Et is easy to confirm that the current I~~ is persistent
current induced by a pure A-B flux, because the current
I~~ is independent of SO coupling parameters col and co2.
Let K= b.„/g„,obtained by

The results are
a+a +Q B„P„+P„, bi = —hi„(„)=bB(„)=(1)io)) /ppK)t/1+K (19)

I= —c y aE„/ay= cy a~—/alt. +y aB„/ay . (9)
n m n

The summation is taken with energies less than p,h, .
At finite temperatures, one can calculate the current from
the thermodynarnical potential of the system

I= caF/ay .— (10)
Using the diagonalized Hamiltonian (7), we find

F= ——g in[1+exp( —PA )]
1

+g in[1+exp( PB„)].—,

where P= 1/kB T, so the persistent current is given by
aa /ay aB„/ayI= —c +1+exp( —P A ) „1+exp( —PB„)

(12)
with

—a~. /ay=. „,, +a.„,,
aB„/ay=lB(„)+biB(„—) .

Here

(13)

4(.) =lB(.) = —2«o)/No)(ll+-, '+4'/0o»
(14)

6l g („)= AlB(„)= t1[(CO CO2)g„+Co)5„]/ppQg„+4„.
From Eqs. (9), (12), (13), and (14), we can obtain the per-
sistent currents at zero and nonzero temperatures. For
the sake of simplicity we will mainly discuss the proper-
ties of the current at zero temperature.

At T=O, the total persistent current is given as a sum
of Izz induced by A-B flux and Is& induced by the
effective flux of the spin-orbit coupling, i.e.,

IAB (4') +Iso(~1 ~2) (15)

where

=(E ++E( +)) )/2+Qg2 +5
()B„=(E +E(,) )/2 —Qg„+b,„,

and g„=(E(„+)) E„+)/2—. At T=O, the total per-
sistent current I is obtained by

A striking feature of the results is that Aiz [„~and

hi&~„~ are independent of the energy quantum number n

and the magnetic flux. Therefore the current Iso is a per-
sistent current induced by the effective flux. In the fol-
lowing, we give the computation results and some discus-
sions at T=O.

Our numerical calculations are shown in Figs. 1 —3.
The results show that persistent currents induced by
spin-orbit coupling vary steplike with the spin-orbit cou-
pling, and that the direction of Is& depends on the value
of co2. In the case of cu2&co, the spin-orbit coupling
reduces the total persistent currents; conversely, the
spin-orbit coupling enhances total persistent currents at
co2) co, i.e., co&=co is a critical point, and the critical point
does not depend on co&.

Figure 1 shows the dependence of the persistent
current Iso on co) /p) and p)2/co. It is shown that Iso is an
even function of (p, /cp. The direction of Iso has a critical
point at the value of a@2=co. If we assume Iso positive at
co2 & co, then Iso becomes negative at co2 & co. Iso remains
constant when the total electron number N, increases.
Iso varies difFerently with k, where N, =4m +k ( k =0,
1, 2, and 3), and m is an integral.

Figure 2 shows the dependence of I/I&B on p))/p) at
co2= 2.0co and o)2= —0.5', respectively. I/I&B is also an
even function of co)/co. The spin-orbit coupling increases
or decreases the total persistent currents, depending on
the value of p)2. The value of I/I&B is always smaller
than 1 for m2= —0.5u. This indicates that the spin-orbit
effect always reduces the total persistent currents. Con-
versely, the value of I/IzB is always larger than 1 at
~2=2.0co, which shows that the spin-orbit effect always
enhances the total persistent currents. This conclusion is
more clearly shown in Fig. 3. The amplitude of I!I~B
decreases with the increasing of the electronic number
iV„and I/Iz~ is proportional to 1/X, .

Figure 3 shows the dependence of I/I„Bon co2/co at
co, =2.5'. At co2 (co, the value of I/I„Bis always small-
er than 1. This means that the direction of Is~ is oppo-
site to that of I&B. The value of I!I„Bis always larger
than 1 at co&& co. This means that the direction of Iso is
the same as that of the persistent currents induced by the
A-B Aux.

In the following, we study the influence of the spin-
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FIG. 1. The dependence of persistent current Is&
on parameters of the spin-orbit coupling at T=O. (a)
I co& at cop=2. Ohio and N, =4m +4, (b) I co& at

SO so-
u)~=2. 0cu and N, =4m+3, (c) I co~ at col=2. 5')
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and N, =4m +4, (d) I co& at co& =2. 5m and
SO

N, =4m +3. Iso depends on the value of m.

-30- 60

%0—

-60 .—

40

20
Q

0

-70 .

80 a i I I ~ ( s a I a I a s ~ ~ I ~ a ~ a i i s a I I ~ ~ a i a

-3 -2 -1 0 l 2 3
40 I L a l I I I I I I i I I i I I ~ I I I I I I I I I ~ I I I ~ z ~ I I ~ a

-3 -2 -1 0 1 2 3

6)& /~

orbit coupling on the energy state. If we assume that
n =m +j, where j is an integral number, then we have

8+1=2iri( —~co
—coz~+1+ic coj )—

X[m+(1+j)/2+ctplgo] . (20)

So we know, when ~& and mz satisfy A —8 &0 and
A —8 +, & 0, that the energy-level sequence is
and A —8 +z & 0, the energy-level sequence is
A —8 + &0 and A —8 + +, &0, the energy-level
sequence is. . . A &8 +. A

&
8 +

In fact, if the energy-level order varies with the
coefficients co& and co&, this variance occurs when the
effective flux changes a flux quantum go=Pic!e. Then the
wave function must change by a phase factor 2m. This
corresponds to a transition of an energy state A„with a
wave vector k into its neighboring state ~k ~+2m/L, and.
at the same time an energy state B„with wave vector k
changes into its neighboring state ~k

~
2vrIL, where L is-

the circumference of the ring. The change of the highest
occupied state corresponds to the current change by

4hi at X, =4m or 4m +2,
(21)2hi at X, =4m+1 or 4m+3 .

The factor 4 comes from every energy state occupied by
two electrons at X, =4m +2 or 4m. But the highest oc-
cupied state is a single occupied state at X, =4m +1 or
4m+3, so the factor is 2. This is the reason why per-
sistent currents are increased steplike in Figs. j., 2, and 3;

co& ='l/ coi+coz(n+Plgo),
n~ & ~

= ( sing cos8, sing sinO, cosy ),
(23)

(24)

i.e., such a steplike characteristic comes from Eq. (21).
The jth step happens when A —8 + =0, namely

j= ~1 —co&/co~+1+ic, and the current amplitude change
is 4' or 2b, i, depending on the value of k (where
N, =4m +k).

Now we discuss the condition for the adiabatic approx-
imation in our system. We have shown that the condi-
tion for the adiabatic approximation in Ref. 7 is cop,

co, »2cul, and the condition is not satisfied in normal
metals and semiconductors such as InSa. One of the im-
portant differences between Hamiltonian (3) in Ref. 7 and
(7) in Ref. 9 is that there is the spin z-component o,-orbit
coupling term in Ref. 9. The existence of this term
means that the adiabatic approximation is more easily
satisfied than in Ref. 7. Our results show that one can
use the adiabatic approximation to analyze Berry's phase
with the Hamiltonian in Ref. 9 in many metal and semi-
conducting rings such as InSa.

In the Fermi level n »1, we can neglect the term
(iA'co&/2)(cr„sinO —o~cosO) in Hamiltonian (1). Then the
operator —i(c)/c)8), except in the first term is replaced by
a number n due to the Hermitian of Hamiltonian (1).
Therefore, Hamiltonian (1) becomes'

0=fico( iBIBO+Plgo)—+%coign(~) a, (22)

where
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ment of electron) and a direction angle y which describes
the deviation of the effective magnetic field from the Z
axis. Hence it is not unexpected that this spin-orbit in-
teraction induced by a nonsymmetrical confining poten-
tial would provide an effective flux which in turn pro-
duces the persistent current in Eq. (17).

Reference 10 gives the adiabatic criterion as
pBa /Vf »1 (I)I'= 1). In our system, this is equivalent to
paB,ff!Vf»1, i.e.,

[QaI, +nl2(n+(()/po)a/Vf] »1 (25)
FIG. 2. The dependence of I/Izz on co&/co at PIPO=0. 25, T=O,

N, =4m+4, and (a) co2=2.0~ and (b) ~2= —0.5m. Il, I2, I3, and I4
express the currents at m =20, 50, 200, and 1000, respectively.

and

slug —col/Qcol+co2, cos+ —co2/Qcol+c02
The effective Hamiltonian (22) shows that the nonsym-

metric confining potential is equivalent to a momentum-
dependent effective magnetic field with a magnitude

B,ff=[A+cat+caz(n+p/ctIo)]/p (p is the magnetic mo-

for a free electron, fiCO[n+(ItI/po)] = Vf /2m, so we can
rewrite condition (25) with the inequality

Q CO I +C02 /2 CO » 1 (26)

just as in previous adiabatic analyses we take
coi =co2=m0=9. 14X 10 Hz and m= 1.0X 10 Hz
[cocI=Pip/2a in Ref. 7]. In InSa, the adiabatic
condition is approximately satisfied because
(Qnlt+nlz)/2aI=6. 4» I. This condition for the adia-
batic approximation is very different from that in Ref. 7.
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14The grand-canonical ensemble Hamiltonian of N electrons in
a mesoscopic normal metal ring which is placed in a texture-
structure inhomogeneous magnetic field is (Ref. 12)

N8=+ [1/2ma (Pe+eaAe) yBnI&~ o]—p,h,
A' . (A)

It can be rewritten as [the Hamiltonian (8) in Ref. 12]

8'=gE„C„C„+gA(C„+C(„+I)+C("„~I)C„+), (B)

where

E„=E„+o.yBcosy —p,h, (o =+1),
A=yB sing .

Comparing with (2), (3), and (4), if we assume

yB cosy=finI, (n+PlciIc),
yB sing =RnII(n + —,

' +p/Its) =&nI I(n +plctIc),

(C)

(D)

(E)

(F)

then Hamiltonian (1) can be rewritten as (22), which has a
similar formulation to Hamiltonian (A). So we have taken
the approximation [n+ —'+(P/Pc)]=[n+(P/Pc)] in obtain-

ing the approximate Hamiltonian (22).


