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In a superconducting bilayer with Cooper-pair tunneling (TJ g 0) between the layers, it has been
recently predicted that there should exist in-phase and out-of-phase phase and amplitude Buctuations
of the order parameters of the two layers. As a way of observing these phase modes, we calculate
the inelastic light scattering from a semi-infinite superconducting superlattice with a bilayer basis.
For simplicity, we ignore surface modes. We show that the bulk phase modes show up as resonances
in the isotropic Raman light scattering intensity at 6nite momentum transfer parallel to the surface.
Our specific calculations are for 8-wave superconductors but similar results are expected for d-wave

pairing. The size of the energy gap of the out-of-phase modes is strongly dependent on the ratio of
TJ and the intralayer pairing interaction g, as well as particle-hole damping.

I. INTRODUCTION

Recently, a model with strong interlayer Cooper-pair
tunneling has been proposed by Chakravarty, Anderson,
and co-workers for the copper oxide superconductors.
Within this model, Wu and GriKn ' have predicted the
existence of a phase and amplitude modes associated with
out-of-phase fluctuations of the Cooper-pair condensates
in the two layers of a bilayer, in addition to the in-
phase Anderson-Bogoliubov (AB) phase and Littlewood-
Varma amplitude modes. The bilayer phase modes are of
most experimental interest since they couple into the den-
sity fluctuation response functions, which can be studied
by inelastic light scattering. This is the subject of the
present paper.

In nonsuperconducting superlattices, only the intra-
and interlayer Coulomb interactions are considered,
usually within the usual random-phase approximation
(RPA). In this connection, Jain and Allen4 as well as
Giuliani, Hawrylak, and Quinn have given a detailed
discussion of inelastic light scattering in a layered elec-
tron gas (LEG) superlattice without a basis. Santoro and
Giuliani calculated the Raman scattering for a single
normal bilayer. GrifBn and Pindor discussed the layer
density response functions in a LEG superlattice with
a bilayer basis (two sheets per unit cell). Generalizing
the formalism of Jain and Allen, in the present paper we
calculate the Raman light scattering from a superlattice
with two superconducting layers per unit cell. This model
should be relevant for Bi-Sr-Ca-Cu-0 and Tl-Ba-Ca-Cu-
0 oxide superconductors. The superlattice period (= c)
is 12 A. , while the bilayer spacing (= d) is 3 A. The
pairing interaction responsible for superconductivity is
assumed to be confined to the two-dimensional (2D) lay-
ers due to the highly 2D character of the electronic energy
bands. Since c (& d, we only allow the interlayer Cooper-
pair tunneling between the layers within the same unit
cell and ignore the Cooper-pair tunneling between two

consecutive layers in different cells.
Our main concern are the resonances in the Raman

scattering which are associated with the in-phase and
out-of-phase phase modes. One finds that the light scat-
tering from a surface involves a weighted sum of the layer-
dependent density response functions, and as a result, it
picks up the two kinds of phase modes. It has been shown
that the magnitude of the energy gap of the out-of-phase
Leggett mode depends critically on the ratio of TJ and
g, and it can be above or below the pair-breaking en-
ergy 2L. Experimental observation of these out-of-phase
phase modes and the position of the energy gaps would
give unambiguous evidence for the existence of Cooper-
pair tunneling as postulated in Ref. 1.

In Sec. II, we derive the layer-dependent density re-
sponse functions. In Sec. III, we use these results to
calculate the inelastic light scattering for a semi-infinite
superconducting superlattice with a basis of bilayers, re-
stricting the interlayer Cooper tunneling to layers within
the same unit cell. In Sec. IV, we summarize our main
results. Since this paper is largely an extension of the
work in Refs. 2, 4, we only give a brief sketch of the for-
malism in Secs. II and III. For simplicity, we work with
an 8-wave pairing interaction and an isotropic interlayer
Cooper-pair tunneling strength, and limit our analysis to
T = 0. Similar calculations can be done for d-wave pair-
ing using the response functions given in Refs. 3, 9. The
main difference is that the out-of-phase mode is strongly
damped because there is no pair-breaking gap.

II. INTRA- AND INTERLAYER
RESPONSE FUNCTIONS

Using the same approach as in Refs. 4, 7 to deal with
a superconducting superlattice with two sheets per unit
cell, the RPA-type equation of the density-density corre-
lation function for electronic densities in layers (I, i) and
(I', j) is given by
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X;~(qII, id, l, I') = X;~(qII, id, l, l') + ) X;;,(qII, cd, l, l )v;„,(qII, li —l2)X;,~(qII, id, l2, l'),

where l, l run from 0 to 1V —1 (the total number of the unit cells 1V is infinite for semi-infinite superlattices) and
i, j = 1, 2 label the two sheets in the bilayer within each unit cell. The irreducible two-particle Green s functions
X;z (1, l ) are calculated in the absence of any Coulomb interactions. However, in a superconductor, they do include the
vertex corrections (ladder diagrams) due to the intralayer pairing interaction g and interlayer Cooper-pair coupling
Tz. These have been recently discussed in detail in Refs. 2, 3, 9. The Coulomb interaction in (1) is given by

(qll l l') = v2De (2)

where v2D = 2vre /qIIep is the Coulomb interaction for a 2D isolated layer. For the 1th unit cell, we define Zi i = lc,
Z~ q = lc+ d; i.e., the unit cell spacing is c and the spacing between sheets in a unit cell is d. The fact that the
Couloinb interaction (2) only depends on the distance between the two sheets is a result of our assuming that the
background dielectric constant ep is the same in the superlattice (z & 0) as in the medium above it (z ) 0). Treating
eo difFerent above and below the interface, Jain and Allen have shown that the Coulomb interaction leads to the
appearance of surface plasmons in the case of normal semi-infinite superlattices. For simplicity, we ignore such surface
modes in the present paper although they might be of interest in a future study.

Since the pairing interaction is assumed to only exist in the same layer and the interlayer Cooper-pair coupling
only occurs within the same unit cell, the correlation functions y;z will be l independent and are given by those of an
isolated bilayer. This means X;~(qII, id, l, l') = X;~(qII, id)hi i and we can reduce (1) to

X;~ (qII, ~d, l, I') = X;~ (qII, id) 8$ [ + ) X;,, (qII, ld) v;„., (qII, I —l2) X,,~ (qII, ~d, l2, 1').

A(q, ) = ) e'~* 'A(1)
l=—oo

~/c
A(l) = —) e '~*'A(q, ) =-

qz

dq, e '~"A(q, ),
(4)

The bilayer response functions of a "neutral" supercon-
ductor X;~(qII, id) can be assumed to be known from ear-
lier work. ~'3 One can use an extension of the Fourier series
method developed in Refs. 4, 5 to solve the system of cou-
pled response functions in (3). One finds that the semi-
infinite superlattice response functions X;~ (qII, id; k„k, )
have a bulk term and a surface term. Since we ignore
the surface contribution in the present paper, we are left
with the bulk contribution which is identical to that of
an infinite superlattice, for which X(l, l') = X(l —l') and
3, /' range from —oo to oo. Taking the Fourier transform
of (3) appropriate to such an infinite superlattice,

sinh q~~cv i i (q) = v22 (q) = v (q) = v2D
coshq~~c —cosq c

vi2(q) = [v2i(q)]*:—6(q)

»nhqll(c —d) + e '~ »nhqlld
cosh q[[ c —cos q c (6)

4(g + Tg)cp 4Tgcp
Xii(qII, id) = X22('qII ~d) Ap D + D+ +

As one might have expected, only the interlayer Coulomb
interactions (vi2 and v2i) depend on the spacing d of the
bilayers.

The derivation of the bilayer response functions

X;~(q, id) in (5) is a lengthy calculation, involving treat-
ing the phase and amplitude Quctuations of the order
parameters (Cooper pairs) on the two layers as well as
the charge-density Buctuations. We only quote the final
results of Refs. 2, 3:

we obtain immediately

x', (q, ~) = x', (qII, ~)

4r&co'
x12(qII, id) = x21(qII, id) =

D+D (7)

+ ):x,;, (qII, ~)v, ,*,(q)x'„(q, ~),
&1 )&2

(5)
Dg(qII, ~d)—:1 —(g 6 Tg) Bp. (8)

where we ignore the short-range interaction g in the
particle-hole channel. The denominators are given by

where X,~(qII, id; q, )—:X;~(q, id). The Coulomb interac-
tions in (5) involve layer sums which can be carried out
explicitly to give (see Ref. 7)

The 2D noninteracting (in the sense that there are no
vertex corrections) correlation functions in (7) and (8)
are defined by
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Ao(q~~, (u + ip)

dPII E+ E' EE' —ce'+ ~PII~PII+QI
(2~) 2 2EE' (~ + ip) 2 —(E + E') 2

Xl1 v(X11 X12)X»(q ~) = X22(q a') =
+

X12 + v(X11 X12)
D+D (i3)

ao(q~, , ~+ i&)

dp~~ E+ E' (EE—'+ '+ A „b, „„)
2lr)2 2EEI (u + ip)2 —(E+ E')

Here the new denominators are given by

Dg(q, u))—:1 —v~(q)Eg(q~~, u)),

where we have defined

v~(q)—:v(q) + 8(q)

(i4)

co(q((~ ~ + 1'7)

dpll —(~ + i&) p((

(2')2 2E (~+ ip)2 —(E+ E')2'

and

E+(q~~, ~) —= Xll(qff ~) + X12(q~~, ~)
4(g + Tg) c2o

0 D~ (i6)

where the BCS quasiparticle spectrum is Ep
+ IA~)[!2, with e~((

——p(~/2m —Jtl and E = E~„, ,

pll+qll ' and 6 = ep
II

' ~ ~p II+q II
' The finite

broadening p takes into account the experimental resolu-
tion and finite lifetime of the pair fluctuations. We note
that the above results are only valid for 8-wave intralayer
pairing g and an isotropic TJ. In this case, the isotropic
8-wave gap (A~„= K) for the bilayer is self-consistently
determined by the same BCS gap equation as for a single
layer, namely

; 1
1 —(g+ T~) 0.

PII

(io)

!
~X11 X12~ ~1 a b ~ ~Xll X12~
(X21 X22y ( b 1 —a*y (X12 Xll) ' (11

where

+ = 'U&11+ 6 X12

b = ~y12 + & X11.

The solutions of (ll) will give rise to the modes which
involve oscillations of the two layers in a unit cell which
are in-phase or out-of-phase relative to each other. We
see &om (6) that 8 is always real. The solution of (ll)
is very much simplified if 8 in (6) is also real and this
will be assumed in the present case (we will discuss this
assumption shortly). We remark that if we set Tz = 0,
we have X12 ——0 and then (11) reduces to the results in
Appendix B of Ref. 11.

The secular determinant of (ll) is given by (1 —a) (1—
a*) —bb*. This factorizes if 8 is real since then a and b

are also real. With 8 real, the matrix equation (11) is
easily solved to give

Taking into account that Xll ——X22 and X12 ——X21 [see
also (7)], one may reduce (5) to the matrix equation

A key simplifying feature of (13) related to 8 being real is
that we can separate the in-phase (+) and out-of-phase

(—) phase lnode contributions to the response functions
in (13), namely

1 E+ E
+11 —+22 —

D +
+

1 E+
+12 +21—

2 D+
(17)

This also allows a clean separation of these two con-
tributions in the inelastic light scattering cross section
(see Sec. III). A similar separation has been discussed in
Refs. 7, 11. In the present case, this separation depends
on 8 in (6) being real.

We note that in the normal phase (when both the
pairing interaction g and interlayer Cooper-pair coupling
Tg vanish), the functions E~ in (16) both reduce to
Ap, which in this case is the well-known Lindhard func-
tion. However, in the superconducting case, there are
two possible collective mode branches for a given value
of q„as given by the solutions of ReD~(q, u) = 0 in
(14). As shown in Ref. 2, the mode given by the so-
lution of ReD+(q, w) = 0 corresponds to the in-phase
Anderson-Bogoliubov phase mode, which is renormalized
by the Coulomb interaction into 2D plasmons. In con-
trast, ReD (q, u) = 0 gives a mode which corresponds to
an out-of-phase phase mode which is "massive, " with an
energy gap at low q~~ which is modified by the intralayer
and interlayer Coulomb interactions (see Sec. III). As was
pointed out in Ref. 2, this kind of out-of-phase mode of
two coupled Cooper-pair condensates was first discussed
in another context by Leggett.

In calculating the inelastic light scattering cross sec-
tion in Sec. III, we will need the response functions
X;~(q~~, u, t —I') for the different layers. Performing the
inverse Fourier transformation of (17) using (4), with the
dependence of q~I and u left implicit, we find that the only
q, dependence of X,~(q, ) is through v~ via the denomi-
nators D~ in (14). This means one only has to calculate
the following quantities:
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C
m/c —i lcIg(l) =—— dq, e

2vr g,
'

D+(q, )
'

and y,~ (l —l') will thus be given by

J(u) = g

Cd 1 —(d

2

arcsin Cu, Cd Q 1 )

.7r
ln(a —Qu —1) + i—,~ ) 1.

2

V = V2D —V2De
—g Cg (20)

We note that in both v+ and v, the approximation that
we use is such that 6 in (6) is real, as was originally
assumed in deriving (13). Using these results to calculate
D~ in (14), after some algebra, we obtain

I 1
I+(l —l) = —

IL
—1

I

—
I

L —1 —1IGQ Q
2

—
I&

—
& +1I+'tl

I (t —t') = 1 —vpD(l —e ~~")E
- —1

~l, l' ) (21)

where the parameters are defined as

a —= cosh qllc,

b —= cosh qll c 2v2DE+»nh qll

u—:b+ Qb~ —1. (22)

In calculating the inelastic light scattering cross section
in Sec. III, we only need to consider the case of very small
momentum transfer gll. In this limit and with p = 0, the
functions Ap, Bp, and cp in (9) can be approximated~ s

or qll (( 4/v~ by

xii(l —~ ) = xzz(~ —~ )
1= —[E+I+(I —l') + E I (l —l')]
2

x ~(& —&') =x (t —~')

1= —[E+I+(I —~') —E I (I-—-')].
2

At this point, it is useful to recall the physics of the in-
phase (+) and out-of-phase (—) modes in conjunction
with the fact that d (& c. For the + mode, we do not
lose much if we work in the d —+ 0 limit since this mode
corresponds to both layers oscillating in phase. In this
case, we have 6 = v [see (6)] and hence in (15) we have
v+ ——2v. In contrast, for the —mode, the essential
physics is captured by considering a single bilayer (i.e. ,
in the c —+ oo limit). In this approximation, v in (15)
reduces to

(24)

where

B+ ——0
1 2z Tgx= . 26

N(0)g x~ —1 '
g

Varying the parameter x (i.e. , the ratio of Tg and g)
provides a simple way to compare the results when TJ
is larger or smaller than g. We note that in (25), in the
limit of qll ~ 0, we find B+ ——0 and hence E+ ~ 0.
In contrast, in this limit, E is finite since B is finite.
This implies that the in-phase phase mode has less weight
when qll is small, while the out-of-phase phase mode is
not too dependent on the value of qll [see (17)]. For the
case of finite damping, we need only replace u by u + ip
in (24)—(26).

III. INELASTIC LIGHT SCATTERINC
CROSS SECTION

For an incident photon with momentum q, , energy ~, ,
and polarization e, and a scattered photon described by

qy, cuf, and ef, the inelastic light scattering cross section
at T = 0 is found to be proportional to '

Here the barred quantities are defined by ~ = ~/2A and

qll
= vyqll/(2A); N(0) = rn*/mh, is the 2D density of

states at the Fermi surface. The imaginary part of func-
tion J(w) only contributes when u ) 2A. For an s-wave
superconductor, there are no BCS particle-hole states be-
low 2A and thus the collective modes are well de6ned in
this region. The validity of the above approximation
is not so good for &equencies near the threshold 2A,
namely, when 24(1 —qll/2) ( u ( 26(1+ q ) ~ . How-

ever, this region is negligible for small qll, and essentially
makes no contribution due to the finite experimental res-
olution.

Substituting (23) and (24) into (16), we obtain

-~ +-,'-', lJ( )
E~(qll, ~) = —N(0) J(id)) 4 B~ + — Cd ——q )J ld)

(25)

oc ]e, elf I(q, cu),
0 2 (27)

1 N(0) 1
&p = + ~ ——

qll J(~)
g+TJ 4 2

where

I(q, ~) = —) Imp;~(q

cp —— u J((u),N(0)
8

—(Zs;+Z, i . ) /b —2ik(Zt, ;—Z, I ~) (28)

with the dimensionless functions J(w) defined by We assume that the energy transfer to the superlattice
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hPp
Imq, ; Imq y = —Im~e. (29)

This leads to the appearance of the penetration depth
b in (28), where b'—:(2uro/c)1m'. The final result
given. in (28) is that the inelastic light scattering cross

I

~:—~; —uy is very small compared to the photon &e-
quencies, i.e., u; uy = cup. The momentum transfer
by the light parallel to the interface (denoted by g~~) is
very small. The momentum transfer perpendicular to the
superlattice can be approximated by 2k = (2uro/c)Re+a
where e is the complex dielectric function for optical pho-
tons in the medium containing the superlattice. The
damping of light in the medium is described by the fact
that the photon wave vector has an imaginary part

section involves a weighted sum of the density response
functions given in Sec. II.

For simplicity, as shown explicitly in (27), we have only
kept the isotropic matrix element for the Raman inter-
action. In most theoretical work on electronic Raman
scattering in superconductors, ' ' the main interest is
usually on the anisotropic scattering cross sections from
modes which have little wave vector dependence (disper-
sion). For this case, one can set the small momentum
transfer to zero. In contrast, in our present work, we
are interested in the scattering &om phase modes with
strong dispersion, which already show up in the isotropic
scattering cross section given by (27).

Summing over i, j = 1,2 for bilayers, one obtains the
more explicit expression for fixed q

I ( ) ) I ( t Il) —(l+l')c/h 2ii;—(l l')c—(1 + 2d/h—
)

L, l'

+ Imp 'g ~ t —i')e-('+') /'e-""('-') -"/'2cos2kd,my» (gll, u), — e (30)

where we have used the symmetry y(l —I') = y(l' —I). By using (17)—(22) and summing over I, l' = 0, ..., +oo in (30),
we obtain

1 E+ 2v2DE+ sinhq~~c(u e '/ —1)
/~Im 1+ 1+ e + 2e cos2kd—2d/h —d/h

1 —e-2c/8 2 b2 —1

+ 1 + e d/ —2e "/ cos 2kd
2 1 —v2D (1 —e 'l~~ ")E (31)

where we have introduced the function ated with the solution of

r = u'e"/' —2ue /'cos2kc+1. (32) 1 —v2D(1 —e l )E = 0 (34)

These results are a generalization of those for a normal
superlattice, as given in Ref. 4. In the right-hand side
of (31), the first term (= II) gives the contribution &om
the in-phase phase Huctuations, while the second term
(= Ici) is associated with the out-of-phase phase Huctu-
ations.

For the CuO~ layer superconductors, where b k
one can efFectively set b = oo (i.e. , ignore photon damp-
ing). In this limit, the pole due to P = 0 in the first
term of (31) is given by the solution of b = cos2kc.
This gives the in-phase (bulk) plasmon resonance for
q = 2k and corresponds to the Anderson-Bogoliubov
(AB) mode, renormalized by the Coulomb interaction
(for further discussion, see Ref. 11). The additional sin-
gularities of the first term in (31) are given by

b= +1.

These correspond to the upper (+) and lower (—) lim-
its of the bulk plasmon band for a infinite (or bulk)
superlattice. 4 We note that since kc is very small for the
cuprates, the AB mode given by b = cos 2kc is coincident
with the upper limit of the bulk plasmon band given by
b =1.

In contrast, the pole of the second term in (31) associ-

corresponds to the out-of-phase phase mode of a bilayer.
As calculated in Refs. 2, 3, for isotropic g and Tg case and
x & 0.02, this mode has the approximate long wavelength
dispersion relation

m*e'd l~
(qual)

= ~0+ vpq/[ 11+- (35)

4TJ
o —

~(0) 2(») . (36)

However, because m'e d 6 in the high-T, oxides of
interest, one sees that the "effective energy gap" of the
charged superconductor can be large even if TJ &( g and,
in fact, this gap may be comparable or larger than 2A.

In Fig. 1, we have drawn the dispersion relation for

where the term involving e is a result of the Coulomb
interaction. More precisely, the interlayer Coulomb in-
teraction screens the effect of the intralayer Coulomb in-
teraction, which by itself strongly increases the energy of
the out-of-phase phase mode of a neutral superconductor.
The energy gap up for small x in a neutral superconduc-
tor is found to be given by
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to I(u) which cancels out the bulk mode Van Hove sin-
gularity associated with b = —1 in (33). We expect the
analogous phenomena to arise in the superconducting su-
perlattice under consideration.

Although we have only presented the results of Raman
scattering intensities for an 8-wave superconductor, sim-
ilar results are expected for d ~ „~-wave superconduc-
tors. The major difference between 8-wave and d-wave
superconductors arises &om the di8'erent p-h damping
since for d-wave superconductors, pair breaking is allowed
at frequencies below 2A (for some regions on the Fermi
surface) as well as above 2A (here 4 is the maximum
value of the energy gap). Due to the strong p-Ii damp-
ing below 2A for d-wave superconductors, it is estimated
that the out-of-phase phase modes are only well defined
and hence visible as resonances in I(u) for x + 0.002 and
~ & 0.2(2E) (where the p-h damping is negligible). The
low &equency in-phase phonon phase modes are always
well defined for small q~~.

IV. CONCLUDING REMARKS

We have presented results for the isotropic Raman
inelastic light scattering intensity for finite momentum
transfer in a semi-infinite superconducting superlattice
with a basis of bilayers, generalizing the work by Jain and
Allen for a normal superlattice of electron gas layers.
We allow Cooper-pair tunneling between layers within
the same unit cell . Due to this coupling of Cooper pairs
in the two layers, there exists "out-of-phase" collective
modes in addition to "in-phase" Anderson-Bogoliubov
phase and Littlewood-Varma amplitude modes. These
out-of-phase modes were recently studied thoroughly by
Wu and GrifEn ' for both s-wave and d-wave pair-

ing, and are the signature of the Chakravarty-Anderson
Cooper-pair tunneling model.

In the present paper, we have concentrated on show-
ing how the collective modes of the Cooper-pair order
parameter show up as resonances in the inelastic light
scattering &om the surface of a layered superconductor
with a bilayer basis. We have ignored the surface modifi-
cation of the superlattice response functions and thus our
results only include the "bulk" superlattice modes. The
present results, however, are sufBcient to give a qualita-
tive picture of what one can expect &om such inelastic
light scattering studies. One could extend the present
results to include the surface contribution, analogous to
the work of Jain and Allen. However, we might note
that it is the out-of-phase phase oscillations that are of
greatest interest and these are not expected to be modi-
fied much since they are associated with a single bilayer
(i.e. , they don't depend much on the intercell Coulomb
interactions).

In addition to the order parameter phase Huctuations
we have studied in this paper, there are also in-phase and
out-of-phase amplitude Buctuations. However, these
have zero weight in the density response functions which
enter into the inelastic light scattering cross section.
Some other sort of experimental probe is needed to study
the amplitude modes.
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