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We perform a low-energy reduction of the three-band Hubbard Hamiltonian (IIsq), keeping in the
relevant Hilbert subspace not only local singlets (Zhang-Rice singlets), but also triplet states between
Cu holes and 0 holes at the Wannier function of the same site, with x -y symmetry. We solve
exactly the resulting Hamiltonian HT in a system of 2 x 2 unit cells. Prom the analytical dependence
of the parameters of HT and the numerical results, one can see that the local triplet states can be
practically neglected for finite O-Cu on-site energy difference A, very large Cu on-site Coulomb
repulsion Ug, and O-O hopping t~„= 0. This fact is in contrast with the mapping of H3g to a one-
band model using nonorthogonal singlets, which is very accurate when the Cu+ configuration can
be neglected. Although the amount of local triplet states in the low-energy eigenstates is in general
small, it increases with t„„and for large t„„it is necessary to introduce higher-order corrections in
the one-baud model to accurately represent the low-energy physics. In all cases even when local
triplets are not important, the t-J model should be supplemented with other terms, to describe the
lowest-energy levels. We also discuss brieBy the effect of nonbonding 0 orbitals.

I. INTRODUCTION

One of the most important problems concerning the
low-energy properties of high-T superconductors and
the mechanism of superconductivity is the reduction of
the complex electronic structure of these materials, to a
hopefully relatively simple efFective Hamiltonian that de-
scribes accurately enough the ground state and the low-
lying excitations. Experimental evidence~ indicates that
most of the holes reside in the orbitals included in the
three-band Hubbard model H3g. ' However, while, for
example, for the transport properties and the supercon-
ductivity, one is interested in energy scales ( 0.1 eV, H3$
contains energies such as the on-site Cu Coulomb repul-
sion Ug 10 eV. One would like to integrate out the
high-energy degrees of &eedom by a suitable procedure.

Zhang and Rice have first reduced H3g to an efFec-
tive t-J model. They assumed a ratio of 0-Cu hopping
to on-site energy difference t„d/b. (( 1 and showed that
the singlet state constructed with a Cu hole and an 0
hole, at the Wannier function centered. at the Cu site
and with the same symmetry as the Cu orbital, has less
energy than the corresponding triplet state. Retaining
only the singlets, the mapping to the one-band model
became possible. This procedure has been criticized be-
cause the efFect of local triplet states is of the same order
in t~g/A (Ref. 6) and in fact t„g/b, 0.4 (Ref. 4) is
not so small. However, several analytical calculations us-
ing the cel/ perturbation method, which explicitly takes
into account covalency efFects, have shown that in fact
the Zhang-Rice singlet is stabilized by a sizable t„d,.
The advantage of this method is that the cell composed
of the Cu orbital and the above-mentioned 0 Wannier
function with all local interactions is solved exactly, and
that perturbations in the intercell hopping and interac-

tions converge rapidly due to large stabilization energy of
the ground state of the cell, which for two holes is essen-
tially the Zhang-Rice singlet. Belinicher and Chernyshev
have carried out a detailed analysis of the reduction to a
one-band. t-J model including all relevant interactions.

Another approach to obtain a simpler efFective Hamil-
tonian is to perform a canonical transformation which
eliminates t„g in H3g. ' The resulting spin-fermion
model H, f contains Cu spins and 0 fermions, Cu-0 ex-
change J~, Cu-Cu exchange J, and 0-0 hopping com-
bined with Cu-0 spin-flip tj (t2) if fluctuations via Cu
(Cus+) dominate. Although for realistic values of t„d the
perturbation series converges slowly, an accurate repre-
sentation of H3g and its photoemission spectra has been
obtained with H, f provided that its parameters are ad-
justed to fit the energy levels of a Cu04 cluster. 3 In
this way, as in the cell perturbation method, the local
problem is solved (almost) exactly. In turn, II,r can
be mapped into a generalized t JmodeV-s either using
the above orthogonal Wannier functions, or the mapping
through nonorthogonal singlets used before by Zhang. ~

It has been shown that when J = t~ = 0, the mapping
using orthogonal (non-orthogonal) Zhang-Rice states is
almost exact (exact) when t2 ——0 (tq ——0). The sec-
ond fact has been confirmed by exact diagonalization in
a Cu408 cluster with periodic boundary conditions.
However, since in this cluster there are only three (in-
stead of four) independent Wannier functions, the accu-
racy of the mapping using orthogonal singlets could not
be reproduced. In the present work we first change the
basis to orthogonal 0 Wannier functions centered around
Cu ions and then take four unit cells for the numerical
study.

Except for certain ideal, unrealistic parameters, there
is always a certain admixture of local singlets with lo-
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cal triplets, which affects the quality of the mapping to
a one-band model. If the admixture is small, it can be
included in the one-band model perturbatively. In the
present work we include the triplets explicitly and study
their effect on the mappings to effective one-band mod-
els, such as the one-band generalized Hubbard and the
generalized t-J model, ' where the triplet states were
neglected. We derive a singlet-triplet Hamiltonian HT
&om H3b we study the dependence of the parameters of
H~ on those of H3b, and we calculate the effects of the
triplets on the electronic structure solving exactly a 2 x 2
cluster with 25%%up doping (five hales) after eliminating the
states with zero hole occupancy at any site by means of a
canonical transformation. The singlet-triplet model has
been studied previously for in6nite Up and happ: 0 using
analytical approximations. We focus our study on the
behavior of the energy levels and degree of local singlet-
triplet admixture. We also discuss brieQy the effect of the
nonbonding 0 orbitals. To discuss the mapping of other
properties, like photoemission spectra, it is necessary to
address the transformation of the corresponding oper-
ators' to obtain the correct spectral weight.
This is beyond the scope of the present work.

Another point of interest addressed here concerns the
nature, magnitude, and sign of the corrections to the ef-
fective t-J model. It has been recently found that a small
term t" which combines next-nearest-neighbor hopping
with nearest-neighbor spin-Hip stabilized a superconduct-
ing resonance-valence-bond state for realistic t and J,
if t" has the opposite sign as the corresponding term
obtained &om a canonical transformation of the Hub-
bard model. 2 This appropriate sign has been obtained
for t~/t„g 0.6 from the mapping using nonorthogonal
singlets and numerical fitting of the levels.

In Sec. II we brieHy explain the singlet-triplet model
H~ and its derivation &om H3b. In Sec. III we show the
resulting energy levels of the cluster, compare them with
the corresponding levels obtained neglecting the triplet
states, and explain the results on the basis of the depen-
dence of the parameters of HT with those of H3b. Section
IV contains the conclusions.

II. THE SINGLET-TRIPLET MOI3EL

We start &om the three-band model in the form

Hss = A ) .p~~p~~ + Ug ) d,.~d;gd, .~d;g

+&pg) (pt+~ d, + H.c.) —tp„) pt+ p, .
incr

—ik K 1
n; = —) e '" *[1~-'cos(k a) + 2cos(kya)]

k

x) '" - —) p;+h .
rn

(2)

After the change of basis one obtains

Hsi, = ) H; + Hh p,

with

The sum over i (j) runs over all Cu (0) ions. The vector
b (p) connects a Cu (0) site with one of its four near-
est 0 atoms. The operator dt (pt ) creates a hole with
symmetry d 2 y2 (p ) at site i (j) with spin o. The
phases of half of the orbitals have been changed in such
a way that for all b and p, t„p, happ ) 0 The intratomic
0 Coulomb repulsion Uz and the interatomic Cu-0 re-
pulsion U„p have been neglected for simplicity. For one
added hole, the main effect of the latter is to renormalize

12

The 6rst step in the cell perturbation Inethod ' ' is
to change the basis of the 0 orbitals to linear combina-
tions which hybridize (ni, ) and do not hybridize (pi, )
with dy orbitals, due to the term in t„g in each point
k of the reciprocal space. The Wannier functions of the
o.A, are centered at the Cu sites and may be written in
the form:

H, = [b, —p, (0)t„„]) n, n; + [4+ p, (0)t„„]) p, p, + Ugd, td;gd, ~d;g+2t„g. A(0) ) (d; n; + H.c.),

Hi, p
——2tpg ) A(l)d, +i a; —tpp . ) p(t)(a, +i a; —p,.+i. p, )+v(l)(a, +i p; +H.c.).

and the functions of the lattice vectors A, p, and v are
given in Ref. 12. They decay rapidly with increasing ar-
gument and as a consequence, most of the original hop-
pings and interactions are contained in g,. H;, which is
solved exactly. In our 2 x 2 cluster with periodic bound-
ary conditions, all v = 0 and the nonbonding p, orbitals
decouple completely.

In the standard reduction of H3b to a one-band
model, ' ' one usually retains only the ground state
of the cell Hamiltonian Hi for zero, one, or two holes
in the cell [see Eqs. (18) and (19) below]. These states

I

are mapped, respectively, into the following states of the
one-band Hubbard model at site i, namely, ~0), c, ~0),
and c, c,&~0). Eliminating the states of no hole occu-
pancy by means of standard methods, one would obtain
an effective t-J model. ' Here, however, we will retain
at this stage still all three states, and in addition, for
two holes, we also retain the triplet states between Cu
and bonding 0 orbitals. We represent these states using
boson operators bi~, depending on the spin projection
M = 1,0, —1. For example:
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(6)

Also, the singlet ground state is represented here as
G,.c,.&c,.&~0) where Q; 1s another boson operator and thet.

ci are fermion operators. Similarly, the ground states
of H, for zero and one particles are represented by Gt~0)

and G, c,.&~0). Thus, the constraint

Q,.G;+ ) b,.Mb'M = 1
M

should be satis6ed and a, a, = 1 for all i indicates a per-t
feet mapping to a one-band model. This bosonic repre-

I

Hg ——Hg+ H2+ H3, (8)

with

sentation has no great advantages if one is solving ex-
actly a small system. However, if the bosons are al-
lowed to condense and the terms in U and UT below
are treated. within the slave-boson formalism, one has
a simple mean-field solution of the problem which is also
superconducting if the bosons 6 are condensed in some
direction.

After evaluating Hh ~ in the restricted basis, we obtain
the following singlet-triplet Hamiltonian:

EI& = U) a, a;nyn;g+) c+~ c; It~~(1 —ta;, — )(1 —n+r, — )

ilier

+tgg [A' (1 G +1 ) + A''+1 (1 —fl ' )j + tg~7l A''+l Q.+1G'+l G Q

H2 ——UT ) btMb;M
iM

+) &&c,+1 c, . (2b, 2 b;+l 2 + b;,oh+i, o)Q,.+lQ;+ ) v2&&c,.+1 c, (b, 2 b,+l,o+ b, Ob;+l 2cr.)G,+1G, .
ilo

ilier

+) t c,+l c, (1. —n;+l )Q,+lG, +lQ. ;b,,2 + c +1 c' (1 rl +l, — )Q'+lQ +lQ'b, o + H'C.
ilo

(10)

3 = ) t~ cl+l~c'l~Al+l crG.+1Gl+lG bl 2o + ~cl+l~cl 'A@+1 oQl+1Gl+!G bi, o + H.c.
ilier W

t, = 2t„gA(l)(cos P —sin P)
+t„„p(l)sin P cos P,

2t„d,A(l) s1n —icos P —
3 t„„p(l)cos

&, = 2&„&A(l) (A3 cos p —A2 S111 p)

+&„„p(l) cos P + A2 sin P cos P
2

(12)

(»)

Here the coefBcients A, are all positive and describe the
singlet ground state of H, for two holes,

~i2) = '
(dttnt~ —dt~nt~)

g2

where Hq contains only the singlet ground state for each
doubly occupied cell. For a,-a; = 1 for all i, it re-
duces to the generalized one-band Hubbard model de-
rived previously. ' Similarly H2 contains only local
triplets, while H3 hybridizes local singlets with local
triplets.

The matrix elements can be calculated straightfor-
wardy &om the eigenstates of Hi. ' Those involving
the triplet states are

~i(T) = (cos P dt —sing nt ) ~0). (i6)

The meaning of the different matrix elements is the fol-
lowing: The superscript l denotes the distance between
the two sites involved in the hopping. t&& describes the
hopping of a hole of a singly occupied site to a site with-
out holes. The hopping of a hole of a singlet (triplet)
to a site without holes, and the reverse process is t&&
(tl). The hopping &om a singlet to a singly occupied
site, leaving in the latter site a singlet (triplet with max-
imum spin projection) is t&& (t,). Finally, the hopping
&om a triplet with maximum spin projection to a singly
occupied site leaving in the latter site a singlet (triplet
with maximum spin projection) is tl, (t~&). Matrix ele-
ments involving triplets with projection zero are related
to those already mentioned by symmetry.

HT generalizes to Ug g oo and t~ P 0 the Hamiltonian
studied previously. It describes the states of the lowest
energy of H3g, integrating out high-energy states in the
scale of U~ and roughly (E2 + 8t2&)(1/2).

We want to address here the question of to what extent
the triplet can be eliminated performing a further low-

energy reduction.

—A2nt~at~ —Asdttdt~ ~0).

Similarly for one hole,

III. RESULTS

A measure of the singlet-triplet mixing is given by the
quotient between the nearest-neighbor hopping t [see
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Eq. (11)] and the average energy difference between
triplets and single'ts UT —U. This quotient is represented
in Fig. 1 as a function of L. For Ug ——oo, this was al-
ready shown in Ref. 8. The effect of the O-O hopping t„„
is mainly to increase t, (although it also increases Uz —U)
and then to increase the amount of local triplet states in
the low-energy manifold and to deteriorate the mapping
to a one-band model. For t„„=0 and very large Ug and
b„ the singlet-triplet mixing is very low. From Eqs. (14)
and (15), it is clear that the largest component of the
singlet Aq does not contribute to t when t„„=O. This
agrees with the result of Ref. 16. For infinite U~, U~ —U
decreases with A as 1/A, while if t„„=0 [t„„g 0),
tI 1/Ds (tI, t„„p(l)/v 2] for large A [see Eq. (14)
and Fig. 2]. As a consequence of the different behavior
of t for large Ug and L, in this limit the mapping to a
one-band model is very good for t„~ = 0, while it is the
worst limit when t„„g0 (see Fig. 1 for 4 10). How-
ever, for finite Ug, the amount of Cu + states increases
with L and then UT —U also increases and the quotient
~t, ~/(UT —U) passes through a maximum as a function of
L. Prom Figs. 1 and 2 and this discussion it is clear that
the effect of a finite Ug, neglected in previous work,
can modify dramatically the singlet-triplet mixing and
thus the quality of the mapping to a one-band model.

In order to estimate the effects of the nonbonding 0
orbitals p, , not included in H~, we have calculated the
hopping matrix element between a state containing a lo-
cal two-particle singlet of the Zhang-Rice type [Eq. (15)]
and a state containing the following two-particle singlet:

0.3—
te

0.2

0.1

0.0

0 2 4 6 8 10

FIG. 2. Singlet-triplet hopping for the same parameters as
Fig. 1.

involving nonbonding orbitals lie lower in energy than
the local triplet states, the corrections introduced by the
nonbonding orbitals to the effective one-band. model are
smaller in magnitude than the correction due to triplet
states.

If one wishes to retain only the Hilbert space of a one-
band model, local triplet states and nonbonding O or-
bitals should in general be included as virtual states in
a perturbative expansion leading to the one-band Hamil-
tonian (using the equations of Sec. II, this procedure
is straightforward). When the Hilbert space retained is
that of the t Jmodel (-i.e. , if also the states [0) of nc hole
occupancy are eliminated), other terms in addition to the
nearest-neighbor hopping and exchange appear. One of
them is a three-site term of the form,

H, = t" ) c,+q, c;+. g (2 —2S, . S,+g),
ibgb'cr

where [io) is given by Eq. (19).
The result for nearest-neighbor hopping is

(Ai A2
t~ = t„„v(l,o)

~

cosP+ sing
~

.
2 2 j

The quotient between t~ and the energy difference be-
tween both states is represented in Fig. 3. Comparing
with Fig. 1, we see that in spite of the fact that the states

where b, b' are nearest-neighbor lattice vectors. It is
a next-nearest-neighbor hopping via a singly occupied
nearest-neighbor site which carries a singlet in the inter-
mediate state. This three-site term has been found to be
important to fit numerically the energy levels of a Cu408
cluster and to stabilize a superconducting resonance-
valence-band (RVB) state in a 4 x 4 cluster. 2~ The sign
of t" necessary to obtain the superconducting RVB state

0,06

0.25 )
I ~

I
)

~ 0.20
]

& 0.15

——-—-------U —100d

Ud=10 .
Ud=g

r

0.05
]

0.04

0.10— 0.02— L

0.05 0.01

0.00
0 2 4 6 8~ 10 0.00 l ) I ) I

2 4 6 8

FIG. 1. Ratio of the nearest-neighbor singlet-triplet hop-
ping [t' for I = (1,0)] and the on-site triplet-singlet energy
di8erence, as a function of A for di8'erent values of Ug and
two values of t~„: t„„=0 (three lower curves for A = 5) and
tpp ——0.5.

FIG. 3. Ratio of the nearest-neighbor hopping between
Zhang-Rice states and states involving nonbonding singlets
(see text) and the corresponding energy difFerence as a func-
tion of A for three difIIerent values of Vg.
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is opposite to that arising &om a canonical transforma-
tion of the Hubbard model. The latter sign is positive
in our representation (but negative in that of Ref. 21).2s

The next-nearest-neighbor hopping t' is already
present in HT . It changes sign with tpp as seen in Fig. 4,
and is important for the shape of the Fermi surface and
magnetic properties. ' Our results agree qualitatively
with previous studies of these terms. ' ' ' When the
local triplet states are eliminated &om the Hilbert space,
the correction to t' in second order in t, is —t, /[ 2(U T—U)]
and

(2o)
g2e

2(UT —U)
where the first term arises &om the elimination of the
no hole states just as in the transformation &om the
Hubbard model. Numerically and &om a mapping us-
ing nonorthogonal singlets it has been found that t"
changes sign as a function of t„„. In general Eq. (20)
gives a positive sign. However, for some parameters
(U~ 10, A 6), we also obtain a change of sign as a
function of t„„(fort„„0.6). In lowest order, the 0 non-
bonding states do not correct t' and t". To obtain a more
quantitative estimate of the small term t", particularly
for large values of Cpp it is necessary to add higher-order
corrections, the eÃects of O-O repulsion, Cu-0 repulsion,
and eventually other excited states of the cell Hamilto-
nian H, neglected here.

We have considered the Hamiltonian HT defined by
Eqs. (8) to (16) in a system of 2 x 2 unit cells, with
periodic boundary conditions and five holes (25% dop-
ing). In order to reduce the size of the Hilbert space,
we have eliminated the states with no hole occupancy at
any cell by means of a standard canonical transforma-
tion. This introduces several terms in the Hamiltonian.
The most important are Cu-Cu superexchange of magni-
tude J = 4t~&&/U 2t2/UT and —three-site hopping terms.
Although the cluster is small, we expect that (except for
the form of the Wannier functions already discussed and
taken into account and the absence of nonbonding or-
bital) the finite-size effects for the low-energy part of the
diferent models are equivalent, so that they do not acct
the validity of the conclusions regarding the mapping of
the low-energy levels. ' Note that when the mapping

of the spin-fermion model to the t J is exact (see Sec. I)
in the thermodynaxnic limit, it is also exact in the 2 x 2
cluster as shown by previous numerical work.

We fix the unit of energy as tpp ——1. In Fig. 5 we show
the resulting energy levels of the system for happ

——0.2,
U~ ——10, and 4 = 4, and compare them with the cor-
responding result for the one-band model Hq with all

a,.a; = 1. These energy levels have been shifted rigidly
in order that the average energy of the low-lying en-
ergy levels is the same. All the eigenstates of HT which
have correspondence with an eigenstate of IIi (the low-
est nine in Figs. 5 and 6), have mainly local singlet
character (see Fig. 7), while the remaining eigenstates
of H~ have mainly local triplet character. Note that in
spite of the fact that the difference between the highest
level of mainly local singlet character (the quartet of M24

symmetry2s) and the lowest level of mainly local triplet
character, is lower than the energy band spanned by the
states of mainly local singlet character, the energy of the
latter is well reproduced by IIi with a, a, = 1 (neglect-
ing completely the triplet contribution). This is due to
the fact that H3 is small, as we have explained at the
beginning of this section.

Increasing t„p, the amount of triplet states in the low-

energy manifold increases, and as shown in Fig. 6, it is
not possible to obtain a quantitative agreement with the
levels of HT using the one-band model H~ alone. The
difference with Fig. 5 can be understood in terms of
the larger value of the singlet-triplet matrix element t
with increasing tpp as shown in Fig. 1. The rightmost
parts of Figs. 5 and 6 do not contain corrections due to
triplet states as virtual states. Including the correction

t, /2(UT ——U) for t' and t", and —2t2/UT for J, there
is a noticeable improvement in the comparison for the
lowest five energy levels. Also the ordering of all energy
levels is corrected. The highest energy levels of the local
singlet manifold are more affected by the mixing with
the triplets and corrections of higher order in happ

seem

0.05—
I ] I ( I l ~ l I

0.00---

-0.05

a I s I a l s I a

0 2 4 6 8 10

0-

M4
2

X4
2

3

M4

X,4—

M2
2

2
1

r4
3

X4
2

FIG. 4. Next-nearest-neighbor hopping as a function of A
for t„q = 1, and difFerent values of Uq and t~~ (from bottom
to top for A 0) t~~ = 0.5 and Ug = 100, 10, 5, tz~ ——0 and
Ug = 100, 10, 5.

FIG. 5. Energy spectrum of HT (left) and Hi with all

a, u; = 1 (right) for Uq = 10, K = 4, t~q = 1, t~„= 0.2
Ref. 23.
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tpp=. 5

1.0
ps

0.8

~ 0

M4-
2

X4

M4
2I~

X,4

0.4

0.2

0.0
0 2 4 6 8 10

0-

'~

2
1

M,
'

FIG. 7. Amount of local singlet character of the eigenstates
of the low-energy manifold, as a function of A for U& ——10,
t„g ——1, tpp

——0.5.

r'
3

X4

FIG. 6. Left and right columns, same as Fig. 5 with
t„„=0.5. Middle column: result for Hq including correc-
tions due to singlet-triplet admixture.

necessary to obtain a more quantitative agreement with
the energy levels of KT .

In Fig. 7 we show the amount of singlet character pg
of the states of the low-energy manifold. This amount
increases for energies near the ground-state energy. For
the four levels of lowest energy ps&90%. At low 4, for
the levels of highest energy within the low-energy mani-
fold, there is a crossing of energy levels because the Cu~+
con6guration becomes unstable against Cu+.

IV. CONCLUSIONS

We have studied the effect of local triplet states on
the electronic structure of the Cu02 planes and on the
mapping to one-band models using orthogonal 0 Wan-
nier functions. The mapping is very accurate when the
configuration Cus+ can be neglected (large Ug) and the
0-0 hopping t„„=0. For realistic values of Up and tpp,
local triplet states are present in the low-energy manifold
and should be included perturbatively if a description in
terms of a one-band model is wished. The perturbative
corrections can be performed in a systematic way &om
the Hamiltonian KT derived in Sec. II. The effect of tpp
is different if nonorthogonal Wannier functions are used
in the mapping.

The effect of states containing nonbonding orbitals is
smaller than that of the local triplet states.

Even neglecting the triplet states, the reduction to a
generalized t-J model contains nearest-neighbor hopping
and three-site terms which modify the physics of the bare
t-J model. These conclusions agree with previous ana-
lytical results obtained using the spin-fermion model as
an intermediate step of the mapping &om the three-band
Hubbard model to a generalized t-J model using orthog-
onal singlets. The dependence of the next-nearest-
neighbor hopping t' on the parameters of the three-
band Inodel agrees with different previous studies. '

Concerning the three-site term t" [Eq. (23)], there are
some differences between the results of the mapping us-
ing nonorthogonal singlets, which predicts a change of
sign as a function of tpp for realistic values of the other
parameters, ' and the present results, for which the
change of sign occurs in a more restricted region of pa-
rameters.

In the present study we have not included Cu-0 re-
pulsion Up~ and intratomic 0 repulsion Up. The effect
of both terms is to introduce interactions between neigh-
boring local singlets, and new corrections to the hopping
and three-site terms. A very large Upg might lead to a
breakdown of the one-band model. ~
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