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Ginzburg-Landau equations for a d-wave superconductor with applications
to vortex structure and surface problems
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The properties of a d z 2-wave superconductor in an external magnetic field are investigated on thex —y
basis of Gorkov's theory of weakly coupled superconductors. The Ginzburg-Landau (GL) equations,
which govern the spatial variations of the order parameter and the supercurrent, are microscopically de-
rived. The single vortex structure and surface problems in such a superconductor are studied using these
equations. It is shown that the d-wave vortex structure is very di8'erent from the conventional s-wave
vortex: the s-wave and d-wave components, with the opposite winding numbers, are found to coexist in
the region near the vortex core. The supercurrent and local magnetic field around the vortex are calcu-
lated. Far away from the vortex core, both of them exhibit a fourfold symmetry, in contrast to an s-wave
superconductor. The surface problem in a d-wave superconductor is also studied by solving the GL
equations. The total order parameter near the surface is always a real combination of s- and d-wave
components, which means that the proximity efFect cannot induce a time-reversal symmetry-breaking
state at the surface.

I. INTRODUCTION

Recently, there have been a number of experiments
designed to directly probe the pairing state in high-
temperature superconductors. ' Wollman et al. ' mea-
sured the field-modulated critical currents of corner su-
perconducting quantum interference devices (SQUID's)
and junctions, which combine an s-wave superconductor
with a Y-Ba-Cu-0 single crystal. Their results provide a
strong evidence for a m-phase shift in the Josephson cou-
pling energy predicted for a d-wave pairing state. Mathai
et al. performed a similar experiment on Y-Ba-Cu-0-
Ag-Pb SQUID's using a scanning SQUID nucroscope,
and they claimed that their results provide unambiguous
evidence for a d 2 2 symmetric order parameter. Tsuei
et al. used the concept of Aux quantization in a tricrys-
tal superconducting Y-Ba-Cu-0 ring with grain-
boundary Josephson junctions to determine the pairing
symmetry. They observed spontaneous magnetization of
half a Aux quantum, consistent with d-wave pairing sym-
metry. Miller et al. proposed a new method of probing
the pairing symmetry by measuring the field-modulated
critical current of tricrystal devices. Their results in the
short junction limit indicate a clear phase shift in the
Josephson coupling, suggesting a predominantly d-wave
pairing symmetry. In short, these recent experiments
that directly probe the pairing symmetry of high-T, su-
perconductors seem to favor a d-wave pairing state.
Theoretically, it is also suggested that the high-T, super-
conductors might possess unconventional pairing symme-
try.

In this work, we address the problem of how a d-wave
superconductor differs from an s-wave one. We restrict
ourselves to the Ginzburg-Landau (GL) region and con-
sider spatial variations of the d-wave order parameter
and supercurrent governed by the GL equations. Follow-

ing the standard procedure for the conventional s-wave
superconductors, the GL equations are microscopically
derived for a d-wave superconductor. Based on these GL
equations, we study the structure of d-wave vortices. It is
expected that the structure of a d-wave vortex is very
different from that of s wave ' or p wave. We show that
the qualitative feature of a single vortex structure in a d-
wave superconductor can be determined analytically.
The s-wave and d-wave components, with the opposite
winding numbers, are found to coexist in the region near
the vortex core. Furthermore, the d-wave component
varies linearly with the distance r from the vortex core as
r —+0 and goes to the pure d-wave bulk value for large r,
On the other hand, the induced s-wave component has a
linear-r dependence for small r but decays as r when r
is large. The main feature of our results agrees with the
suggestion of Volovik and recent numerical calculation
of Soininen, Kallin, and Berlinsky. ' The supercurrent
and local magnetic field around the vortex are also calcu-
lated analytically. Far away from the vortex core, both
of them are found to exhibit a fourfold symmetry, in con-
trast to an s-wave superconductor.

We also study the surface problem in a d-wave super-
conductor by solving the GL equations and find that a
small s-wave component is induced near the surface. The
total order parameter near surface is always a real com-
bination of s- and d-wave components and their relative
phase is determined by sign[ —cos(28)], where 0 is the
angle between a axis and the normal direction of the sur-
face. This result suggests that the proximity effect cannot
induce a time-reversal symmetry-breaking state at the in-
terface.

In Sec. II, starting from Gorkov's theory of weakly
coupled superconductors, " the equation for the general
gap function is derived, and from which the GL equa-
tions are obtained in Sec. III. In Sec. IV, we derive the
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other GL equation for the supercurrent. In Sec. V, we
discuss the qualitative features of a single d-wave vortex
and using the GI. equations. In Sec. VI, we present the
result far the super current and local magnetic field
around a d-wave vortex. In Sec. VII, we study the prox-
irnity e6'ect at the surface of a d-wave superconductor.
Section VIII includes conclusion and discussions.

—ico„— (iV+e A) +)M F+(x,x', co„)

+fdx"6'(X,X")G(x",x', co„)=0, (2.3)

where p is the Fermi energy and A is the vector poten-
tial. We define the normal-state Green's function in a
magnetic field as

II. GAP EQUATIONS

In this section we shall derive the gap equation for the
d-wave order parameter defined through

Go(x, x', co„)= ico„— ( i V+—e A) +)M
1

G (
i

)
—ieA(x) (x—x')0» n

5(x—x')

(2.4)

b, *(x,x')= V(x —x')T g F (x, x', co„), (2.1)

which allows for more general than conventional s-wave
pairing. V(x—x ) is the effective two-body interaction of
the weak-coupling theory. Using Gorkov's" description
of weakly coupled superconductors it is straightforward
to derive the equations of motion for the normal and
anomalous Green's functions

—1
p2

G()(x, co„)= ico„+ +p2m
5(x)

In the last step of the above equation, we have used the
slow variation condition for the magnetic field, i.e.,
1/kz (()(,, where A, is the London penetration depth of
the magnetic field. Go in the above equation is the free-
electron Green's function in zero field:

ico„— ( i V+e—A) +)(c G(x, x', co„)

1 fdk i)I x

(2~) i co
(2.5)

+ fdx"6(x,x")F+(x",x', co„)=5(x—x'),

(2.2)

where g), =k /2m —
)(c is the single-particle energy with

mass m measured from the Fermi energy p. Using Go
and by iteration, Eqs. (2.2) and (2.3) can be rewritten in
the form

G(x, y, co„)=Go(x,y, co„)—fdx'dx"b(x', x")Gp(x, x', co„)

X f dX3dX4Gp( X3&X p Co» )6 (X3I X4)G (x4, y, co„)

F ( x, y, co„)= f d x'd x"
G p ( x', x, —co„)b. (x', x")

X Gp(X y Co ) f dX)dX2Gp(X X) co„)h(x„x2)F (x2 y co„)

(2.6)

(2.7)

Substituting Eqs. (2.6) and (2.7) into (2.1), and keeping up to third order in b., we have

6*(x,y) =61(x,y)+511(x,y),
where

(2.8)

~1(»y)= V(x y)T P fdx'dx"Go(x', » co»)b' (x ~x )—Go(x"&y, co„), (2.9)

bll(x, y)= —V(x —y)TQ f dx'dx"dx)dx2dx3dx46p(x x co )5 (x x )

X Gp(X X) Co» )6(x) X3)Gp(X3 X3 co» )b, '(X3 X4)Go(x4, y, co„) (2.10)

(2.11)

and introducing central-mass coordinates

1 1R= —(x+y), R'= —(x'+x"),
2 '

2

In the following calculation, we use the cylindrical Fermi surface to relate the physics to high-T, superconductors.
Using the approximation

I II

„j V„.d1+ t V d15 (x', x")=e» " ") ' b, *(x,y),
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and relative coordinates

r=x —y, r'=x' —x",
Eq. (2.9) becomes

hl (R,r)= V(r) fdRdr'T g Go R'+ ——R——,—co„GO R' ———R+ —,co„
r' r r' r

~n

Xexp[i(R' —R) ~ ( i—VR 2—e Az )+i(r' —r) ~ ( iV—,)]En(R, r) . (2.12)

In the above equation we have assumed the slow variation of magnetic field A(x) = A(y) = AR or that the magnetic
field acts only on the center of mass of the Cooper pairs, not on their relative coordinates. Introducing the operator

II= —iV~ —2e A~,
and performing the Fourier transform with respect to the relative coordinate, we obtain

(2.13)

d d dk' I I

iI).l(R, k)=TQ fdre '"'V(r) fdR'dr'f exp ip R' —R+———+iq. R' —R——+—

1
e i(R' —R) H+ i(r' —r) k' ik'. r ~ e / ~

'~n Cp '~n kq
(2.14)

Expanding in terms of II to second order, the above equation can be written in terms of a constant term EI, and a gra-
dient term 51 ..

bl (R,k) =i)),f, (R,k)+ kin (R,k),
where

dk'
61 (R,k)=4 fdR' V(k' —k)T g e 'p+"" '6'(R k')

(2m ) ~ i COn
—

gp i—ron —
gp+2

(2.15)

=f V(k' —k)T g b, '(R, k'),
(2n ) co„+g

(2.16)

and

his(R, k)= —2fdR' V(k' —k)T g
(21T) l &n g l&n k +2k'

)(e2'(0+k') (R' —R)[(Ri R).II]2+n(R gi)

2

= —f P, V(k —k)T g . . —.V, .II 5( )a'(R, k')
2(2~) l~n kp/2 —k' l~n kp/2+k'

=f V(k' —k)T g —.Vp. II
dk' 1

2(2n )

2

l~n gp/2 —k' i~n gp/2+k'
b, '(R, k')

dk' 1 2 k 6~on
V(k' —k)TQ [k„' (II„) +k' (II ) ]— II b'(R, k') .

2(2 )2 (2 )2 ( 2 +(2 )3 )' J' 2ln (
2 +g2 )2

(2.17)

In the calculation of b,ll in Eq. (2.10), the magnetic-field effect can be neglected. ' Introducing the central-mass and
relative coordinates and using the expression of Go in Eq. (2.5), we have
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All(R, r}=—V(r)T g f dR'dr'dR&dr&dR2dr25'(R', r')6(R&, r, )b, *(R2,r2)

X dpdqds dt . , r' r
exp i p- R' —R+———

(2m. )s 2 2

r' r
+iq R' —R ————

2 2 t~n kp t~n kq

r2 r& r2 r
Xexp is R —R +—+—+it- R —R——+—

2 1 2 2 2

dk'= —T g f V(r)e '"' lb. (R,k')l b, *(R,k') .
(2m) (co +g )

1 1

t~n kn t~n ft

(2.18)

Performing the Fourier transform with respect to the relative coordinate, the above equation takes the following expres-
sion:

(2.19)

In the following section, the GL equations for a d-wave superconductor will be derived from the general gap equa-
tions (2.16), (2.17), and (2.19).

III. GL EQUATIONS FOR ORDER PARAMKTKRS

In order to obtain the generic Ginzburg-Landau equa-
tions, which govern the spatial variation of the order pa-
rameters, for a d-wave superconductor, we need to speci-
fy the form of the interaction. Here we use a model
which is reasonable for high-T, superconductors. Name-

ly, the interaction V contains an on-site repulsion Vo and
a nearest-neighbor attraction V&. It has been shown that
such an interaction gives rise to a pure d-wave supercon-
ductivity for a uniform system if the one-site repulsion is
large. ' In the momentum space, this interaction is

V(k —k') = —Vo+ V& [cos(k„—k„' )+cos(k» —
k» )],

(3.1)

which can be rewritten in the form

Vj
V(k —k'}=—Vo+ (cosk„+cosk )(cosk„'+cosk')

V)+ (cosk„—cosk )(cosk,' —cosk' )
2

V(k —k') = —V, + Vd(k„—k )(k' —k' )

+V k.k', (3.3)

where V, = Vo —2V&, Vd= V, /8, and Vn= V, correspond
respectively the s-wave, d-wave, and p-wave channel in-
teractions. For the spin-singlet pairing that we are in-
terested in, the p-wave interaction can be neglected since
it does not contribute to the spin-singlet pairing state. Fi-
nally the effective interaction responsible for the spin-
singlet pairing can be written in the form

V(k —k') = —V, + Vd (k„—k )(k„' —k»' ) . (3.4)

By taking both Vd and V, positive, then Vd corresponds
to the attractive interaction responsible for d-wave pair-
ing, and V, can be regarded as an effective "on-site"
repulsive interaction. The generic expression of order pa-
rameter that follows Eq. (3.4) is

b, *(R,k)=b, ;(R)+5„'(R)(k„—k ) . (3.5)

Using cylindrical coordinates, the above equation reduces
to

+slnkx sink~ +slnky slnky (3.2) Substituting Eqs. (3.4) and (3.5) into Eq. (2.16), we obtain

n n

2e coD ] 2 2 2e coD
N(0) V, b.; ln + —N(0)Vdbd(k„k» —)ln— (3 6)

where N(0) is the density of states at the Fermi surface, y is the Euler constant, and coD is the cutoff energy for the in-
teractions. Putting (3.4) and (3.5) into (2.17), we have
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6' (R,k)=Ty. f ",[ —v, + v„(k„'—k,')(k,'—k,')]
n

2 g 6co„ 2

X 1 ~ n (ki2112 +ki2112 )
& 112 [g«+g «(f 2 k2)]

(2 )2 (
2 +g2 )3» 3' 3' 2m (~2 +g2 )2

N (0)V, 1 2g.—6'„z 2

(2m) (a)„+g„)'

N(0) Vg 1 2 t' 6~n+ '(k„'—k,')f" dg„.Ty ' " "k'II'a'
(2m) (co +g )

dk' 1 2 t 6'run
2 2

+f Ty (k' —k' )[k' II +k' II ][—Vh«+V 6«(k' —k' )]
ll

II ~' ——(& —& )II'&' + a(11' —ll') V,

y s 2 x y d 4 x y y d x y s
d d

where a= 7((3)/8(nT, ) an. d A& =N(0) V&/2. Similarly, we can calculate 511 in Eq. (2.19):

~1«1(R,I ) = v,f, y [i~, i's«+(2is, i's«+~«'a )(k' —k')']
n

—vg(k„—k')f,(k' —k')y [(2ib,, i'6«+dl, "6 )(k' —k' )+ ih„i~a«(k' —k')']

(3.7)

/&g)~ l~ I
~ +I~pl ~*+ ~g ~ ~g~(&y ky) I~pl ~g+21~ I

~g+~ (3.8)

Comparing both sides of the gap equation for k-independent terms and terms proportional to (k„—k ), we obtain

2e 6)
4,*=—21&(v, /Vz)&; ln +2&q(v, /Vq)a —u,'II'a;+ —vF(112 —11,')a&+ I~, I'~;+ I~&I'~;+ —~&'~,

(3.9)

2e ~coD
b,&=A,&h& ln —2A,&a —vFII b«+ —vg(II„—II~)h;+ ~6,, i hz+ b.; 5&+—ib, &i b,&— (3.10)

The equation for the transition temperature T, is determined by

28 COD

Adln =I .
C

(3.11)

A closer examination shows that Eq. (3.9) will lead to unphysical solutions for b,, because the convergency of the expan-
sion in terms of order parameters is not established for repulsive interactions. Here, we employ the Fade approxima-
tion' to avoid this difticulty. It is known that the Pade approximation is typically used when we only know the first
few coefticients in the power series expansion of a function and are uncertain whether the power series is convergent.
By the Pade approximation, Eq. (3.9) becomes

CXA, d
b,,*= —2( V, / Vg )5,* 1—

S

CXA,d= —2( V, /V~ )b,,* 1+
s 4 ' 8

—.,'ll'~;+ —.,'(ll„' —ll,')~;+ i~, i'~;+ ia, i'a,*+—a ~, (3.12)

Finally, we can write the GL equations in a form suitable for finding the GL free-energy functional:

2(1+2V, /V„)b, ;+aAq —uFII b,,*+—v„(II —II )h~+2ih, i
b.,*+2ib~i 5;+5„' b, , =0,

2 ' 4
(3.13)
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—
Ad hd ln( T, /T )+cia, —U„'ll'S;+ —U~(II'. —ll,' )~,*+2

I ~, I'~d +~ ~d + —
I ~d I'~dd 4 F d 4 F x y s (3.14)

The free energy corresponding to above equations is

f=2~,~d l~, I' —~d»(T. /T) l~d I'+~~d l~, I'+ —l~d I'+2I~, I'l~d I'+ —(~,*'~d+~d'~,')
8 d s d 2 s d

+—ak,dv [2IIIb,,*l + III',dl +(Il„h, il„b,d
—II'b, , il hd+H. c. )], (3.15)

where a, =(1+2V, /Vd )/Ad. Since the coeKcients 2a, kd )0 and —ln(T, /T) (0, it is easily verified that the pure d-
wave solution is stable at inanity, as expected.

IV. GL EQUATION FOR SUPERCURRENT

To calculate the local magnetic 6eld, we need the other CiL equation for the supercurrent:

j(x)= —. g [(V—V')G(x, y, co„)]r=„— A(x)g G(x, x, co„) .eT 2e T
ling Nl

~n n

Substituting Eq. (2.6) into the above equation, we have

j(x)+ A(x)g G(x, x,co„)
2e TI

n

eT
dxidx2dx3dx4( v v )~(xi x2)~ (x3 x4)GQ(x xi lo )Gp(x3»2 & )GQ(x4 y oi„)I„=„l7tl

eT
dxidx2dx3dx45(x»x2)4 (x3qx4)GQ(x3qx2q Qln )

ltd

X [ 2ie A—(x)Gp(x4 x ct) )Gp(x xi co )

—ie A(x) ~ (x—x&)—ie A(y) ~ (x —y)+e ' ' (V„—Vy)[GQ(x —x, ,co„)GQ(x4—y, o)„)]]y

(4.1)

(4.2)

The relation (2.4) has been used in obtaining the above equation. We note that, to the same order of b„ the first term on
the right-hand side of Eq. (4.2) is exactly the same as the second term on the left-hand side. After this cancellation, us-
ing approximtion (2.11) and introducing the center-mass and relative coordinates, we find

lP71
n

r" r' r r' r rXG R"—R'+ +—,—co V 6 R—R'+ ———co 6 R"—R— +—co2 2' " ' 2 2' n

dk'J 6 (p+s) JdR'dr'dR"dr"e "J e '"'b, n(R k)2m (2~)6 (2m)

e
i(R"—R)-H+(r" —r)-V„ ik-r ~ el~ ~ ~ ip-(R —R' —r*/2)+iq. (R"—R'+r" /2+r'/2)

(2m. )

r=0

is (R"—R—r"/2) yXe
'~n ~p 'Oin kq 'Oln ks

n

dk dk' dR'k'6'(R k)[ —iII*5(R k')].[V,e2'k+k"R' ']
(2~)4

1 1 1 +H. c.
l&n g k 2k l&n g k l&n gk

= ', y I "",~*(R,I ),', ™[V„,.ll'a(R, 1. )]2m (2m) ol +g loin 4 + [k-II"6(R,—k)] .+H.c.k
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In terms of the expression of order parameter (3.5), the above equation becomes

j(R ) = — b,,IIb.;+—b, d

Iliad

+ (b,,—II„b,d + b, d II„b,, )x ——( b,, II b,d + b,d II 5,*)y +H. c.
2m

(4.4)

This equation will be useful in determining the spatial distribution of the local magnetic field and the supercurrent.

V. STRUCTURE OF A SINGLE VORTEX

In this section, we determine the single-vortex struc-
ture for a d-wave superconductor by using the GL equa-
tions derived in the previous sections. The vortex struc-
ture of a superconductor with d 2 & pairing symmetry isx —y
of great interest because of its relevance to high-T, super-
conductors. It is expected that the structure of a d-wave
vortex is very different from that of s wave ' or p wave.
This problem was considered by Volovik who studied
the density of states produced by the d-wave vortices.
From the symmetry consideration, he argued that the
core of the vortex in the d-wave superconductor should
contain all the possible gap functions that are consistent
with the maximal symmetry group of the vortex line. In
particular, it should contain the conventional s-wave
pairing component with the opposite winding phase. Be-
cause of this correction, the total gap function has no
lines of gap nodes within the core. Very recently, the d-
wave vortex structure has also been studied numerically
by Soninen, Kallin, and Berlinsky' within the framework
of the self-consistent Bogoliubov-de Gennes theory.
Their result confirms the existence of the induced s-wave
component near the vortex core. However, the asymp-
totic behavior of order parameters is not clear from their
numerical calculation. It is also difficult to identify the
exact relative phase between s-wave and d-wave order pa-
rameters. The temperature dependence of the order pa-
rarneters cannot be determined either from their numeri-
cal calculation.

To study the structure of a single vortex, the
magnetic-field effect could be neglected' when we con-
sider the extreme type-II superconductors, such as high-
T, materials. This does not affect our conclusion as long
as we confine ourselves in the physically interesting re-
gion r ((1,. Defining go= +au~/2 which differs with the
usual coherent length at zero temperature only by a nu-
merical factor —1 and b,0=&4/3a, we may cast the
Ginzburg-Landau equations into dimensionless form
«/g'0 —+r, b, /b. o~b, ,

la 1a'
ar2 r ar r2 BO2

r

a2

Bx

B 1
2

a+-a+l
B By

B ~ B

B By

B

Bx
'2

{) I {)
Br r BO

2i S

-a
l

By

2
. a
l

By
e

—2i8

1 B l B+—
r {)r r )8{J

r 2
B l

Br r BO

{) 1 {) 1 {)
Br2 r ar r2 BO2

1 2;g B l B——e ' +
4 Br r BO

'2

'2

1 {) i {)+-
r Br r BO

1 —2i0e
4

B l B

Br r BO

1 B l B

r Br r BO

+—~a, ~'a;+ —
~ a, ~'a;+ —z„*'a,=o, (5.3)

Tc—ln d

2e——e
2

a 1 a
Br2 r Br r2 BO2

J

1 a l a+-
r Br r BO

a + l B

Br r BO

'2
-20——e

2
B l B

Br r BO

1 a l B

r Br r BO

1 B i
r Br r BO

the GL equation can be rewritten in terms of the cylindri-
cal coordinates:

a 6' —V 6*——
S S S

+ 3~~ ~
~d+ 3~ ~ +~~ (5.4)

—ln(T, /T)b, d
—P' b.q— a

Bx

B

By
2

+—~~
~
~:+—

~ ~d ~ ~.*+ (5.1)

ge —y g (r )e{{4n+1)8 (5.5)

In general, the full solution to the Ginzburg-Landau
equations of a single vortex involves all possible terms
that are consistent with the maximal symmetry group of
the vortex:

+—~a, ~'a;+ —,a a„+~a,~'a;=o. (5.2)

In term of cylindrical coordinates, R=(«, 8), and noting
Q4 —g f (r )el{4m —1)8 (5.6)
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where n, m sum over all integers.
We expect that, far away from the center of the vortex

(strictly, in the region of g&&r «A, ), the d-wave order
parameter takes the form bd =g0e' . Simple inspection
of the Ginzburg-Landau equation shows that the
leading-order terms (up to r ) that are important in our
interesting region are b, d =+1—T/T e' (5.14)

The d-wave component is also modified by the anisotrop-
ic terms proportional to r, and shows a fourfold sym-
metry, as shown in Fig. 2. When temperature ap-
proaches T„the leading term of d-wave and s-wave com-
ponents reduce to the following simple form:

33ie —ie + 2ge
r r

~]—T/T ( —e 'e+3e 'e)1

4a, r
(5.15)

+ g2e2ie+ 0 (5 7)
2

C—ln
T d

8 1 r) 1 8
gr2 r &r r2 ge2

+
I ~d I'~d =o . (5.8)

g» ( ae
—is+be 3&8)1

S 7

r
(5.9)

The solutions to the above equations are found to have
the following form (up to r ):

These results indicate that, near T„ the s-wave and d-
wave order parameters have the same temperature depen-
dence, namely (1—T/T, )'~ . It is also interesting to
note that the s-wave component is suppressed by the
efFective on-site repulsion V„since a, is proportional to
V, . Moreover, our calculation shows that even when
V, —+0, the s-wave component still persists. The charac-
teristic decaying length of the s-wave order parameter
measured from the center of the vortex core is go/Qa„
which is also suppressed by V, .

Near the center of the vortex, to the leading order, our
Ginzburg-Landau equations become

Q4 —
g e le+ 1

d 0
2 e'e+(a+3b)(e 'e —e 'e)

(5.10)
1 i(a+3b)=e' g0 — + sin

2go

2ie1
4' 8 + l 8

Br r B8

8 1 8 1 8
r2 r Br r2 882

2

'2

1 8 i 8+
r Br r BO

where

go=[1 (nT, /T)]'

a, +10g0/3 g0a=
(a, +4go/3) —(2go/3) 4

(5.1 1)

(5.12)

+ 1,-2-e4' 8 l 8
Br r 88

1 8 i 8
r Br r BO

hd =0, (5.16)

3a, + 14go/3 gob=
(a, +4go/3) —(2go/3) 4

(5.13)

Thus the induced s-wave component decays as r far
away from the core, the e ' and e ' terms combine to
give the profile a shape of four-leafed clover (see Fig. 1).

2ie1
2'

8 l 8
Br r B8

-2e—e
2

l 8
Br r 30

a' 1a
Br2 r Br r2 882

2

2

1 0 l+-
r Br r BO

1 a l a
r Br r BO

6,*=0 . (5.17)

The general solution to Eqs. (5.16) and (5.17) again has
the form

X bd=g(r)e', b,,*=f&(r)e ' +f2(r)e ' (5.18)

To the leading order, we find f, (r)=c, r, f2(r)=0, and
g(r ) =cor. So, near the center of the core,

pye
l e

d 0

pe l e
S 1

(5.19)

(5.20)

FIG. 1. The equal-interval contours of magnitude of the in-
duced s-wave order parameter ~h, ~

.

where the constants c0 and c, have to be determined by
connecting the solution near the center with the solution
far away from the core, just as in the case of conventional
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X

FIG. 2. The equal-interval contours of magnitude of d-wave
order parameter

~ hq ~
. We note that the profile has a fourfold

syaunetry.

s-wave vortex. Thus near the center of the vortex the in-
duced s-wave component has the exactly opposite wind-
ing number relative to the d-wave component. The rela-
tive phase between the s- and d-wave components in
different regions are shown in Fig. 3.

VI. SVPERCURRENT AND LOCAL FIELD
AROUND A VORTEX

In this section, we calculate the distributions of the su-
percurrent and local magnetic field around a d-wave vor-
tex. In the limit of go«A, , the supercurrent of Eq. (4.4)
can be rewritten in the following dimensionless form:

. c'o
j =i 6,Vh;+ —hd Vb, d27',2

+—b,, b.d +Ed b,* xB, B

metric distribution, as shown in Fig. 4, in sharp contrast
to that around a conventional s-wave vortex.

The local magnetic field around a d-wave vortex can be
calculated from V XB=4m.j:

Bo——(co+2c) )r z, r~O,
B='

@ogo
ln ——2—

2+A,

1

g2r2 2

FIG. 3. The relative phase between s-wave and d-wave order
parameters in the di8'erent regions. The vectors with the out-
lined arrow represent the d-wave component, while the vectors
with filled arrow represent the s-wave order parameter. The an-

gle between the two vectors is the relative phase.

Ad+Ed 5; y
l B g, B

'
By By

(6.2)

a +3b cos48 z, g'o « r « A, .
r

(6.5)

where No is the Aux quantum. Then the distribution of
the supercurrent around a d-wave vortex is easily deter-
mined by putting the results of 6, and 6d given in the
previous section into the above equations. We find, for
r~O,

j=—(co+2c t )r8, (6.3)

and for go « r « A:

a+3b
sin48 r

2r

1 1 a —b a+3b
r g2r3 r3 2r3

(6.4)

These results indicate that, near the vortex core, the
current Qows around the vortex uniformly along the 8
direction, while far away from the vortex core, it has
both 8 and r components and exhibits a fourfold sym-

FIG. 4. The streamlines of the supercurrent around a d-wave
vortex.
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lem, with the qualitative physics unchanged. ) The solu-
tior. is

b.d =+1—T/T, tanh(+1 —T/T, /2x ) . (7.5)

The asymptotic behavior of 5, can be obtained by using
Eqs. (7.1) and (7.5):

X (1—T/T, )
x, x~0,

2 2 cog

T/Tc ) —+2(1—T/T, )x
e X~00

2CXs

(7.6)

FIG. 5. The equal-interval contours of the local magnetic
field ~B~ around a d-wave vortex.

The distribution of the local magnetic field around the
vortex is plotted in Fig. 5. We clearly see that in the re-
gion of gz«r &A, , the local field, similar to the super-
current, shows a fourfold symmetry, which should be ob-
servable experimentally by the scanning SQUID's.

We have performed numerical calculation of the distri-
bution of the order parameters at the surface for a d-wave
superconductor with an arbitrary angle 0 with respect to
the a axis by solving the GL equations (5.1) and (5.2).
The magnitude of the order parameters is shown in Fig. 6
for different temperatures. It is interesting to note that
near the surface a small s-wave component is always in-
duced. It depends linearly on x as x —+0 and decays ex-
ponentially when x is large. With the increase of the
temperatures, the peak of the s-wave component becomes
broader and shifts toward to large x side. More remark-
ably, we find that the total order parameter is a real corn-

VII. SURFACE PRQBI,EM

In this section, we study the distribution of the order
parameters at surface of a d-wave superconductor using
the GL equations, i.e., the proximity effect. For simplici-
ty, we consider the situation where there are neither
currents nor magnetic fields. Suppose the a axis of the
superconductor is along x direction which is normal to
the surface, we have one-dimensional GL equations:

0.8

0.6

0.4

0.2

(a)

d 6—(1—T/T )5'—c d

d 6
dX

4" +—/~, /'~,*
dX 2 dX

(7.2)

ChI j
E
6$ 0.8

CL

h 06a
0.40

O

0.2
e

ch 0
C5

From our numerical calculation (which will be presented
below), we find that 5, and b, d must be real and the s-
wave component is always much smaller than the d-wave
component. In this case, the 5d satisfies approximately
the following equation:

0.8

0.6

0.4
d hd—(1—T!T,)bd —

2 +Ad=0, (7.3) 0.2

with the following boundary conditions:

bd=o, x=0; bd~")/1 —T/T„x~oo . (7.4) x/
10

(Strictly, the boundary condition should be the vanishing
of the current at x =0. This only complicates the prob-

FIG. 6. Spatial variation of the order parameters near a
vacuum-d-wave superconductor interface: (a) T/T, =0, (b)
T/T, =0.5, and (c) T/T, =0.9.



52 GINZBURG-LANDAU EQUATIONS FOR A d-WAVE. . . 7673

bination of d-wave and s-wave components. The phase
between s- and d-wave order parameters is determined by

P„—P, =sign[ —cos(28) ], (7.7)

VIII. CONCLUSIONS

We have established a GL theory for a superconductor
with d 2 2-wave pairing symmetry. The GL equations
obtained in the present work can be easily used to study
the properties of nonuniform d-wave superconductors.
We have shown that, for a d-wave superconductor with
inhomogeneity, the s-wave component is always induced
near the inhomogeneous regions. In the other words, this
result means that it is impossible to have a pure d-wave
state for a nonuniform superconductor.

As an application of our theory, we have studied the
single-vortex structure for a d 2 2-wave superconductor
using the GL equations. The asymptotic behavior of such
a vortex has been analytically determined. This most in-
teresting feature is that the s-wave and d-wave corn-
ponents, with the opposite winding numbers, are found to
coexist in the region near the vortex core. It has been
shown that the d-wave component varies linearly with
the distance r from the vortex core as r ~0 and goes to
the pure d-wave bulk value for very large r. In the region

i.e., Pd
—P, takes the value either 0 or ~, depending on

the angle 8 between the a axis and the direction normal
to the surface. At the first glance, this result seems to be
surprising since the coupling term 6,* 5&+6,hd in the
GL free energy favors energetically Pd

—P, =m. /2, i.e.,
the s+id state. However, a closer examination shows
that this term is only a higher-order correction because
the s-wave component itself is small. In fact, the most
important term is the mixed-gradient term
Bxh, B„b,d —B~b,B&hd+H. c. It is this mixed-gradient
term that induces the s-wave component. The phase be-
tween s- and d-wave components is also primarily deter-
mined by this term which gives rise obviously to a phase
Pd

—P, =0 or m. This means that although the proximity
effect of a d-wave superconductor can induce a small s-
wave component near the surface, a locally time-reversal
symmetry-breaking state can never occur in practice.

of gp & 1' « A 1t exhlbl'ts a foul'fold symmetl'y. On tile
other hand, the induced s-wave component has a linear-r
dependence for small r but decays as r when r is large.
It shows a fourfold symmetry in the region of gp & r «A, .
Furthermore, for large r, the winding of s-wave com-
ponent is more complicated and its magnitude exhibits
strong anisotropy. The temperature dependence of the
s-wave order parameter is complicated, but near T„ it
has the same behavior as the d-wave component, namely
(1—T/T, )' . This structure could be observable by the
scanning tunneling microscopy experiment on a d-wave
superconductor in the mixed state, similar to one per-
formed on the conventional s-wave superconductors. '

We believe that such a complicated d-wave vortex struc-
ture will affect the transport properties in the mixed
state, such as the resistivity and the Hall effect. The
relevant results will be given elsewhere.

The supercurrent and local magnetic field around the
d-wave vortex have also been calculated and both of them
exhibit a fourfold symmetry, in contrast to those around
a conventional s-wave vortex. We believe such a distribu-
tion of the local field should be observable experimental-
ly, and could be used as a probe of determining pairing
symmetry in high-T, superconductors.

We have also studied the proximity effect at the surface
of a d-wave superconductor using our GL equations, and
have found that a small s-wave component is induced
near the surface. The total order parameter near surface
is always a real combination of s- and d-wave components
and their relative phase is determined by sign[ —cos(28) ].
The immediate consequence of our result is that although
the proximity effect of a d-wave superconductor can in-
duce a small s-wave component near the surface, it is im-
possible to have a locally time-reversal symmetry-
breaking state at the surface.
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