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We present the results of a numerical crystallization experiment in He performed with the shadow
wave function and the variational Monte Carlo method. The experiment consists in Monte Carlo
simulations starting from liquidlike configurations of the atoms at a density well above the melting
point. The system presents spontaneous nucleation of crystalline seeds, proving the spontaneous
symmetry-breaking property of the shadow wave function. The final configurations display a face-
centered-cubic structure grown preferentially by (111)planes, accompanied by stacking disorder.

I. INTRODUCTION

The microscopic description of phase transitions is a
long-standing problem in many-body physics. Several
works have been done on the &eezing of classical systems
by using computer simulations. Spontaneous nucleation
of crystals in supercooled Lennard-Jones liquids have
been found both with molecular dynamics (MD) and
Monte Carlo (MC) studies. The situation in the case
of quantum systems is difFerent. Path-integral Monte
Carlo studies of quantum particles at finite temperature
show that at large enough density, when the simulation
is started &om an ordered configuration, the crystalline
order remains present through the simulation. However,
no attempts have been done to obtain crystallization in a
simulation, starting &om a liquidlike sample. In the stan-
dard variational theory of many-body systems at T = 0
K, the crystalline order is imposed by construction be-
cause each particle is localized around an assumed equi-
librium position. ' Therefore, such a ground-state trial
wave function is not translationally invariant, and one
cannot address the question of the nucleation of a crys-
tal. On the contrary, this question can be addressed when
the variational theory is based on a shadow wave function
(SWF)."

From now on, we will consider only the case of Bose
systems such as He. In the SWF, ' the correlations be-
tween particles in the ground state 40 arise in two ways,
by explicit correlating factors of the Jastrow form and,
implicitly, via a coupling of the positions of the particles
to subsidiary variables, the shadows. In the standard
representation of @0 only the explicit correlating factors
are present. The SWF is translationally invariant but

has two regimes, a fIuid and a solid one, depending on
the density and strength of the couplings. However, the
solid phase was found in the system when starting either
&om an ordered configuration or a large crystalline seed
imbedded in a liquidlike sample. No report was given of
crystalline order when the particles started &om a disor-
dered configuration.

Recently a new wave function of the shadow type
and denoted as the local-density shadow wave function
(LDSWF) has been proposedM to study liquid-solid co-
existence and the interface of He. This wave function is
characterized by the fact that the shadow-shadow corre-
lations are made explicitly dependent on the local density
of the shadows p;, and this allows for using a unique set
of variational parameters in the whole range of densities
for the liquid and solid branch of the equation of state of
atomic He. Extensive numerical simulations have indeed
shown that LDSWF can sustain, in a satisfactory man-
ner, the liquid-solid coexistence. Also in this case part of
the system started &om an ordered configuration.

In this paper we study whether SWF and LDSWF are
capable of providing spontaneous crystallization in su-
perdense liquid He, or whether crystalline order exists
only when it is already present in the initial configura-
tion. We present the results of Monte Carlo simulations,
performed with 108 and 500 atoms, described by SWF
and LDSWF, starting &om an overdense liquid, without
introducing any kind of seed, which shows spontaneous
crystallization. The crystal we obtain shows a prevailing
face center cubic (fcc) structure grown with the unit cell
slightly tilted with respect to the cubic simulation box.
The fcc structure presents distortions, due to incompat-
ibilities with the periodic boundary conditions, and is
accompanied by stacking faults in the piling of the (111}
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planes.
The paper is organized as follows. The SWF and

LDSWF are briefly reviewed in Sec. II. Section III dis-
cusses the simulation procedures and the estimators em-
ployed in studying the crystal growth. The results are
presented in Sec. IV. Section V is devoted to conclu-
sions.

f b, & bp+ bi(p;+ pi)/2
uss 8ij

&sV) ij

where b„, bo, bl, and C are independent on density. The
locaI, density operator of shadows p; appearing in Eq. (7)
is represented by the following function:

II. SHADOW WAVE FUNCTIONS

The shadow wave function, introduced by Vitiello et
a/. , is represented by the following convolution form:

= —) (1+exp[@(rg —r, )])

0'(8) = /dS Ec(R, S)d. (S),

where B = rq, . . . , r~ are the coordinates of the N atoms,
S = si, . . . , s~ those of the auxiliary ("shadow") vari-
ables, and @,(S) is the shadow term in the wave function.
The kernel K(R, S) consists of a product of a function
@ (R) correlating the particles and a function 8(R, S),
which binds each particle r; to the corresponding shadow
si, namely,

K(R, S) = @,(R)0(R, S).

The functions @,(S), g, (R), and 8(R, S) are taken in the
following form:

@„(R)= exp ——) upp(r;~)

Q. (S) = exp —) u, .(s,,), , (4)

0(R, S) = (5)

t' b„&
upp rij = )

&r'i ) (6)

where u„„and u„are variational functions and C is a
variational parameter to be determined by minimization
of the expectation value of the Hamiltonian. The sim-
plest choice for u~ and u„ is of the so-called McMillan
form, u„„(r) = (b„/r)s and u„(s) = (b, /s)P. The opti-
mal values of C, bp, and b, are density dependent so that,
even if the functional form is independent on density, the
coupling parameters depend on the state of the system.

In the LDSWF, the coupling parameters are assumed
to depend on a local density operator p, in such a way
that a unique wave function describes the system over
a wide range of densities comprehending both the liquid
and the solid phase. The coupling parameter b, is the
one with the largest density dependence, and it has been
shown that a realistic parametrization of the pseudopo-
tentials is

with A being a normalization constant. The parameters
p and r, in the Fermi function v~(r) are determined fol-
lowing the criterion of reproducing the average density of
shadows in homogeneous systems within a range includ-
ing the erst shell of neighbors in the liquid phase. The
values p = 3o i and r, = 2 lcr, w. ith o = 2.556 A, have
been found to meet the above conditions. The other
variational parameters were determined by an overall
minimization in the range of densities 0.365 & po.s &
0.550, with the result bp ——1.120, C = 4o, bo ——0.510.,
and bz ——1.91o'4. Clearly one recovers the SWF when
bl ——0 and bo takes the value appropriate for the average
density of the system.

Let us briefly report on simulations performed with the
above LDSWF, starting &om an ordered configuration.
The evolution of the system strongly depends on the av-
erage density considered. When po & 0.44, the system
rapidly melts and a liquidlike g(r) is found, both for par-
ticles and shadows. On the other hand, at larger densities
(po.s & 0.49) the crystalline order is found to be stable.
In fact, no difFusion is found in the system, but the shad-
ows and the particles remain confined around their ini-
tial positions, as measured by Lindemann ratio and crys-
talline order parameters. Thus, we have a wave function
that is translationally invariant with the crystalline or-
der sustained by the correlations. The good value of the
energy upperbound, compared with that of a standard
Nosanow-Jastrow wave function, in which the crystalline
order is explicitly introduced by one-body terms, proves
that the LDSWF captures the basic physics of this quan-
tum crystal. Stabilization of crystalline order in this wave
function is due to the shadows, which behave rather like
classical particles. This can be inferred, for instance, ana-
lyzing the pair distribution functions of the shadows that,
in the case of the solid, have the typical sharply peaked
structure found in analogous classical simulations. On
the contrary the distribution of the atoms is much less
structured, as can be seen in Fig. 1. The role of the core
parameter b, in u„(s) is crucial in describing the phase of
the system. This indicates that in the quantum case the
excluded volume efFects, which drive the crystallization,
are not only due to the physical size of the particles but
also to the excluded volume due to quantum fluctuations
(the "correlation hole" ).

Similar considerations can be drawn by looking either
at the crystalline order parameters or to the static struc-
ture factors S (k), given by
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where the density Quctuation operator p& is given by
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FIG. 1. Pair correlation functions for RO, Rl, and R2 (see
text): dotted line is g„and solid line is g~„.

where a = p, s for particles and shadows respectively,
N is the number of particles of type o. , and x",. = r;
and x,' = s;. The spherical average of S„(k) presents
sharp peaks in correspondence with the reciprocal lattice
vectors of the crystalline structure, as can be seen from
the case of a stable fcc structure, generated f'rom an initial
crystalline configuration at po = 0.5, showri in Fig. 2.
A comparison between S„(k) and Sz„(k) makes evident
that shadows are much more localized than particles.

As previously discussed, in all the simulations with
SWF and LDSWF, appearing up to now in the litera-
ture, in which a crystaHine order has been found, either
this order or at least a large seed of it was present in the
initial configuration.

In the following section we answer the question
whether or not SWF and LDSWF can spontaneously
break the translational invariance. This can be verified
first performing simulations starting &om configurations,
which are proper for the Quid phase, and then, after a
rescaling of distances corresponding to a compression,
measuring the crystalline order of the structure of the
evolving system.
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FIG. 2. Spherically averaged static structure factors mea-
sured on 160 configurations extracted from a simulation
started from a perfect fcc crystal. (a) S„and (b) S„„.The
position of the reciprocal lattice vectors of a perfect fcc crys-
tal indexed with respect to a cubic elementary cell, are also
displayed.

III. SIMULATION PROCEDURE

The calculations have been performed at the den-
sity value po. = 0.5, which is slightly above the melt-
ing density obtained from Green's-function Monte Carlo
simulations (po = 0.491), and for which a stable solid
phase has been found using LDSWF. The Monte Carlo
simulation has been performed using the Metropolis al-
gorithm, sequentially moving the real and the auxiliary
degrees of &eedom. A complete sweep over all the degrees
of freedom is denoted as a Monte Carlo step (MCS). De-
tails about the modification of the standard algorithm
due to the presence of the shadows can be found in Ref.
9.

A first set of simulations has been performed with a
cubic cell of side 6' accommodating 108 particles, which
exactly fits 3 x 3 x 3 elementary conventional cubic cells of
a fcc lattice. Periodic boundary conditions were imposed
in all directions. A first run, hereafter considered as the
reference run and denoted as BO, started &om a perfect
crystalline configuration, with 6&

——0 and 60 ——1.465o,
which is equivalent to using SWF. The same run has
been repeated with 500 particles showing no appreciable
differences with respect to BO. The configurations gen-
erated within this run have been used to calculate the
structure factors displayed in Fig. 2. Two crystallization
simulations were performed for 2 x 10 MCS's one with
SWF and the other with LDSWF. Let us denote with Bl
the SWF run (bo ——1.4656cr, bz ——0) and with B2 the
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LDSWF run. In both cases we employed as a starting
configuration that obtained from a simulation of a liq-
uid at equilibrium density (pos = 0.365), after 5 x 104
MCS's, and rescaled to the density po.3 = 0.5.

Two other crystallization runs were performed with a
larger number of particles (N = 500) in a cubic box and
using LDSWF. The liquidlike initial configuration has
been obtained as for the runs described before. Each run
corresponds to an independent Markov chain of configu-
rations, obtained by cha, nging the seeds of the random-
number generator and the step size of the proposed move
both of particles and of shadows. They are denoted as
runs R3 and R4. The center of mass of the system has
been kept fixed; namely, all the coordinates are taken
with respect to the center of mass of the system.

During the runs, spherical pair-correlation functions
for particles g„„(r) and for shadows g„(s) were esti-
mated. Although these quantities are spherical averages,
they still give important information on the crystalline
structure of the system. Another important quantity
that we have analyzed is the spherical average of the
static structure factor S (k) given in Eq. (9). The nu-

merical procedure used to compute S (A:) is described
in the Appendix.

IV. RESULTS

The occurrence and the nature of the crystallization
has been studied by analyzing the pair-correlation func-
tion, the static structure factor, and by direct visualiza-
tion of the con6gurations. Homogeneous nucleation of
crystals has been found in all the simulations performed,
although with slightly di8'erent characteristics.

Figure 1 shows the pair-correlation functions for both
particles and shadows, evaluated on the last 10 MCS's
of the simulations carried out with 108 atoms. The crys-
tallization runs R1 and R2 difFer &om the reference run
RO, particularly for the shadows, whose pair-correlation
function g„has no apparent structure at r 20. and has
peaks with a height that is 15% smaller. In RO, g„(r)
displays all the proper peaks of a fcc lattice. As expected,
the real particles are less localized than the shadows, al-
though the height of the main peak (~ 1.6) indicates a
localization, which is typical of a quantum solid. R1 and
R2 do not show any appreciable difference, except for
the occurrence of a structure in g„at r 2.3o, which is
more pronounced in R1 than in R2. This confirms that,
once a stable homogeneous phase is reached, SWF and
LDSWF lead to the same description of the system.

Figure 3 displays the evolution of the crystallization
during R2 for both particles and shadows. At the be-
ginning of the run the system is still Quid; after 2 x 10
MCS's, the pair functions appear much more structured,
as in the case of solids.

The pair-correlation functions obtained in the two in-
dependent runs with 500 atoms, and shown in Fig. 4,
present features that clearly indicate the occurrence of a
solidlike state as for the cases with 108 atoms. The two
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FIG. 3. Pair-correlation functions of particles and shadows
for R2 (108 atoms with LDSWF) at the beginning of the run
(solid line) and after 2 x 10 MCS's (dotted line).

4.0

2 0
bQ

R3
i
Ii
)I
) IIi
I I

I
I

I I
I
I
I

1.0

0.0
0.0 1.0 2.0

r/a
3.0 4.0 5.0

4.0

2.0
C4)

R4
I
) i

I I

I

I

I
I

I I

I

I

I
IL
I \

I

0.0
0.0 1.0 2.0 3.0 4.0 5.0

r/a
FIG. 4. Pair-correlation functions for N=500 particles with

LDSWF for R3 and B4. Solid line is g„„and dotted line is
g„. The location of the fcc peaks are reported for convenience
(their coordination numbers are, respectively, 12, 6, 24, 12,
24, 8, 48, 6, 36, 24). The first three peaks only are compatible
with the hcp structure.
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simulations have led to two diferent realizations of this
state, although the resulting particle pair-correlations
look very similar. During B4 the structural stability
of the crystal was reached with fewer MCS's than dur-
ing B3. In B3 the two main peaks of g„closely re-
semble those obtained with 108 atoms, with the second
peak blurred out and without the presence of the second-
neighbor peaks. This implies that if a structure is present
the percentage of defects is quite high. In R4, g(r) has
much more structure and presents the gross features of a
less defective crystal. The positions of the peaks are in
good agreement with the distances of the neighbors in a
fcc lattice. The missing ones, corresponding to the sixth
and the eight neighbors indeed have a low coordination
number. The peaks of g(r) are in better correspondence
with the fcc lattice than with the hexagonal close packed
(hcp) one, but the spherically averaged g(r) is not able to
give clear evidence of which kind of order is present. In
any case, the absence of diffusion proves that the system
is in a solid phase.

Some more information can be obtained through the
direct visualization of the configurations generated in the
random walk. From the study of the correlation func-
tions we have learned that the ordering properties are
made more evident when looking at the shadow degrees
of freedom rather than at the real particles. From the
visualization of the configurations it is also possible to
follow the pseudoevolution of the sample, observing the
progressive growth of the crystalline order. There are
several ways to study the configurations. The most sug-
gestive consists in a three-dimensional (3D) visualization
realizing a movie with the successive configurations. An-
other way consists of plotting the projection of the coor-
dinates on a chosen plane (commonly one of the faces of
the simulation box). The results reported below all refer
to R3, which is the run showing a less evident ordering
from the bare observation of the g(r), so that it is the
most interesting to analyze.

Figure 5 displays the projections of the coordinates of
shadows in the x-z and in the x-y planes after about
8 x 10 MCS's. The positions of the shadows are far
&om being uniformly distributed, as in a Quid, and there
is clear evidence of some crystalline ordering. This is
particularly clear in the x-z projection, where we can
distinguish three different regions, one on the top with
planes oriented with an angle vr/4 with respect to the
axes, one in the middle where the shadows are already
localized but the structure is not well defined yet, and
one in the bottom, where the orientation of the planes
looks to be parallel to the z axis. Also in the x-y projec-
tion it can be noticed that the orientation of the layers
is not well defined, even if one can distinguish portions
where the planes are ordered. This indicates that in the
box the crystal growth does not start &om a unique seed
but rather &om several seeds with diferent orientation
and stacking. Thus, we can think of the evolution of
our system as split in two diferent motions: one is the
motion of the atoms around the instantaneous equilib-
rium position in the solid seeds, and the second one is
the slower motion by which the crystal adjusts its sym-
metry and shape. This situation alters the generation of
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FIG. 5. Projection of 40 shadow configurations of Ra taken
out from 1000 after 8 x 10 MCS's. Top is the x-z projection
and bottom is the x-y projection.

the random walk, so that the acceptance rate of the trial
moves for the shadows is gradually lowering during the
simulation from 30'Fo to 20 jo.

In the next stage of the simulation, we observe that
one of the seeds prevails on the others. In Fig. 6 the
projections on the faces of the simulation box of configu-
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FIG. 6. Projections of the shadow configurations of R3 af-
ter 2 x 10 MCS's. Top left is the x-y projection; top right is
the x-z projection; and bottom is the y-z projection.
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rations generated after about 2 x 10 steps are shown. It
can be seen that the situation is very difkrent &om that
displayed in Fig. 5. In particular, the y-z projection
presents a well-defined layering. The spacing among the
layers is larger than a/2, as for (100) planes of a perfect
fcc lattice filling our simulation box, whereas it is very
close to a/~3, typical of a (lllj stacking of fcc planes.
Actually the spacing is slightly smaller than a/~3, in-
dicating the presence of dishomogeneities in the crystal.
Moreover, the crystalline planes are tilted with respect
to the simulation box axes.

In Fig. 7 we show the projection of the shadow config-
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urations onto the x-y plane after a rotation of an angle
p = 6 36' around the 2; axis. After such a rotation all
the planes clearly display an ordered situations, revealed
by spots in correspondence to the lattice sites. The an-
gle needed to perfectly align the crystalline planes to the
axes of the simulation box ranges Rom ~ 10 to ~ 6

The structure displayed in Fig. 7 is very close to that
typical of the close packing ordering. From figure (a) a
sixfold coordination is very evident, and the rows along
the x-y (rotated axis) bisector are almost perfect. Along
the equivalent directions inaking an angle +sr/3 with the
bisector, one sees a clear ordering, but there is a mod-
ulation of the rows, which is almost sinusoidal. This is
clearly due to the fact that a perfect closed packed plane
is not compatible with the periodic boundary conditions
of the cubic simulation box, unless the normal to the
closed packed (111)planes is parallel to the inain diago-
nal of the simulation box. A possible explanation of why
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FIG. 7. x-y projection of the shadow configurations after
2 x 10 MCS's of B3 and after a rotation of 6 36' around the
z axis: (a) 2.5o & z & 3.5o (single plane) and (b) 0 & z & 6o.
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FIG. 8. Spherically averaged static structure factors for
shadows and particles in R3: (a) S„(k) at the beginning of
the run (solid line), and after 1.2 x 10 MCS's (dotted lined),
obtained froin one configuration; (b) S„(k) after 3 x 10
MCS's, obtained from 160 configurations out of 8000 MCS's;
the thick lines in the upper part correspond to the positions
of the reciprocal lattice vectors for a fcc structure of lattice
constant a = 2o; and (c) S„~(k) after 3 x 10 MCS's, obtained
from 160 configurations out of 8000 MCS's.
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TABLE I. Variational energies and potential and kinetic energies per particle in the crystallization runs.

Run
Ro
R3
R4

SWF
LDSWF
LDSWF

Initial conf.
solid
Quid
Quid

' (K)
—4.82 + 0.01
—4.33 + 0.01
—4.23 + 0.01

Eg;„(K)/N
26.47 + 0.03
26.32 + 0.03
26.30 + 0.03

E ot (K)/N
—31.30 + 0.03
—30.65 + 0.01
—30.54 + 0.02

MCS's
5 x 10
3 x 10
1 x 10

the system crystallizes with a tilting angle p of the closed
packed planes, which is smaller than the value required in
order to have no distortion, is the following. The area of
a closed packed plane inside the box has the largest value
when the normal to this plane is along the diagonal of the
box, and diminishes for decreasing values of p. On the
other hand, ordering is favored if the length over which
the periodic boundary conditions are imposed is small.
Therefore, we can understand the observed small value
of p as due to a competition between this ordering eKect,
which pushes p to zero, and the associated distortions of
the lattice, which grow as p —+ 0.

It is also interesting to look at the stacking of succes
sive planes. Overlapping the configurations of the single
planes, as done in Fig. 7(b), it is possible to distinguish
regions where the stacking is threefold (typical of the fcc
lattice), and regions where there is a twofold stacking
(typical of the hcp lattice).

A further evidence for the crystallization of the sample
as well as the indication for the occurrence of a combi
nation of a prevailing fcc lattice, comes from the struc
ture factors. Figure 8 displays the evolution of S„(k) of
R3; starting &om the initial compressed liquidlike con
figuration [Fig. 8(a), solid line] the structure factor, at
first grows, showing still a metastable liquid phase after
1.2 x 10s MCS's [Fig. 8(a), dotted line]; then at about

I
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I

+ ~ ear

gxr$$

0 5x10 10~ 1,5x105 Zx10~ 2.5x10~
MCS

FIG. 9. Average value of the energy on blocks of 8000
MCS's, for the first 2.4 x 10 MCS's in R3.

4 x 104 MCS's crystalline peaks appear and grow out
of the liquidlike pattern, and finally it becomes stable
after 1.2 x 10 MCS's. The final result, obtained after
3 x 10 MCS's, on 160 configurations out of 8000, is shown
in Fig. 8(b), where the thick marks on the upper part
signal the positions of the fcc reciprocal lattice vectors.
One can see the growth of a series of sharp, well resolved
peaks, that clearly indicate the formation of a crystalline
structure. Some of these peaks, as shown in the figure,
can be labeled as the reflection of a fcc structure of lat-
tice parameter a = 2.0. The remaining peaks cannot
be easily assigned without doing further specific analy-
ses, which, however, go beyond the scopes of the present
work. They probably correspond to the presence of stack-
ing disorder in a fcc structure. ' Figure 8(c) displays
the structure factor Szz(k) of R3. A comparison of Figs.
8(b) and 8(c) confirms the feature that the particles are
less localized than the shadows. The heights of the peaks
of Szz(k) are quenched with respect to the corresponding
ones of S„(k) by about 60%%uo.

Putting together all the information from pair-
correlation functions, structure factors, and direct visu-
alization of the configurations, we may conclude that the
system crystallizes with a prevailing fcc structure, which
is distorted because the direction of the crystal growth is
such that a perfect fcc structure is not compatible with
the periodic boundary conditions. In addition, the fcc
structure is accompanied by stacking faults of the (111)
fcc layers.

The expectation value of the energy obtained, respec-
tively, in runs BO, B3, and B4, together with the poten-
tial and the kinetic energy, are reported in Table I. The
interatomic potential considered is the Aziz HFDHE2
potential. The main feature that can be observed is
that in all the crystallization runs there is a di8'erence of

0.5 —0.6 K with the energy upperlimit of the reference
case. This is due to the defects of the grown crystal.
Prom Figs. 6 and 7 one can see that the lattice con-
stant a varies locally &om 1.95O to 2.o., and, cor-
respondingly, the local density varies &om 0.55O to

0.50 . As a consequence, the energy per particle may
range from —3.7 K to —4.8 K. In Fig. 9 the evolution
of the. expectation value of the energy in the course of a
typical run is displayed. It starts from a quite low value,
which gradually increases. At this stage of the simula-
tion one has solid seeds embedded in the fluid. The cost
of the interface increases the energy of the system. After
this barrier is overcome, the variational energy begins
to lower again, soon reaching a nearly constant value.
Presumably, much longer runs are needed to recover the
lower equilibrium value of the energy.
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V. CONCLUSIONS

ln this paper we have presented the results obtained
with Variational Monte Carlo calculations on atomic He
with shadow wave functions at a density well above the
melting density, starting &om initial con6gurations of a
superdense Quid. A stable crystalline phase has been
reached in all the simulations, proving that SWF and
I DSWF provide a true stable ordered phase at high
enough densities. The results obtained strongly support
that the growing process is favored for the (ill) planes,
resulting in the fact that the system prefers to tilt the
planes and to adjust them to the cubic box rather than
growing nonclose packed planes. The resulting crystal
has a prevailing fcc structure accompanied by stacking
disorder. We expect that similar results are also ob-
tained if the shadow-shadow correlation pseudopotential
is taken for the rescaled Aziz form, which is known
to provide better variational results for the equation of
state. Work in this direction is in progress.

outline in this appendix.
Inserting Eq. (10) into Eq. (9), one obtains the follow-

ing two equivalent expressions:

(A1)

The second expression is more convenient to use in nu-
merical simulations because it scales more favorably with
the number of particles. We have evaluated the expres-
sion (A2) on the set of configurations obtained in the
various runs for K values discretized on a cubic grid,
compatible with the periodic boundary conditions, given
by
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APPENDIX A

The structure factors given in Eq. (9) have been com-
puted following the procedure of Ref. 1, which me brieQy

with nz, n2, n3 integers, and the minimum length Kmj„——
2vr/L is related to the largest wavelength fiuctuation
compatible with the simulation box size. The factor
exp(iK;„r;) is computed only once for each particle
position, and the values corresponding to other values of
K can be obtained by simple multiplications. The angle
average is performed by averaging 8 (K) for those val-

ues of K in the cubic grid, having the same length, and
different orientation.
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