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Theory of phase locking in small Josephson-junction cells
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Within the resistively shunted junction (RSJ) model, we performed a theoretical analysis of phase
locking in elementary strongly coupled Josephson-junction cells. For this purpose, we developed a
systematic method allowing the investigation of phase locking in cells with small but nonvanishing
loop inductance. The voltages across the junctions are found to be locked with very small phase
difference for almost all values of external Bux. However, the general behavior of phase locking is
found to be just contrary to that according to weak coupling. In the case of strong coupling there
is nearly no influence of external magnetic Bux on the phases, but the locking frequency becomes
Bux dependent. The in8uence of parameter splitting is considered as well as the efFect of small
capacitive shunting of the junctions. Strongly coupled cells show synchronization even for large
parameter splitting. Finally, a study of the behavior under external microwave radiation shows that
the frequency-locking range becomes strongly Qux dependent, whereas the locking frequency itself
turns out to be Qux independent.

I. INTRODUCTION

3osephson-junction arrays are considered as candidates
for microwave oscillators with possible applications in the
field of satellite communication systems, astronomical
observations, construction of supercomputer chips and
spectroscopy. They are potentially well tunable over a
relatively wide &equency range while radiating on a nar-
row linewidth, and they can deliver large output power,
at least in comparison with a single element. Linear ar-
rays of 3osephson-junctions have been subject to theoret-
ical investigation for more than 20 years. ' ' ' During
the last years, there have been some promising experi-
mental results. Since the beginning of the nineties,
there has been a growing interest in two-dimensional (2D)
arrays. ' ' Up to now, the radiation power of 2D ar-
rays was found to be much smaller than that of 1D ar-
rays (0,1 pW maximum, in comparison to 50 yW in
1D arrays ). This may be a consequence of technologi-
cal problems as well as of general properties of 2D arrays.

Because of this fact, there is some renewed interest
in the general mechanisms of synchronization of coupled
Josephson-junctions. Most of the early adiabatic inves-
tigations were based on weak (preferably inductive) cou-
pling of the elements, ' which is surely fulfilled for
relatively large circuits with total inductances 10 pH.
However, present day technology allows the preparation
of very compact arrays with circuit dimensions around 1
pm and smaller, having inductances smaller than 3 pH.
In this case, the adiabatic methods developed earlier fail.
On the other hand, neglecting inductances at all seems
to be a too rough approximation.

In this paper we develop a method for dealing with
Josephson-junctions coupled via a small inductive shunt
[superconducting quantum interference device (SQUID)-
type coupling] in a systematic way. In Sec. II, we de-
scribe the circuits handled by this method, derive the
general equations, review some results obtained by con-

II. A SHORT REVIEW ON WEAKLY COUPLED
JOSEPHSON JUNCTIONS

The strong coupling method described in this paper
was developed for the investigation of the three similar
SQUID-like cells shown in Fig. 1, but the general prin-
ciples should have a much wider range of applicability.
These three circuits have a bias current 2Ip, a net loop
inductance I and a parallel biasing scheme in common.
Elaborating the equations of motion within the resistively
shunted junction (RSJ) model, one obtains for the case
of identical junctions

4i+»nlrb = ip —l '(4i —42+ V ),
$2+sin/2 ——ip+l (Pg —Ps+ p),

(2.1a)

(2.1b)

ventional methods and discuss their inapplicability to our
problem. In Sec. III, we give a review of our analytical
method and present some results for the simplest case
of nonhysteretical, identical junctions, which are com-
pared with numerical simulations. Section IV is devoted
to nonidentical junctions and Sec. V to the inBuence of
an additional small junction capacitance. In Sec. VI we
consider the synchronization of strongly coupled SQUID
cells by external microwave radiation. A summary as
well as some speculations about possible applications of
our results are given in Sec. VII.

Contrary to most theoretical investigations which are
mainly based on computer simulations during the last
years, we concentrate on approximate analytical results.
The advantage of this approach is usually a better insight
into physical mechanisms in combination with a broader
range of applicability concerning the choice of parame-
ters. The disadvantage is a larger amount of mathemat-
ical machinery necessary even in relatively simple cases.
Howsoever, we found it quite valuable to use both meth-
ods and compare the results. Some material described in
Sec. III was published in a short note earlier.
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where Pi and Pq are the respective Josephson phases,
and i0 is the normalized bias current,

io = Ip/Ic (Ic . critical current), (2.2)

which is supposed to fu1611 the condition i0 ) 1, here. I,

marks the normalized loop inductance,

overcritically biased &ee contact,

Co 'Cps bi/s 7t'

4rigq ——arctan . tani0+ 1 2 . 2'

showing an oscillation &equency

(2 6)

l = 2mIcL/@o, (2.3)
(2.7)

and p the normalized external Qux,

p = 2m Cr/Op (4: external fiux, 4p. Hux quantum).

(2.4)

Dots denote differentiation with respect to the scaled
time

s = (2e/h)Ic R~t (R~. normal resistance).
(b) = o (b) = (b ) —(b ) (2.8)

one finds

and constant phases bi and bq. To first order the lowest
harinonics of solutions (2.6) are inserted into the right-
hand side (rhs) of Eqs. (2.1a) and (2.1b). This provides
so-called reduced equations for the mean values of the
phases, averaged over short-time scales of the order of
go. Looking for solutions of the phase locking type,

There exist several investigations of these systems for
weak coupling, i.e., l && 1. ' ' 6 In this case, coupling
can be neglected to zeroth order with respect to l and
both junctions oscillate with the Josephson phase of an

1
san b =p. (2 9)

ir Ip 2Ip Ip

For usual operation regimes with i0 1.5 this results
in an approximate linear relation between b and P, as
indicated in Fig. 2. The normalized voltages

lc+N (2.1O)

gCXC are obtained as

0
'UX/a =-

'zp + cos(/os —bigs)
(2.11)

This procedure and similar adiabatic methods led to a
general understanding of the behavior of weakly coupled

L/2 L/2

@CXt

2Ip

Ip (c}

L/2

@CXC

Ip
L/2

Ip 3
Flux y

FIG. 1. Three SQUID cells which can be described with
the strong-coupling method described in this paper.

FIG. 2. Mean voltage phase shift b against normalized ex-
ternal Hux p from analytical approximation for weak induc-
tive coupling (ip ——1.5).
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Josephson junctions. However, they are not applicable
to small circuits (of diameter 1pm) with inductances

1 pH. The point is, that for small inductances the pa-
rameter l is not longer small, e.g. , l = 3 for L = 1
pH and Ic; ——100 pA. In this case the term in paren-
thesis on the rhs of Eqs. (2.1a) and (2.1b), respectively,
dominates the remaining terms and it is not possible to
derive reduced equations of the type mentioned above.
In order to deal with small inductances which already
can be realized technologically today, we developed an
alternative systematic scheme, which is described in the
next section.

s = s cos(y/2),
88

(3 7)

the equation for Zp (zeroth order with respect to l) be-
comes very similar to that of an autonomous junction,

Zo + sin Zo ——i o, io ——io/ cos(y/2).

Thus, we can immediately write down the solution,

(s.s)

feature is valid for higher orders of l, too: The variables
Z must be determined by solving a first-order difFeren-
tial equation [only to lowest (zeroth) order being non-
linear], whereas the E's can be calculated algebraically.
Introducing a once more rescaled time,

IIX. A PERTURBATION SCHEME FOR STRONG
INDUCTIVE COUPLING Zp ——2 arctan tanqo (os (s.9)xp+cos (p 2 2 2

At first, we found it convenient to introduce new vari-
ables

with

go —— io —cos (p/2) (3.10)
4 = (p2 —p~)/2 and Z = (p2 + p~)/2,

providing the set of equations

(3.1)
where we have imposed the initial condition

Zo(s = 0) = vr/2. (s.ii)
14 + cos Z sin b, = —(p —2A),
l

Z+sinEcosL =io.
(3.2a)

(3.2b)

4 = Ap+ lbg+ O(l ),
Z = Zo+ lZg + O(l ).

(3.3a)
(3.3b)

This ansatz resembles the "slowly-varying amplitude
method" developed several years ago ' for l then and
resulting in reduced equations similar to those mentioned
above. Expanding the sin and cos terms, it is not sufB-
cient that the condition

These equations already indicate that the behavior of E
is determined necessarily by the bias current io and that
of L by the external Qux, although coupling makes things
slightly more complicated.

We perform a perturbation expansion valid for small

Z„(s=o) = 0 for n) 1. (s.i2)

With Lo and Zo given Lq can be determined alge-
braically,

1 6 (p sin((ps)

pip + cos((p/2) cos(/ps) )
(s.is)

This expression automatically satisfies the initial condi-
tion

a, (0) =o (s.i4)

required for the validity of the perturbation expansion.
For Zq one obtains the inhomogeneous linear differential
equation

Because the A are determined algebraically there is no
freedom to specify separate initial conditions for them.
To ensure the validity of the perturbation expansion, it
is important to specify all higher Z according to

llZil « IZol (3 4)
Zy + Zy cos Zp cos(y/2) —Ay sin Zp sin(p/2) = 0,

is fulfilled, but additionally we must demand the much
more rigid conditions

(s.i5)

1 and (3 5)
admitting the solution

Investigation of the final result shows, that this can be
met for all y by choosing a sufBciently small l. Only the
case p = vr requires a slightly more involved considera-
tion.

After inserting the expansion [(3.3a) and (3.3b)] into
Eqs. (3.2a) and (3.3b) one can compare identical powers
of l. To lowest, i.e. (—1)st, order one Bnds

(3 6)

without solving any differential equation. This general

tan~((p/2) (.
Zg —— ip cos(y/2) (1 —cos /ps)

2[ip + cos((p/2) cos /ps]

—2 ip + cos((p/2) cos /ps &
+ pin

ip + cos(y/2)
(s.i6)

where we already exploited the initial condition, Eq.
(3.12). From Eqs. (3.6), (3.9), (3.13), and (3.16) one
derives the normalized voltages
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V1/2
(,"p

) (p sin(p/2)+
ip + cos(P/2) cos (,"ps 2[ip + cos((P/2) cos (,'ps]2

(,'p2 ip + cos(P/2) cos (,'ps ) ~x sin(((P/2) sin(ps ip + cos(y/2) + ln . P (p cos(y/2) + i p cos (ps . (3.17)
~

cos (P 2 zp+cos (P 2 ) )

A'

vyy2 = —+ azg2 cos (ps + br~2 sin /ps,
2

(3.18)

After some calculation including a Taylor expansion of
the logarithm one obtains

In this way we derived an analytic expression for the
voltage on junction 1 and 2 respectively, valid to first or-
der with respect to t. It has to be compared with the
solution (2.11) for weakly coupled elements. Both have
in common, that there always exists a solution showing
phase locking for all values of the external field. How-
ever, contrary to the case of weak coupling, where the
phase shift scales approximately with external Hux, we
will shortly see that it is negligibly small for all values
of the external field, except for p m. On the other
hand, the &equency, being Qux independent for weakly
coupled elements, becomes Qux dependent according to
Eqs. (3.17) and (3.10) detuning the cell this way.

So far, we could not derive an equation of motion (a
kind of reduced equation) for the phase shift of strongly
coupled elements directly &om the basic equations as it
is possible for weakly coupled elements. Therefore we
must adopt an appropriate alternative definition of phase
difference. We define phase shift as the difference of the
mean value crossings of the lowest harmonics of vq and
vz according to (3.17).

To proceed, we must evaluate the lowest Fourier coef-
ficients of Eqs. (3.17),

about the structure or order of magnitude of the Fourier
coefBcients. Extension to m' & p & 2m needs a more sub-
tle investigation of the solution itself to get the correct
branch of the arccos; in this case one obtains

~=sgn[b(ai —a2)]

( aya2+bx K—arccos + (2zz+1)zr,
I gb (a2 + a + b ) + a2a

(0 & y & 2~). (3.23)

Figure 3 shows the phase shift between vq and v2 as a
function of external Bux y.

Our analytical approach was accompanied by numeri-
cal investigations exploiting the Personal Superconduct-
ing Circuit Analyzer programs2 s psCAN (Fig. 4). Com-
parison of Figs. 3 and 4 shows that even for / = 1 where
the analytical approximation is no longer valid, results
are quite similar to those of the numerical simulation.
Both figures show that already in this case the behav-
ior is qualitatively different &om that of weakly coupled
elements. Thus, in the intermediate regime l 1 the
strong-coupling scheme provides a better approximation
to the actual behavior of the SQUID cell than the weak-
coupling results do.

There are two limiting cases of special interest. For
vanishing external Qux the elements behave in the same

a = 2(p,

[—2 cos((p/2) p l(,'p sin(rp/2)],
Zp+ (.p

sin (y/2) cos(p/2)
1/2 ('. + C.)

x
~ 1+ cos (p/2)

zp 4ip(ip + (,'p) )

(3.19)

(3.20)

(3.21)

Note that the Fourier coeKcient 6 being proportional to
l is small compared to aq/2, the coefBcient a~/2 itself is
dominated by its first term, except for y = vr. Thus, with
the possible exception of the vicinity of this value, both
voltages are in-phase independent of the external Qux.

Adopting the definition given before, one can derive a
formula for the phase shift b as a function of the Fourier
coeKcients,

a,a, +b'
b = arccos (0 5 '((' 5 ~)

~ gb2(a2~ + a22+ b2) + aza2)

(3.22)

Deriving this formula, no assumption has been made

t =0.1
t —10

0
0

~ ~

~ ~

3
Flux (p

FIG. 3. Phase shift b against normalized external Hux p for
strong inductive coupling L = 0.1 and medium inductive cou-
pling l = 1.0 obtained from analytical approximation (3.23)
(ip = 1.5).
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3.5

2.5 -( py 0.05:

~ ~

l = 0.01

Pi + sinPi ——

42 + Sin 42

xo 1
1 —0 l(1 —8)

xo 1
1+0 l(l + 8)

(4.5a)

(4.5b)

1.5—

0.5—

~ ~ ~

0 I ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~
I

l = 0.005
l = 0.0001

As before, it is advantageous to introduce new vari-
ables b, and Z according to Eq. (3.1). Equations (3.2a)
and (3.2b) are then modified to

1
b. + cos ZsinA = — is+ (y —2b.),1 —82 / 1 —82

(4.6a)
1

Z + sin Z cos b, = io — (rp —2b, ).1 —62 / 1 —82

(4.6b)
3 3.02 3.04 3.06 3,08

Flux y
3.1 3.12 3.14

FIG. 6. Phase shift b against normalized external Bux y for
extremely strong coupling (0.001 & l & 0.1), obtained from
analytical approximation (3.23) (io = 1.5).

vg/2 = zo cos p 2 (3.31)

This reproduces a well-known result: The I-V charac-
teristics of a small-inductance SQUID has a hyperbolic
shape, the vertex being dependent on the external Bux.

IV. PARAMETER SPLITTING IN STRONGLY
COUPLED CELLS

(4.1)

with the subsidiary condition

Real junctions never have identical parameters. The
response to parameter difFerences becomes particularly
important in large arrays, where one usually cannot avoid
a parameter splitting of the order of 1'%%uo, at least. In
this section we consider junctions having different critical
currents as well as normal resistances,

~0 28
Zo + sin Zo cos(y/2) = +

1 — 1—
ZQ sinLQ = — io

1 —82

(4.7a)

2
(4.7b)

Some e8ects are already qualitatively displayed by this
couple of equations. (i) To first order in 8 there is a
correction of the magnetic flux isla. (ii—) There is
a correction of the bias current 8(y —2A)/l being of
first order, too. It includes an additional coupling via

Equations (4.6a) and (4.6b) indicate that for weak
coupling (l » 1,8 « 1) the additional magnetic fiux
dominates, an efFect which has already been observed
[cf. Eq. (13.30b) in Ref. 3]. However, for strong coupling
(l « 1,8 « 1) this term is of second order only. It turns
out that the difFerence y —2L is of the order of l, so
the addition to the bias current is of first order in 6 and
dominates.

First of all, we are interested in the maximum param-
eter splitting which is possible without destroying syn-
chronization. For this purpose, the splitting parameter 8
should not be considered small from the beginning. As
before, we perform a perturbation expansion with respect
to l according to (3.3a) and (3.3b). To lowest, i.e. , —1st,
order we again obtain Ao ——y/2. To zeroth order, we
get the system of equations

Ig, B~, ——I~, BN' (4.2)

which is usually realized as a consequence of the tech-
nological process with a good accuracy. Introducing the
mean critical current

Again, Zo has to be determined by solving a difFerential
equation, whereas L» is calculated algebraically. The
new feature is an additional coupling between both vari-
ables caused by the last term on the rhs of Eq. (4.7a).
Combining both equations, one obtains

1Ic = (Ic, + Ic,)—
and the parameter splitting

(4.3) Zo + sin Zo cos(p/2) + 8 cos Zo sin(p/2) = io. (4.8)

(4.4)

one derives the following RSJ-model equations for the
cells shown in Fig. 1:

In comparison to (3.8) this equation shows an additional
nonlinearity due to the parameter splitting.

Equation (4.8) can be handled exactly. There are four
difFerent types of solutions. Only one of them shows
the continuous transition to the case 8 = 0 and the cor-
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responding oscillating voltage: It is realized for

ip ) tI sin (p/2)+cos (p/2). (4.9)

7
I

6- (&)

Further estimation gives the bound for oscillations to oc-
cur ~

i' &1 (4.10) = 0.0
= 0.1

= 0.2

This reproduces a well-known fact.
With this condition fulfilled we could evaluate Zp and

from (4.7b) Ai. However, although Zi has to be deter-
mined from a first-order linear differential equation, the
resulting integrals are rather intricate. Thus, we per-
formed a perturbative treatment of the system [(4.6a)
and (4.6b)] not only with respect to l, but with respect
to 8, too. This is more delicate, of course, because there
are two parameters involved. To discuss the l and 6 de-
pendence independently, its not wise to specify the ratio
l/8 from the beginning. We only suppose I « 1 and
8 « 1, leaving the ratio 6/l unspecified. To first order,
we write down the expansion

~ ~ ~ . t ~

0 ~ vari ~ . P ~ -'''I''''' I I I

2 2.2 2.4 2.6 2.8 3 3.2
Flux p

7
I

(b)

I

' 'r '. '

3.4 3.6 3.8 4

6 = 0.0
6 =0.1

6=02
A = Lp + lLgp + 8Lpi,
~ = ~o+ ~~ip+ ~pi

(4.11a)
(4.11b) ~ ~ ~

0 '''~ ~ ~ ~ ~ i ~ & ~ & ~ i ~ ~ ' ' 'I

2 2.2 2.4 2.6 2.8 3
Flux p

I
't''

3.2 3.4 3.6 3.8

Zpi + Zpi cos Zp cos((P/2) + cos Zp sin(P/2) = 0. (4.12)

It admits the solution

1 —cos (ps~pi= . sin(p/2) .
ip + cos(p/2) cos(ps

(4.13)

Inserting into (4.6a) and (4.6b) and comparing equal or-
ders l 8, one obtains the set of equations necessary
to evaluate the L's and Z's. For Lp, Zp, Lip, and Zip
one obtains similar equations as before. Furthermore,
one observes Dpi ——0; thus, no additional phase shift is
caused by the parameter splitting. For Epi one obtains
an equation similar in structure to that for Zip [cf. Eq.
(3»)],

FIG. 7. The in8uence of parameter splitting on the phase
shift b against normalized external Qux p for strong coupling
obtained from (a) analytical approximation (3.23), (b) nu-
merical simulation (ip = 1.5, l = O.l, 2 & p & 4).

ered for p = m. To lowest order of our analytic approx-
imation (valid for strong coupling and weak parameter
splitting) there is no indication of a shift of the peak
caused by the parameter splitting. This is confirmed by
comparison with numerical simulation, as long as param-
eter splitting is sufficiently small (6 0.2). For larger 6
the nuinerical result [Fig. 7(b)] gives a first hint to the
peak shift.

Thus, weak parameter splitting leads to an additional
in-phase contribution

V. CAPACITIVELY SHUNTED JUNCTIONS

8[ip + cos(rp/2)] sin (ps
(ps sin p 2

[zp —cos(y/2) cos (ps]~
(4.14)

The influence of the displacement current flowing
through the junctions was neglected up to now. This
is justified, as long as the McCumber parameter

to be added to the voltages (3.17). The Fourier coeffi-
cients aig2 are unaffected by this, whereas there is an
additional contribution to biy2,

b, i2
—2zII[zp + cos(rp/2)]

sin(p/2)
ip+ gp

(4.15)

The solution obtained this way proves our earlier con-
jecture on the dominant contribution in the strong-
coupling case [Fig. 7(a)]. One observes that the phase
shift, being slightly raised generally is considerably low-

28
p = I~B~C— (5.i)

pWi + 0i+ sin/i ——ip —I (0i —(62+ y),
pp2+ p2+ sin/2 ——ip+ I (pi —$2+ p).

(5.2a)

(5.2b)

is negligible.
In this section, we will investigate the influence of P g

0. The displacement current adds a second-derivative
term to the RS3 model equations (sometimes called
RCSJ model equations then),
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~ ~ 1
Pb, + 4 + cos Z sin A = —(p —2A),

l

PZ + Z + sin Z cos A = i p

(5.3a)

(5.3b)

One clearly sees, that both equations are affected by the
additional P terms. Again, both l and P are supposed to
be small parameters justifying the expansion

& = &o + &&Io + P&oI
Z = Zo + ~ZIo + PZoI.

(5.4a)
(5.4b)

The resulting equations for Lp, Zp, L10, and Z10, respec-
tively, are essentially the same as before. For L01 one
readily recovers

+01 (5.5)

In general, the second derivative may change the charac-
ter of the differential equations completely; for instance,
it is well known that there appear new types of solutions
showing chaotic behavior. ' Here, we will restrict our
treatment to small P (P (( 1) guaranteeing a continuous
transition to the former solution for P = 0.

Again, it is recommended to combine Eqs. (5.2a) and
(5.2b) obtaining

(5.9) together with the unchanged coefficients (3.20) into
(3.23) is shown in Fig. 8(a). Results of a numerical
calculation performed in parallel are given in Fig. 8(b).
The general tendency is that a nonvanishing capacitance

(P 1) slightly enhances the phase shift without quali-
tatively changing the general behavior. For P & 0.5 the
agreement between analytical approximation and numer-
ical simulation becomes worse, but the same general ten-
dency is still preserved. This is, of course, simply a result
of the fact that higher orders in P are no longer negligible.

VI. STRONGLY COUPLED SQUID CELLS
UNDER MICROWAVE RADIATION

There is soIne interest in the behavior of the SQUID
cells under microwave radiation &om at least two points
of view. First of all, the topic is interesting for the
construction of sensitive microwave detectors. Secondly,
knowledge of the behavior under microwave radiation is
necessary for the study of synchronization in larger ar-
rays, where the long-range interaction via external shunts
acts similar to an external microwave signal.

The external microwave signal can be described by an
additional ac current, leading to the system of equations

The only new equation concerns 201,

Zp1 + Zp1 cos Zp cos (tp/2) = —Zp, (5.6a)

QI + sin/I ——ip —1 (QI —p2 + p) +i~ sinus, (6.1a)

Q2 + S111$2 = ip + l (QI —p2 + &p) + i sin ~s. (6.lb)

where we have already exploited some of the previous re-
sults. Again, this is an inhomogeneous linear differential
equation, with the inhomogeneity being determined by
the already well-known Zp. The solution, obeying the
correct boundary condition [Zp1(s = 0) = 0], is

7 I

(CI) ~ , ~,

tp + cos((P/2) cos (os~01= . ln
tp + cos(p/2) cos (ps io + cos(p/2)

(5.7)

One obtains a logarithmic structure similar to that ob-
served earlier in formula (3.16). The term (5.7) provides
to both voltages a contribution

(p cos(p/2) sin gz s01—
[ip + cos(rp/2) cos (ps]

( ip + cos(P/2) cos /psx ln
io + cos(p/2)

(5.8)

Because the logarithmic structure is already present in
(3.17), it is not hard to evaluate the corresponding capac-
itive contribution to be added to the Fourier coefBcients
61~2 according to (3.21),

~ ~ ~ ~~ ~ ~ &~ ~ ~ ~

0
2 2.2 2.4 2.6 2.8

7 I

(b)

4

3

.2

5
O s ~ o a

I

3 3.2 3.4 3.6 3.8 4
Flux p

—2 cos(y/2)

x 1+ cos(p/2) (p cos2(y/2) )
o 4i', (io+ (,) )

(5.9)

The phase difference obtained by inserting (3.21) and

~ ~\

0
2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

Flux (p

FIG. 8. The influence of a nonvanishing capacitive shunt
of the 3osephson junctions on the phase difference for
i p = 1.5, l = 0.1, P = 0.2, 0.5, 1.0. (a) analytical approxiIna-
tion, (b) numerical simulation (ip = 1.5, l = O. l, 2 ( lp ( 4).
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As a result, only the equation for the sum variable E is
affected and becomes

Z + sin Z cos 4 = ip +i sinus, (6 2) 1.45

whereas Eq. (3.2a) for the difference variable 6 remains
unchanged. We apply a perturbation scheme similar to
that used before. From the beginning we will assume l &(
1, as before, justifying the expansion (3.3a) and (3.3b).
Solving for Zp and Z~, respectively, we must take i to
be small in some intermediate steps, too.

The first result is

1.4

1.35

1.25

1.15

Ap = p/2q (6.3)

as usual. The corresponding equation for Zp,

Zp + slI1 Zp cos(p/2) = zp + t~ slI1 caps, (6.4)
0.5

I

1.5
Flux p

2.5

is decisive for the behavior of the solution. Introducing
the scaled time s according to (3.7), we obtain

Zp + sin Zp = 'bp + z~ sin cds) z~ =
cos(&p/2)

'

cos(p/2)
' (6.5)

which formally has the same structure as the equation
describing an autonomous Josephson junction under ex-
ternal irradiation.

It is well-known that phase locking of an autonomous
junction takes place only if the &equency of the external
microwave does not deviate too far &om the inherent
Josephson frequency gp ——gip2 —1,

1.5

1.45

1.35
3

13

1.25

1.15

1.05

2 p
((u —(p) ( 1

Z~
(autonomous contact). (6.6) 0.5 1.5

Flux p
2.5

The main new feature in our case is, that the correspond-
ing quantities substituted for ip, i, and u, respectively,
according to

1.5

(c)

Zp + Zp)

Z'Qp + Z~ )

(6.7)

(6 8)
(6.9)

1.4

are dependent on the external magnetic Qux. Exploiting
the corresponding equation

1.2

2' (~ —gp) ( 1,
l 4p

(6.10)

one obtains the phase locking condition

i cos(p/2) — i cos(p/2)
Co — + ~ 5 Co +

2&o 2Co
(6.11)

0.5
I

1.5
Flux y

2.5

An interesting conclusion from Eq. (6.11) is that for ex-
ternal fiux y = m the range of phase locking shrinks to
a single point, u = gp = ip In this ca.se, for all prac-
tical purposes phase locking disappears at all. This is
confirmed by Fig. 9, showing the range of phase lock-

FIG. 9. Synchronization range for a strongly coupled
SQUID cell under external microwave radiation with fre-

quency u for (a) i = 0.1, (b) i = 0.2, (c) i = 0.4 (bias
current i p = 1.5). The diamonds indicate results from numer-

ical operation range analysis.
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2(p(~ —t'p)
bp ——arcsin . (6.12)

ing against external Hux y. The reason for this behavior
is obvious from examining (6.4): For &p = vr the nonlin-
ear term vanishes thus removing the nonlinearity of the
equation at all. One more observation is that the cen-
ter of the locking range determined by (p becomes Hux
dependent, too.

In case of phase locking, phase shift between the ex-
ternal microwave and the circuit (the last being char-
acterized by the sum variable Z) can be deduced from
comparison with the autonomous contact yielding

(i) The frequency of the oscillations is determined by the
microwave &equency only and turns out to be indepen-
dent of external Hux within the locking range. (ii) If
external Qux is present in addition to the microwave ra-
diation, this Qux will limit the range of phase locking in
general and destroy synchronization at all in the case of
p = 7r. (iii) The relative phase of both junctions is not
inQuenced by the external radiation up to first order in
perturbation theory with respect to l. (iv) There is an
additional shift of both phases relative to the external
radiation according to Eq. (6.12), which is controlled by
external Qux as well.

gp ld8
Zo ——2 arctan tan

'Ip+cos rp 2 2

(6.13)

with the lowest-order phase shift bp according to (6.12).
Within the next perturbative order, Lq is determined

algebraically as before. The solution is identical to Eq.
(3.13), the only difference being, that within the time-
dependent arguments one has to substitute

(p8 M ld8 —bp. (6.14)

For Z~ we obtain the equation

ZI + Z1 COS Zp cos(p/2) AI S1I1Zp Sln((p/2) = 0.

(6.15)

Substituting Zp we exploit (6.4) neglecting the external
current, bearing in mind that i is small and Zq is already
of first order. Within this approximation, the solution
has the same general structure as (3.16), where we again
have to substitute (6.14). As a result, in addition to the
Hux dependent phase shift between the SQUID circuit
voltage oscillations and the external microwave signal we
obtain the same (mostly negligible) phase splitting be-
tween the junction voltages than without radiation.

To summarize, solution (3.17) is reproduced with the
only substitution (6.14). This has several consequences:

To verify our result in an independent way, we per-
formed a numerical operation range analysis automati-
cally integrating the corresponding differential equations
and checking, whether the results lie within a certain
bound. The output of this analysis indicated by dia-
monds in Fig. 9 is in excellent agreement with the an-
alytical results. In view of the experimental setup the
figure should be interpreted as follows: For a fixed bias
current and &equency of the external microwave radia-
tion there is a limited range of Qux indicated in Fig. 9,
within which synchronization occurs. Within this range
the whole cell oscillates with the microwave &equency,

For small microwave intensities this puts rather se-
vere conditions on the external Qux, as is observed by
comparing Figs. 9(a), 9(b), and 9(c).

In case of phase locking, we obtain to zeroth order of
perturbation theory

VII. SUMMARY

We investigated the synchronization behavior of three
similar two-junction SQUID cells with strong inductive
coupling. For this purpose we developed a perturbation
scheme appropriate for small but nonvanishing induc-
tances. The perturbation ansatz itself is in a certain
sense similar to the slowly varying amplitude method de-
veloped several years ago. However, application to strong
coupling completely changes the character of the expan-
sion. Generally, the procedure is more involved than in
the case of weak coupling. Therefore we were not able
to derive an explicit equation of motion for the phase
difFerence between voltages. In view of this fact, we de-
termined voltage phase shift &om the lowest Fourier co-
efficients of the voltages.

For identical junctions without capacitive shunting we
find that for every value of the external Qux a phase lock-
ing between oscillating voltages takes place like in weakly
coupled elements. However, contrary to the case of weak
coupling, the phase shift is negligibly small for almost all
values of external Qux, with the exception of the vicin-
ity of y = m. On the other hand, the &equency, being
Qux independent for weakly coupled elements, becomes
strongly Qux dependent in strongly coupled elements and,
consequently, the corresponding I-V characteristics too.
The results obtained are compared with numerical cal-
culations. Generally, a good agreement is observed. Es-
pecially it is found, that the strong-coupling approach
provides a good approximation not only for very small
inductances L, but is better suited to describe the inter-
mediate range L 1 than the ordinary weak-coupling
approach.

If both junctions are not identical the inHuence of pa-
rameter splitting is found to be qualitatively different for
weak and for strong coupling. For weak coupling, param-
eter splitting mainly leads to an additional contribution
to the external flux; as a result, the whole phase-Qux de-
pendence is shifted by some value. In the case of strong
coupling, this efFect can be neglected and the leading
contribution is a correction of the bias current. This cor-
rection acts in favor of synchronization and lowers the
phase shift present in a small range around p = m.

In the case of identical junctions having a small, but
nonvanishing capacitance, the main result is a slight en-
hancement of the phase shift, although the qualitative
picture is not changed, at least if P ( 1. For P ) 0.5
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the agreement of analytical results and numerical sim-
ulation becomes less convincing, obviously showing the
limitations of applicability of the analytical perturba-
tive method. We should mention that in the case where

P g 0, as well as for parameter splitting, two independent
expansion parameters must be considered small.

Finally, we investigated the behavior of the cells under
external microwave radiation. In this case, we observed
a limited locking range similar to that of an autonomous
Josephson junction under external radiation. However,
for a strongly coupled cell the synchronization range is
Qux dependent and shrinks to zero for p = m. In addition,
the width of the synchronization range depends on the
amplitude of the external radiation.

Contrary to our results for a &eely oscillating cell,
external radiation synchronizes the cell in such a way
that the oscillation frequency becomes Aux independent
within the Hux dependent locking range. However, within
the synchronization range, an additional phase shift be-
tween external radiation and internal oscillations takes
place as well as a shift of the whole synchronization range.

From our study one can draw the general conclusion,
that two strongly inductive coupled junctions behave like
a &ee junction if no Hux is present within the cell. Ex-
ternal Qux tends to shift the phases between the voltage
oscillations of the two junctions, but for most practical
applications this splitting is negligibly small. More seri-

ous is the fact that already in a cell of identical junctions
the oscillation &equency itself becomes field dependent.
This detuning of the cell has several consequences for
the construction of larger arrays. First of all, external
Buxes must be shielded, preferably by an external su-
perconducting ground plane. Secondly, additional Quxes
are produced by the array itself, which might seriously
disturb the synchronization.

A possible way to circumvent this problem and to ob-
tain phase locking could be to include an external long-
range interaction via an additional shunt. The methods
developed in Sec. VI could be helpful in such an inves-
tigation. For instance, according to our observations, an
external shunt with sufFiciently strong coupling strength
to make the synchronization frequency Hux independent
may play a crucial role for obtaining phase locking in
large two-dimensional arrays.
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