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We calculate the mixed-state longitudinal and Hall resistivity of superconductors based on the pertur-
bation approach of Schmid and Larkin with a frictional force of the form proposed by Vinen and War-
ren under the inhuence of randomly distributed weak point pinning centers. The longitudinal resistivity
has the Bardeen-Stephen behavior in the Aux-Aow region. In the weak collective pinning case, for either
sample thickness much smaller or much greater than the penetration depth, scaling p„~ ~ p holds, but
no sign reversal in p ~ is predicted. The Hall conductivity is independent of pinning to the first nonvan-
ishing order of the perturbation calculation.

I. INTRODUCTION

The Hall effect in the mixed state has been an impor-
tant issue for understanding vortex motion in both low-
T, and high-T, superconductors. Based on a phenome-
nological approach, Bardeen and Stephen' (BS) success-
fully explained some early Aux-Aow data. However, oth-
er Hall-efFect measurements on 1ow-T, superconductors,
where the Hall resistivity underwent a sign change or a
sudden upturn in the Aux-Aow region, could not be un-
derstood with that phenomenological theory. In particu-
lar the BS theory predicts no anomaly in the Hall effect.
Subsequently, Nozieres and Vinen (NV) considered more
carefully the forces acting on moving vortices but came
to similar conclusions.

Recent measurements ' on high-T, superconductors
have shown Hall resistivity sign reversal in various kinds
of samples. Freimuth, Hohn, and Galffy' attributed the
sign reversal to the large thermomagnetic effects in the
mixed state. Harris, Ong, and Yan' concluded that the
sign reversal is a unique feature of vortices parallel to the
ab plane. However, Hagen et al. ' have argued that the
sign reversal is due to the general properties of vortex
motion. Several theoretical explanations for this anomaly
have been put forward. Wang and Ting' considered
backflow current due to pinning forces; they derived the
longitudinal resistivity p and the Hall resistivity p as
functions of magnetic field in the Aux-Aow region, in
which p has a sign change. Recently Wang, Dong, and
Ting' have further developed their theory. Ferrell' con-
sidered the effect of the opposing drift of thermally excit-
ed quasiparticles; these particles collide quasiclassically
with the hydrodynamic superAuid velocity field. His cal-
culated Hall angle has sign opposite to that in the normal
state. Dorsey' and Kopnin, Ivlev, and Kalatsky'
showed that the Hall anomaly could be a consequence of
the time-dependent Ginzburg-Landau theory. Meilikhov
and Farzetdinova interpreted the anomalous Hall effect
based on BS and NV models by considering Andreev
reAection at the interface between the normal core and
the super conducting periphery. Very recently,
Feigel'man et al. ' considered an additional Hall effect

due to the positive difference between electron density at
the center of the vortex core and that far outside the vor-
tex; this contribution has the opposite sign from the con-
ventional one and can cause a sign change.

In spite of many different approaches, the mechanism
responsible for the Hall sign reversal remains controver-
sial. Even the basic question of whether pinning has any-
thing to do with the Hall anomaly is confusing. Some ex-
periments " indicated that strong pinning can make
the sign reversal disappear.

A common feature of calculations to date is to treat
pinning noncollectively. In order to see what effect col-
lective pinning has on the Hall effect, we calculate the
mixed-state longitudinal and Hall resistivity of supercon-
ductors based on the perturbation method of Schmid and
Hauger ' and Larkin and Ovchinnikov ' with a fric-
tional force of the form proposed by Vinen and Warren
under the inhuence of randomly distributed weak point
pinning centers. Based on this approach we find the
coefficient of the dissipation part of the Vinen and War-
ren force is renormalized by the collective-pinning effect,
while the coefficient of the nondissipation part is un-
changed to the first nonvanishing order of the perturba-
tion calculation. The longitudinal resistivity has the
Bardeen-Stephen behavior in the Aux-Aow region. For ei-
ther sample thickness much smaller or much greater than
the penetration depth, scaling p ~ p holds. ' The
Hall conductivity is independent of pinning to the first
nonvanishing order of the perturbation correction term.
Many theories have now been proposed which predict
this scaling, so that observing scaling cannot be taken as
proof of the correctness of any theory.

II. VORTEX EQUATION OF MOTION

We consider a superconductor with weak randomly
distributed point pinning centers. The external magnetic
field H is applied along the z direction. The coordinates
of the ith vortex can be expressed as r, (z, t).
=R;+ro(t)+u;(r;, t)+zz, where R; is the original sta-
tionary perfect flux-line lattice (FLL) vortex position,
ro(t) describes that vortex position relative to R, in space
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due to uniform motion of the FLL, and u;(r;, t ) is a two-
dimensional displacement vector relative to the perfect
vortex lattice position due to pinning forces. The vortex
velocity is given by v;t =Br; /dt =Brp/Bt +Bu; /dt:vp +v }, For the weak pinning case, we expect
Iv, I ((Iv I.

When a transport current with the density jr(jr &j, )

passes through a superconductor, the Lorentz force act-
ing on the vortex line is

0 .f~= j~Xz,
c

(2.1)

where Pp
=hc /2e is the flux quantum.

We represent the drag force f„acting on the ith vortex
with velocity v;z

a'
.+c66 ~lui +c44 p ui

Bz
(2.6)

where 8 =nyPp (n& is the vortex density) is the magnetic
induction and c&&, c44, and c66 are elastic moduli. In
the film geometry we have H =B.

In the steady state, the sum of all the forces acting on
the FLL should be zero. We therefore have the equation
of motion of the FLL

deformed. For weak point pinning centers, the deforma-
tion is weak and may be described by means of the theory
of elasticity. The elastic restoring force is

0p4 g (c 1 1 c66 )Vl( Vj. u' )

f„=—
yves

—av z Xz . (2.2) f~+f + fp +f (2.7)

A force of thi. s kind was proposed by Vinen and War-
ren to describe vortex motion in superconductors.
More recent work' ' ' has used this force for describing
the Hall effect. In the absence of pinning, ' from the
Bardeen-Stephen theory we ca,n show (Appendix)
rt=ppH, 2/c p„and a= +itipH, 2H /c nepz, where the +
sign is for the hole carrier and the —for the electron car-
rier. The Hall angle in the absence of pinning is

III. SOLUTION OF THE EQUATION OF MOTION

CXf ——f Xz +00 L L (3.1)

Without pinning, the solution of the rigid lattice
motion is

CXtan6~= —.
el

(2.3)

The pinning force is due to sample inhomogeneities.
we choose the Pinning force fpI& of the tyPe

The velocity correction term due to pinning satisfies

a u;+a u; Xz —(c» —c66)VJ(VJ u;)
Bt Bt

a'—V'66Vju, —c44 u, = f;„(r,),PIII I (3.2)

f;„(r,) = —VU(r, ), (2 4)

where the pinning potential U(r;)= jd r@(r;—r)S(r),
@=A ~%~ /2m and qi is the order parameter. The di-
mensionless quantity S(r) is a random quantity for any
given point. The correlation function is defined to be

1 (r —r') = ( U(r) U(r') ), (2.5)

where ( ) denotes the average with respect to the dis-
tribution of {U(r)J.

In the space between the pinning centers the FLL is

where c i i —=Npc 11 /8 c44 =ppc44/8, and c66 ppc66——/B.

A. Two-dimensional (2D) ease

We consider first the case where the bending of the
vortex along the z direction is negligible, so that the c44
term in Eq. (3.2) is negligible. This is true when the
penetration depth A. is much greater than film thickness d
or for considering a single layer of a highly anisotropic
superconductor.

In order to get a solution for u;(r;, t), we define the
Green's function G(r; —r,', t t ') as follows:—

I—az XI —(cii —
c66 )Vj Vi c66ViI .Cx(r; —r,', t t') =IS—(r; ——r'; )Sit t'), — (3.3)

where I is the two-dimensional unit tensor of rank two.
It is convenient to make the Fourier transformation of

G(r, —r';, t t')= —fd k fdree' "' " ' " ''G(lt. ,co) .
(2~)

(3.4)

The projection of Cx(k, co) in the x-y representation (ignoring terms of order of a /g ) has the following form:
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G (g )
(k x ) + (k y )

E '/CO+ C 11k & Q~+ C66k

G (g )
(ky) + (ax)

+ 11k /'/CO+ C66~

G„~(k,co)= (k.x )(k.y )— 1

l'QCO+C11k

1

l '/CO+ C66~

(3.5)

GY„(k,co) = (k.x )(k y )+
11 66 ~

1

l'/CO+ C 11k

1

E'QN+C66~

If we let a =0 the above solution reduces to the known result.
The solution for u;(r;, t ) becomes

u, (r, , t)= —. fd r fdt' f d ke ' "G(k, t t').VU(—R;+ra(t')+u;(r, ', t')} . (3.6)

Using this equation, we can, in principle, calculate the solution in terms of successive order of weak pinning potential
U 25 —28

Since N(r) in the pinning potential is proportional to the square of the Ginzburg-Landau order parameter for the
perfect FLL, we can expand it in terms of reciprocal-lattice vectors K„as

@(r)= g 4&(K„)e
n

(3.7)

where we have used Schmid's prefactor convention, N is the total number of vortices in the superconducting sample
and @(K„)=J d r exp( i K„—r)N(r) with n =0, 61,+2, . . . .

After getting the second order in terms of pinning potential U, we make the average over pinning centers and sample
area. Due to the randomness of the weak pinning centers the erst-order term is zero. After the averaging, we can drop
the index for each individual vortex. Recall that v, =Bu/c)t. We then have

v 1 g K„K„+—z XK„ I (K„)f k dk
&g K g

1 1

211k +E'QK~ Vo C66k +E'QK~ Vo
(3.8)

v 1

1

16'
1 1

K1I U(X1)

6
X g K;+—z X K, sgn(K, .vo), (3.9)

i=1

where X;=4~/v 3ao [ao=(2/v 3)' ($0/8)'
i =1, . . . , 6] is the magnitude of the nearest-neighbor
reciprocal-lattice vectors.

We next evaluate the vector sum +6, K;sgn(K; vo).
Let 8 be the angle between the velocity vo and one of the
nearest-neighbor FLL vectors. Experiment has indicated
8=0, but the perpendicular component (to both vo and
z) of the vector sum has a discontinuity for 8~+0 and
8—+ —0 (Refs. 25 and 27). However, experimentally the
probability of 0~+0 should be equal, therefore the aver-

where I z(K„)=~N(K„)~ I s(K„) is the Fourier trans-
form of the correlation function I U(r), I s(K„) is the
Fourier transform of the correlation function
I' (r)=(S(r)S(0)}.

We further assume that I U(K„} is independent of
direction of K„, i.e., I U(K„)=I U(K„). Carrying out
the integral and taking the summation over only the six
nearest-neighbor reciprocal-lattice vectors yields

age effect of the perpendicular component is zero. The
vector sum is along the direction of vo. For 8=+/6
where vo is along the second-nearest-neighbor FLL direc-
tion, the vector sum is also simply along the vo direction.
We now have

6

K;sgn(K; vo) =4%1 cos ——8 vo .
i=1

(3.10)

For transport current in the x direction (jz =jzx) and
the choice of 8=0, Eq. (3.9) reduces to

+ %11 U(K1) y —2—x . (3.11)
C 11 C66

V1=

1E= ——v XB,L (3.12)

where VL =vo+ v1 is the total average vortex velocity.
The longitudinal and Hall resistivity are de6ned as

p„„=E„/jT and p„~ =E~ Ijr which, using Eqs. (3.1) and
(3.11), have the following results:

The mean electric Geld associated with the motion of
vortex lines is determined by the Josephson relation
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0P V'3 c
Pxx c'rI g PaiT

XI'', rU(rc, )

1

C 11 C66

(3.13)

this does not come out of the first-order perturbation cal-
culation, as we have shown.

The Hall angle is defined as tane~ =p„ /p„„which is
given by

PoB, &3
p = a 1 —2

C2g2 8

c 1 1 a &3tane =—1—H
8 4'oi T C66

1 1

C11

XK, l U(X, ) (3.14) XI~', rU(rc, ) (3.17)

&3 c1+
oJr

1 1+ ElrU(K, )
C11 C66

(3.15)

CE =lX (3.16)
then Eqs. (3.13) and (3.14) can be rewritten as
p„„=P+/c g' and p =Pea'/c rl' . This is exactly
the same solution of the perfect FLL motion of Eq. (3.1)
but with renormalized phenomenological parameters. In
the first nonvanishing order of the perturbation calcula-
tion, g is renormalized, while o. is unchanged. The renor-
malization to higher-order correction remains to be done.
Arguments have been made that pinning effects will re-
normalize the phenomenological coefficient e too, ' but

I

For the weak pinning case we can ignore terms involving
squares of the correlation function, therefore we have
p„~=(c a/Joe)p„„. As long as the phenomenological
parameter a has very weak temperature dependence com-
pared to p, then the scaling p„„~p „holds for fixed
magnetic fields as predicted by Refs. 30 and 16. We note
that all the data fit to the scaling form were done in
temperature-sweep measurements in the thermally ac-
tivated Aux-Aow regime. ' ' ' The experimental obser-
vation of the scaling law demonstrates that in the
thermally activated Aux-Row or Aux-creep region, the
temperature dependence of u is far weaker than the tem-
perature dependence of p . The perturbation calcula-
tion in the thermally activated Aux-How regime has been
carried out, ' and has been well justified by many au-
thors. ~ 4'

If we choose new phenomenological parameters g' and
a' to be as follows:

Based on the experimental fact that the Hall angle in
the superconducting state is very small
(tanerr =p„~ /p„„—10 —10 ), the longitudinal and
Hall conductivity can be calculated as

=pxy & pxx~

c'g v'3

4P
c

0oi T

1 1

C11

XICI rU(K, ) (3.18)

C 0,'

0P
(3.19)

Next we consider an isotropic 3D case. The Fourier
transform is three dimensional for the Green's function.
The solution of the Green's function, Eq. (3.5) is in the
same form except we need to make the substitutions of
cl(k ~c(lkJ+c44k c66k ~c66k&+c44k, and k —+kJ.

The rest of the calculation is similar to Sec. III A. The
correction term due to the pinning force to the second or-
der of the pinning potential is given by

The weak collective-pinning effect will increase the Aux
motion conductivity as expected. The Hall conductivity
is independent of pinning to the first nonvanishing order
of the perturbation correction term —the pinning corre-
lation function. The field and temperature dependence of
the phenomenological coefticient n determines the sign
change. ' '

B. 30 case

V 1

d 1 1 1+ g K„~gK„vo~ I ~(K„) K„+—z XK„sgn(K„vo) .2 1/2

2C44 c 11 c66 K„
(3.20)

Again consider the nearest-neighbor summation only

6

y ~~K, vol'"sgn(K, v, )K., =2~~rC, uo~'"re, vo sin'"8+cos'" 8——+cos'" 8+—
i=1

+~2q& Iu~o'~ IC, voXz cos' esine+ cos 8+—
3

1/2

1/2

sin 8+—
3

cos t9+ 2'
3

~

g + 27T

3
(3.21)
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( Q 3 )
3 /2

4m rl

1 1

C 11 566

' 1/2

XICi I U(Ki) y —2—x (3.22}

The longitudinal and Hall resistivity are given by

4'OB (&
pox

C 'g

3 )3/2

4m Q~ paiT
T

+ E I r/(Ki)
C11 C66

(3.23)

1/2PoB (~3} d c
p~y= 2 2a 1 —2

c2g2 4~

x ' + ' rC'"r, (Z, ) . (3.24)
~66C11

Again the scaling p ~p„holds in the limit of weak pin-
ning.

The Hall angle in the 3D case is given by the following:

a (&3) d ctaneH =—1—
4m Qc

/ajar

X + IC / I (X, ) . (3.25)

The longitudinal and Hall conductivity can be obtained
similarly,

Employing the same argument as before for choosing
angle 0=0, the correction term for the vortex velocity
due to pinning is

where rz =v'2/Ki (Ref. 42) is the pinning force range,
b =B /H, 2( T) is the reduced magnetic field and
P~ =1.16. We choose the following typical high-T, pa-
rameters: g(0) = 15 A, ~= 100, H, 2(0)= 120 T, p„=100
pQ cm, n —10 ' cm, and with jT= 10 A/cm,
( T, —T ) /T, = 10 . In the weak collective-pinning
range, the pinning parameters can be estimated as
~S(r)~ —10,R —10 A, and So —10 ' cm (Ref. 25).

With the parameters given above, the correction term
due to pinning is about two orders of magnitude smaller
than 1. Similar results also hold for the 3D high-T, case
and 2D/3D low T, ca-ses. The longitudinal resistivities
in Eqs. (3.13) and (3.23) behave like the Bardeen-Stephen
result pf/p„=H/H, 2. It is clear from the above esti-
mate that the weak collective pinning due to point pin-
ning centers are not responsible for the Hall resistivity
sign reversal.

Earlier estimates of the inAuence of pinning on the
Hall efFect have not dealt explicitly with collective effects,
but have treated pinning in a nonrigorously averaged
way. ' ' ' Vinokur et al. arrive at conclusions similar
to ours: scaling occurs, and no sign change is predicted.
Other work taking a difFerent approach' ' obtains scal-
ing, but predicts a sign change as a consequence of pin-
ning. Since the starting point of these two papers is
different, it is difficult to draw definite conclusions con-
cerning the correctness of either of these results. We em-
phasize, however, that the treatment of pinning collec-
tively has gained strong experimental support late-
ly, ' ' and our calculations are more rigorous than
previous treatments. It is an experimental fact that in
high-T, materials a sign reversal occurs mostly at tem-
peratures close to T„where weak collective pinning is
believed to be an adequate description of pinning.

c g (~3)
4m

c a
NOB

c
Noi r

1/2

(3.26)

(3.27)
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IV. DISCUSSION APPENDIX

We adopt the BS theory by simplifying the vortex as a
normal core. The quasiparticle with velocity v inside the
core obeys the equation of motion

m =qE, +—vXh ——v,dv q m
dt ' c

(Al)

where q =+e correspond to hole-electron charge, m is
the quasiparticle mass, ~ is the quasiparticle relaxation
time, E, and h are electric and magnetic field inside the
core. The external magnetic field H is applied along the
+z direction.

According to the BS theory, the electric field inside the
core is a constant(4.1)

The exact form of pinning is unknown. We consider
the pinning of the form S(r)=So/mR~ exp( r /R~), —
where R is the radius of the pinning center. Using the
spatial and magnetic-field dependence of the order pa-
rameter as expressed in Refs. 43 and 44, the correlation
function obtained in the high-field range in 2D is

rU(K, )=
2m(2x —1) Pq Sm g (0)

—K r /4X(1—T/T )—'(1—b)' -"~'
C
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E = — (v Xz).c
2 2 L (A2)

(H, 2/H )(co,r)
vz. = 2 [+N~rvr VL Xz]

l+(co, r)'
(A3)

where we have used H, 2=$0/2ttg, an'd co, =eH/rnc is

In the steady state, the spatial average of v based on
the BS theory is (v) =vr, where vz is the external trans-
port current velocity. We also have ( h ) =B=H. The
steady-state solution for the quasiparticle equation of
motion is 40 4(H, z PoH. zH

nev~Xz= vt+ vL Xz .
c p„nec p„

(A4)

The above equation is in the form of fL+f, =O with
ri=goH, 2/c p„, a=+PoH, zH/nec p„.

the electron cyclotron frequency. The electron relaxation
time ~ is related to the normal-state resistivity p„by
~=m/ne p„, and n is the normal-state carrier density.
For to, r « l, multiply the above equation by Ponq /c and
cross product of z yields
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