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Irreversible magnetic response of the simplest three-dimensional Josephson-junction network
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We describe the stationary magnetic states of the simplest three-dimensional (3D) Josephson-junction
network, namely, a tetrahedron containing a junction on each side. In this system the Josephson junc-
tions are coupled through inductances and the externally applied magnetic field Q is directed along an
arbitrary direction in space. We give a complete analytic treatment of the problem taking into account
Auxoid quantization for each loop in the network. We also determine the lower threshold field Hg, &

for
irreversible fiux penetration for the tetrahedral network for two orientations of the field H, one perpen-
dicular and one parallel to the base of the tetrahedron.

I. INTRODUCTION

Networks of Josephson junctions (JJ's) have been ex-
tensively used in the study of the electrodynamical prop-
erties of high-T, granular superconductors. ' Indeed,
granular superconductors can be seen as a 3D collection
of superconducting grains weakly coupled to their next
neighbors.

In general, it is su%cient to study two-dimensional JJ
arrays in order to predict the magnetic response of
granular superconductors. This dimensional reduction is
in most cases due to the particular symmetry of the prob-
lem under examination, as, for example, a magnetic field
applied in the axial direction of an infinite cylinder.
Among the magnetic properties of 2D JJ networks we
may cite the presence of a lower threshold field for ir-
reversible Aux penetration H, &. In fact, after zero-field
cooling (ZFC), for very low values of the external field
(applied in the direction perpendicular to the plane of the
network) and for a relatively strong coupling among the
grains, 2D systems do not allow irreversible Aux penetra-
tion until the first threshold field H, &

is reached. For
H & Hg &

Aux quanta penetrate the network irreversibly
in much the same way as Abrikosov vortices nucleate in
hard type-II superconductors. Indeed, in this low-field ir-
reversible regime, a critical state picture, in which the
critical current is identified with the maximum Josephson
current of the junctions, can be detected by means of nu-
merical analyses. ' ' The particular critical state model
to be adopted in this case has been suggested, by means
of experimental and analytical studies on ceramic
YBazCu307, by Ginzburg et al. ; they found the fol-
lowing local field dependence of the critical current densi-
ty J, :

J,(h, T)

J,o( T)

Ho( T)

H (T)+h

where h =h (r) is the local magnetic field, J,o is the zero-
field value of the critical current density, and Ho is a

temperature-dependent measure of the width of the bell-
shaped curve of Eq. (l). This critical state picture is com-
patible with the JJ array description of the copper-oxide
superconducting systems. Indeed, it can be shown that
the low-field Taylor series expansion of Eq. (l) has a
quadratic leading order term as in the case of the charac-

FIG. 1. (a) The simplest three-dimensional granular system:
four grains in a tetrahedral arrangement. (b) Equivalent net-
work of Josephson junctions and inductances for the study of
the electrodynamic properties of the physical system shown in
(a). The diamonds are Josephson junctions (JJ's) and the
tetrahedron faces are numbered from 1 to 4.
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II. THE EQUATIONS

In the system represented in Fig. 1(b) we take the
effective intergranular area of a single tetrahedral face to
be So. In this way, to each face of the tetrahedron can be
associated an area vector S,. =Son;, n,. being the outward
unit vector perpendicular to the ith face of the tetrahed-
ron, with i =1, . . . , 4. The physical grains are taken to
be perfectly diamagnetic extended spheres; as a conse-
quence, the macroscopic superconducting phase of each
sphere may vary with position. Each pair of grains is
separated by a Jj, whose gauge-invariant phase
difference, calculated at the grain interfaces, is denoted
by tpk, with k ranging from 1 to 6. By taking into ac-
count the self- and mutual inductance coefficients M," be-
tween the elementary current loops, the current-Aux
equations are

4
@;= g M,JIi+ppH. S;, i =1,4,

j=1
(2)

where the quantity N, is the Aux linked to the ith face
and I; is the corresponding loop current, taken as posi-
tive if circulating in the counterclockwise sense, as seen
from an observation point outside the tetrahedron.

teristic Fraunhofer pattern giving the field dependence of
the maximum Josephson current of a single small rec-
tangular or circular junction. ' '" Therefore, if one is
able to specify the temperature dependence of Hp and of
J,p, one solves the problem of the low-field magnetic
response of 2D JJ arrays. Recently, an effective critical
current density function for a 2D network has been given
by Constabile et al. ' on the basis of numerical studies
performed by Filatrella et al. ' The temperature depen-
dence of Hp has been derived from the knowledge of the
Fraunhofer pattern of a single small Josephson junction
by De Luca.

Very recently, the dynamics of tetrahedral Josephson-
junction arrays has been studied by Yukon and Lin. '

However, the stationary magnetic response of 3D JJ net-
works has not been analyzed in detail yet. In the present
work, we thus consider the simplest 3D granular system:
four identical grains in a tetrahedral arrangement [Fig.
l(a)]. The corresponding model network consists of a
system of six JJ's, each lying on the side of a tetrahedron
and each coupled to its next-neighboring JJ through in-
ductances [Fig. 1(b)]. This system might be considered as
a unit cell of a circuital model of a large cluster of grains
coupled by small Josephson junctions.

Here we present a numerical study of the magnetic
response of the four-grain system for arbitrary field orien-
tations. In Sec. II we derive the dynamic equations
describing the time evolution of the Aux and current dis-
tributions. In Sec. III, by numerically integrating the
system of differential equations found in the preceding
section, we determine the stationary states after ZFC. In
Sec. IV, the dependence of the lower threshold field value
H, 1 on the effective coupling parameter between the
junctions is derived for these systems. Conclusions are
drawn in the last section.

Fluxoid quantization must hold for any closed loop in-
terrupted by an arbitrary number of JJ's. Therefore,
referring to Fig. 1(b), we get the following flux-phase rela-
tions:

2&4 1—(qri+q)2+F3)+ =2mNi,
0

2m+2
=2~)F2,0'4 0'6+ 0'2+

0

2n.N3
0'5+ 0'1+0'6+

C,
2m'X3

0

2m@4
f73 +iP4+ +g + —27TN4

0

where X1, N2, X3, and N4 are integers. The right-hand
side of the above equations would be null if we assumed
zero-field cooling initial conditions. Neglecting capaci-
tive effects, we can write the dynamic equations for the
gauge-invariant phase differences y; by means of the
resistively shunted junction (RSJ) model p

c'o

2mR„

4p
2mR„

4p
2m.R„

dt
+Ip1 siny1 =I3 I 1

d

dt
+Ip2 sing@ =I2 —I,

d+3
dt

+Ip3 siny3 I4 I1

(4)
d+4

2m.R„dt +I~siny4 =I4 —I2,

4p
2mR„

+Ip5 sing&5 =I4 I3, —
dt

@p
2m.R„

dy6 +Ip6 siny6 =I3 I2-
dt

where Ip, is the maximum Josephson current of the ith
junction and R„ is the resistive parameter, which is taken
to be common to all the junctions. In order to obtain a
system of differential equations for the superconducting
phases, we need to express the currents on the right-hand
side of Eqs. (4) in terms of the fluxes. This is done by in-
verting the matrix of mutual inductance coefficients M;~
in Eq. (2) so that

4

I; = g MJ '(@J—ppH. SJ), i =1,4 .
j=1

We can then make use of Eq. (3) to express the fluxes in
terms of the superconducting phases and substitute the
result in Eq. (5). In this way the currents are expressed
completely in terms of the superconducting phases and of
the forcing term ppH-S;. More explicitly, the matrix of
the mutual inductance coefficients can be taken, for sym-
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metry reasons, as follows: M; =I.o for i =j, and
M; = —Mo for iAj. With this choice of the coefficient
matrix we can easily find its inverse, so that, noticing that
QJ~= i @J.=0 and that QJ, igoH SJ =0, we write

4.—p H.S 4.i l 4, ) ~ ~ ~ )Lo+Mo

We may notice that, for symmetry reasons, Lo=3Mo.
Making use now of Eqs. (3), and defining the non-
linear Josephson operator LJk as follows: Lzk yk
=1gk /dr+ Poksinyk, where Pok =Iok (Lo +Mo )/
CIo, and r=[2'„/(Lo+Mo ) ]t, we can finally write

1 (2+i+ Vz+ ms Vs+ —
me2'

S oH (Ss—Si)
4o

1
LJ29 2 +2 +1 (9 1+ V 2+ P3 f 4 %e)

277

PoH'(S2 Si )

1
LJ3%3 +4 +1 (9 1+92 2f s 04+0 s)

27K

C oH. (S4—Si)
@o

L~4e4 =&s &2—1

poH. (S~—S2)

1
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—
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geneities in the junction parameters. In order to carry
out the scalar product between the applied field H and
the area vectors S; in Eqs. (7), we used an orthogonal sys-
tem of axes, identifying the x-y plane with the tetrahed-
ron base plane. Numerical results were obtained by start-
ing from ZFC conditions (null phases at zero applied
field) and by giving small enough increments b,H to the
field value, after having completely determined the sta-
tionary magnetic state for the previous H value. For this
purpose, we carried out the time integration process for a
long enough time interval to allow the system to reach
equilibrium before starting a new integration process.
After having forced the system to a maximum value of
the modulus of the external field H,„, we gradually
turned the external forcing term off and observed the
remanent Aux @REM in the system.

I.et us then start by illustrating the results obtained for
field orientations along the z axis under the assumption
that all JJ's are identical. In Figs. 2(a) and 2(b) we show

poH (S4 Ss)

4o

LJet e=&s &2 (mi
—V'z+—V ~ ms+—2me)—1

0,8 ~ I I
I

I I I I
I

I I I I

0.6

a 04

0.2

I I I I
I

I I I

(b):

poH (Ss —S2)

4o

We thus solve this system of coupled nonlinear ordinary
differential equations by a standard fourth-order Runge-
Kutta algorithm in terms of the superconducting phases
and make use of Eqs. (3) and (5) to derive the fiux and
current distribution in the tetrahedral network.
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III. STATIONARY MAGNETIC STATES

We studied the stationary magnetic states of the
tetrahedral system for two field orientations, one parallel
and one perpendicular to the tetrahedron base plane. For
each field orientation we took the po; coefficients, which
represent the effective coupling among the junctions, to
be identical for all the JJ s in one case, and uniformly dis-
tributed about a mean value po in the case of inhomo-

FIG. 2. Flux (a) and current (b) distribution in the
tetrahedral network of Josephson junctions and inductances of
Fig. 1(b) as a function of the applied flux 4,„/4p. All the junc-
tions are taken as identical. The fluxes N&, @&, and @3 (1,2,3)
and @4 (4) are normalized to the flux quantum @0, while the
currents I&, I2, and I3 (1,2,3) and I4 (4) are divided by the max-
imum Josephson current Io of the junctions. In this run the ap-
plied magnetic Seld is orthogonal to the base plane and the pa-
rameter values are the following: p0=4, @,„x=20CIO.
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the applied flux dependence of the fluxes
(k =1, . . . , 4) and of the currents Ik (k =1, . . . , 4) for
the following choice of parameters: Pc=4,
4M x=P~,„So=20@o', in Figs. 3(a) and 3(b), on the
other hand, the Aux and current distribution in the sys-
tem is calculated for the following parameter values:
Pc=6, @,„=204o. From Figs. 2 and 3 we may notice
that, as one expects from symmetry reasons, the flux and
currents pertaining to faces 1, 2, and 3 are identical. The
current I4, on the other hand, circulates in such a way to
produce a flux @4 which opposes the applied flux N,„.
We notice a first reversible region in the flux and current
distribution diagrams up to a lower threshold field H, &,

whose value depends only on Po, as it can be argued from
Eqs. (7). Indeed, any flux transition in the system takes
origin from a well-known mechanism appearing in super-
conducting loops interrupted by JJ's. ' This mechanism
can be briefly described as follows: When the total

current circulating in the junctions reaches the maximum
Josephson current value, a phase slip process occurs, so
that the time derivative of the Aux linked to the loop in
which the junctions reside takes on nonzero values allow-
ing irreversible Aux penetration. Following this picture,
analytic expressions for Hg„will be derived in the follow-
ing section. Here we only notice that H „increases for
increasing Po values, as it appears from Figs. 2 and 3.

For applied flux values immediately greater than
=ppH& tSp three Aux quanta penetrate the system

through each of the base junctions. In general, we may
notice that, for each negative discontinuity of 44 of about
three flux quanta, there corresponds a similar discon-
tinuity of about %0 in @„4z,and N3. This means that
the three lux quanta entering face 4 must exit the system
through faces 1, 2, and 3. At higher applied flux values
the same penetration process repeats with a periodicity
h4&„'~. Finally, when the applied field is turned off grad-
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FIG. 3. Flux (a) and current (b) distribution in the

tetrahedral network of Josephson junctions and inductances of
Fig. 1(b) as a function of the applied flux @,„/@p. All the junc-
tions are taken as identical. The fluxes @&, @z, and @3 (1,2,3)
and the flux @4 (4) are normalized to 4p, while the currents I&„

I&, and I3 (1,2,3) and the current I4 (4) are divided by the max-
imum Josephson current Ip of the junctions. In this run the ap-
plied magnetic field is orthogonal to the base plane and the pa-
ratneter values are the following: p~=6, 4,„x=20@0.
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FIG. 4. Flux (a) and current (b) distribution in the
tetrahedral network of Josephson junctions and inductances of
Fig. 1(b) as a function of the applied flux N,„/4p. The max-
imum Josephson currents of the junctions are taken to vary
about a mean value Ip. The fluxes N& (1), @& (2), @3 (3), and @4
(4) are normalized to @p, while the currents I& (1), I& (2), I3
(3),and I4 (4) are divided by the average maximum Josephson
current Ip of the junctions. In this run the applied magnetic
field is orthogonal to the base plane and @,„=20@p.The ra-
tios Pok /Pp are taken, in increasing order of k values, as follows:
1.10, 1.15, 0.95, 0.90, 1.05, 0.85, with pa=4.
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ually the remanent fiux @REM for Pa=4 and Po=6 is of
about 3@0.

The inhomogeneities in the maximum Josephson
currents, and thus in Po, break the symmetric behavior of
the system as described above. Indeed, as one can notice
from Figs. 4(a) and 4(b), fiux transitions now occur in a
more specific way. Having taken the ratios Pok /Pp in in-
creasing order of the k values, as follows: 1.10, 1.15,
0.95, 0.90, 1.05, and 0.85, junction JJ4 results in the
weakest junction in the base loop, and JJ5 the strongest.
Among the remaining junctions, JJ6 is the weakest, and
JJ2 the strongest. We then see that the first flux transi-
tion occurs because of a 2m. phase slip in JJ4. When the
flux quantum must decide which face to exit from, it al-
ways chooses the one in which the same junction is locat-
ed (face 2, in this case). Next, the second fiux quantum
penetrates through JJ3, existing from face 1. Finally, the

third flux transitions occurs because the current in JJ5
reaches its maximum value. This penetration mechanism
repeats for increasing field values. We can finally notice
that, since the relative strength of JJ4 is 0.90, the lower
threshold field value, which can be estimated by closely
looking at Figs. 4(a) and 4(b), is depressed with respect to
the corresponding value obtainable from Figs. 2(a) and
2(b) for the symmetric case and for the same values of the
parameters.

When we apply the external field in a direction parallel
to the tetrahedron base plane and, as a particular choice,
at a right angle to one of the sides of the base, we obtain
the numerical results shown in Figs. 5—7 for the same
variables and for the same choices of parameters as in
Figs. 2 and 3. In particular, in Figs. 5(a) and 5(b) we
show the flux and current external field dependence in the
case of homogeneous junction coupling for Pc=4. Again,
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FIG. 5. Flux (a) and current (b) distribution in the
tetrahedral network of Josephson junctions and inductances of
Fig. 1(b) as a function of the applied flux N,„/4 p. All the junc-
tions are taken as identical. The fluxes @& (1), @2, and @3 (2,3),
and the flux N4 (4) are normalized to Np, while the currents Ij
(1), I2, and I, (2,3), and the current I4 (4) are divided by the
maximum Josephson current Ip of the junctions. In this run the
applied magnetic field is parallel to the base plane and orthogo-
nal to one of the base sides. The parameter values are as in Fig.
2.

FIG. 6. Flux (a) and current (b) distribution in the
tetrahedral network of Josephson junctions and inductances of
Fig. 1(b) as a function of the applied flux N,„/Np. All the junc-
tions are taken as identical. The fluxes @& (1), N2 and N3 (2,3),
and the flux N4 (4) are normalized to Np, while the currents I&
(1), I& and I3 (2,3), and the current I4 (4) are divided by the
maximum Josephson current Ip of the junctions. In this run the
applied magnetic field is parallel to the base plane and orthogo-
nal to one of the base sides. The parameter values are as in Fig.
3.
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for symmetry reasons, we have 44=0, Nz=+3, and
4,= —2@2. We notice that the first irreversible flux
penetration in this case occurs at a lower external Aux
value when compared to the corresponding case of Fig. 2,
and that the Aux discontinuities are of about two Aux
quanta for @,. In addition, the Aux transition periodicity
w ~para is lower than in the previous case. The same
characteristics are also present in Figs. 6(a) and 6(b),
where we show the Aux and current distributions for
Po =6. Finally, when the applied field is turned off gradu-
ally, we notice that NREM = 24&o for po =4, while

@REM 4@o for &o=6
The effect of inhomogeneities in po can be detected by

looking at Figs. 7(a) and 7(b), where the external fiux
dependence of the Auxes and currents is shown for the

same values of the ratios Pok/Po as before. In this case,
Aux transitions occur in the following order. First, one
fIux quantum penetrates face 3 through JJ1 and exits
from face 1. Successively, a second Aux quantum
penetrates face 2 through JJ2 and exits from face 1. The
same penetration mechanism is reported for higher ap-
plied Aux values. Naturally, the same type of reasoning
as above applies in this case when one tries to justify this
particular penetration process. In this case, however, the
junctions responsible for fiux penetration (JJ1 and JJ2)
have both relative strength greater than 1. Therefore, the
lower threshold field value is expected to be greater than
the corresponding one in the symmetric case. One can
indeed notice this feature by closely comparing the field
value at which the first discontinuity appears in Figs. 4(a)
and 4(b) and Figs. 7(a) and 7(b). This is a very particular
case, though. In fact, had we chosen a different field
direction for the particular distribution of the Pok/Po ra-
tios given above, a reduction of the lower threshold field
value would be expected.
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IV. LOWER THRESHOLD FIELD

As we have already noticed in the preceding section,
for each of the 4k vs @,„graphs shown above, a lower
threshold field Hg, &, which separates a first reversible
magnetic regime from an irreversible one, is present. We
shall now analyze in which cases this field does exist, and,
if it exists, what its value is. We shall consider the homo-
geneous Po parameter case only, for simplicity.

Let us start by considering the external field applied in
the direction perpendicular to the base of the tetrahedral
network. For symmetry reasons we can distinguish two
groups of junctions, the first consisting of the junctions
lying on the base (JJ3, JJ4, JJS), each having phase
difference yb, the second consisting of the remaining
three junctions JJ1, JJ2, JJ6, whose phase difference is
taken to be y, . The stationary equations for the phases

y, and yb are obtained from Eqs. (7), and can be summa-
rized as follows:

0.0
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E
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FIG. 7. Flux (a) and current (b) distribution in the
tetrahedral network of the Josephson junctions and inductances
of Fig. 1(b) as a function of the applied Aux N„/No. The max-
imurn Josephson currents of the junctions are taken to vary
about a mean value Io. The fluxes 4

& (1) C 2 (2) 4 3 (3), and N4
(4) are normalized to No, while the currents I& (1), I2 (2), I3 (3),
and I4 (4) are divided by the average maximum Josephson
current Io of the junctions. In this run the applied magnetic
Aeld is parallel to the base plane and orthogonal to one of the
base sides and C&MAx =20@0. The ratios pok/po are taken, in in-

creasing order of k values, as follows: 1.10, 1.15, 0.95, 0.90, 1.05,
0.85, with pa=4.

posin
2m@, @, 4 N,„+4 =—,@b=—3@, . (9)

0 0N0

The first of the above equations is similar to the station-
ary equation for a superconducting quantum interference
device (SQUID). " Following the same type of reasoning
as for this well-known system, one finds that the @, vs

curve does not present discontinuities only for
Po (2 /m. , while irreversible fiux transitions are present
for Po~2/nThis gives ..the existence condition for a
lower threshold field in the tetrahedral network when H
is applied perpendicularly to the base plane of the system.
As far as the lower threshold field value is concerned, we

I0siny, =0, I0sinyb =Ib —I, ,

where I, and Ib are the currents circulating in the side
faces and in the base face, respectively. By making use of
fluxoid quantization [Eqs. (3)] and of the current-flux re-
lations [Eqs. (6)] under ZFC conditions, and by setting

i 4 2 C 3 and @b =+4, we may write



7480 R. DE LUCA, S. PACE, C. AULETTA, AND G. RAICONI

3 Po@o
gc1 4

2 1/2

mpo

can still make use of the SQUID analysis, ' so that, by
Eqs. (9) one finds

we can write

34@+v 2@,„sinai
posinyi=, sinqr4=—

0

(13)

2
sin 1—

npo

2 1/2

~po

(10)

Flux transitions at higher fields are found to occur for the
following field values @,'„':

4&,'„"'=We„"+3(k—1)@o, k =2, 3, . . . .

We now turn to H parallel to the base plane as shown
in Fig. 1(b). In this case we may set C&& =4&3 4 i 24/,
and %4=0. The stationary equations for the phases are
again obtained from Eqs. (7), and can be written as fol-
lows:

p4 lp) =2K
0

An exact solution to Eqs. (13) can be found, but here we
prefer to exhibit an approximated analytic expression.
Applying a standard procedure, we express all the quanti-
ties in Eqs. (13) in terms of yi and get, making use of the
first equation, a N,„vs y& expression. We proceed in this
way because the 2~ phase slip occurs in the first and
second junctions. Now, if the y& vs @,„graph does not
present any discontinuity, the derivative of its inverse
never goes to zero. However, if discontinuities are
present, this derivative must go to zero for some values of

The phase value at which the first 2m phase slip
occurs will be denoted by y*, . We therefore find the fol-
lowing equation for y& .

posing, = 3@q+&2@,„
0'2=%'i ~

cos+)3
pocosy, +

Q9 —sin yi
+1 =0.

posiny4=—

4~+(&2/3)4, „
posiny3 =2

0

N~+ ( &2/3 )@,„
@0

posinyi

3

(12) =cos
1+2mPo

(15)

If we neglect sing; under the square root sign in Eq. (14),
we immediately find

Vs=%4 and F6=0 .

Fluxoid quantization under ZFC conditions gives
2m.@@=(y4—y, )@o. Adding this constraint to Eqs. (12),

Equation (15) determines the following existence condi-
tion for H „:Po~1/m. . The lower threshold field value
is therefore obtained by substituting this value of y; in
the @,„vs y& expression, so that

Hg„= t/ 1 —[3/(1+2mPo)] + cos
2PPo 277 0

+sin '( —,'t/ 1 —[3/(1+2~Po)] )1+2m. o
(16)

N,'„"'=4&,'„"+ (k —1)@o, k =2, 3, . . . .3

2
(17)

The above expression confirms what has been found nu-
merically, namely, that the Aux transition periodicity
6@,"„'~ in the case when the external field is applied per-
pendicularly to the base plane is greater than the corre-
sponding quantity when the external field is parallel to
the tetrahedral base as in Fig. 1(b). Indeed, following
Eqs. (11) and (17), we see that h@t„"i'=3@o and
b,@i'„"'=(3/~2)@o. The numerical results obtained in
the preceding section also confirm the analytic expression
for the lower threshold field Hg, i given by Eqs. (10) and

Successive Aux transitions are found by adding the quan-
tity 2k' (k being an integer) to the solution for y, .
Therefore, we find

(16) for the two field orientations considered in the
present work.

V. CONCLUSIONS

We studied the stationary magnetic states of the sim-
plest 3D Josephson-junction network: a tetrahedron con-
taining a junction on each side. The Josephson junctions
were taken to be inductively coupled in order to account
for the magnetic energy of the circulating currents in the
system. We derived the dynamic equations for Aux tran-
sition for arbitrary applied field directions in space. In
particular, we analyzed two cases: in the first case, the
externally applied magnetic field H was taken to point in
the direction orthogonal to the tetrahedron base plane; in
the second case, H was taken to be a vector lying in a
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plane parallel to the tetrahedron base plane and perpen-
dicular to one side of the tetrahedron base itself. For
these two cases we determined the Aux and current distri-
butions as a function of the applied field and the lower
threshold field Hg„ for irreversible Aux penetration in
terms of the effective coupling parameter Po.

In the study of the low-field magnetic response of
high-T, granular superconductors, this simple model can
be considered as a first step toward a more complex
analysis, performed on a system consisting of a much
higher number of grains in the same arrangement. In or-
der to make predictions on the behavior of these larger
clusters we can adopt the results obtained for 2D circui-
tal models. In these models, for large P values the
penetration process of a single Aux quantum in an inter-
granular loop determines only a local change in the
current distribution; i.e., the perturbation due to the pres-
ence of an additional Aux quantum in the system is limit-
ed to the region occupied by the loop itself. Under this

condition the intergranular sites can be seen as almost in-
dependent entities. On the other hand, for low values of
the P parameter a long-range interaction among loops ex-
ists. Applying this reasoning to 3D systems, we can ar-
gue that for large P values the results obtained for a sin-
gle unit cell can be extended to larger clusters of grains,
while the same is not true if P is lower than a certain
crossover value. In the latter case, a complete analysis on
larger systems becomes necessary. Finally, when analyz-
ing the magnetic properties of more realistic systems, one
may notice that the dimensions, the geometrical shapes,
and the relative diamagnetic factors pertaining to single
grains are not significant quantities for the corresponding
model. Indeed, these properties play a role only in deter-
mining the effective surface of a single face of an irregular
tetrahedron. In this way, one can take account of these
factors by simply changing the effective values of the P
parameters. As a consequence, the qualitative behavior
of the dynamics of the model will be left unchanged.
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