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Andreev rejections and resonance tunneling in Josephson junctions
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The current-voltage charcteristics (I-V) and Josephson critical current for the tunneling junctions with

the resonant levels in the weak link are calculated. It seems likely that the current in these structures oc-
curred due to resonant tunneling through a localized state. This resonant state e6'ects the formation of
long-range proximity eFect. The subgap structure that appears on I-V characteristic of such junctions is

caused by multiple Andreev rejections of quasiparticles at the interfaces. The I-V dependence is calcu-
lated for difFerent values of the resonance parameter. This parameter is proportional to the ratio of the

escape of the quasiparticle from the localized state into the superconducting electrodes. It is then shown

that the larger subgap current corresponds to a smaller value of the resonant parameter.

I. INTRODUCTION the most pronounced efFect, usual tunneling probability is
small and can be considered a small parameter. The reso-
nant state in the insulator of the SIS junction renders the
perturbation theory inapplicable. Because all the tunnel-
ing processes should be retained, the whole problem ap-
pears highly nonlinear. Therefore, we have to find pre-
cisely the value of Green's function in the system. Due to
the time dependence of the phase of the order parameter
in the superconductors, the situation becomes even more
complicated. For two limits —the normal NIN junctions
and zero-biased Josephson junction —we achieved close
analytical results. Generally, to resolve this nonlinear
problem we applied the technique of nonequilibrium
Green's functions (Keldish method) and calculated the
I-V characteristics of Josephson junctions numerically
for the various values of the resonant parameter.

This paper is organized in the following way. In Sec.
II we provide the basic equations of our essentially
three-dimensional problem for Green's functions. Here
we obtain the exact barrier Green's function and find the
resolvent operator of a quasiparticle which tunnels
through a weak link resonant state. Keldish Green's
function and its derivative at the interfaces are expressed
in terms of the barrier functions, electrode Green's func-
tions, and the resolvent Green's functions. In Sec. III we

apply this formalism and Green's functions which were
calculated in Sec. II to obtain the current for a general
nonequilibrium case. We rewrite the I-V characteristic
in the form convenient for numerical calculations. The
fact that the energy difFerence in the matrix elements of
the resolvent propagator is an integer multiple of 2 eV
opens the way to construct a discrete basis in energy rep-
resentation. This we then truncate according to the total
number of Andreev rejections. Section IV represents the
analytical results for NIN and zero-biased Josephson
junctions. Here we also state the results of numerical cal-
culations for a simplified model when the localized state
is situated in the middle of the weak link. Moreover, cal-
culations are provided only for the zero component of the
current that rejects the whole I-V curves. The estima-
tions for observing the subgap current structure for the
aSi

~

SiO„barriers are given. Section V, our conclusion,

Experimental studies of tunneling processes in the
normal-metal —insulator —normal-metal (NIN) junctions
with amorphous aSi as a tunnel barrier' clearly reveal
the existence of localized states through which the tun-
neling of electrons occurs. At the several nm thickness of
uSi the resonance tunneling processes become important
in these structures. The resonance tunneling can be also
important in recently studied Josephson junctions with
Ge or InO film as a barrier. This interesting situation
also occurs with the high-temperature oxide supercon-
ductor s and their compounds. Cupr ate barriers like
Bi2Sr2Cu06 (2201) placed along C-axes direction with 10
layers thickness and sandwiched between the low-
temperature superconductors are the other systems
where (as was suggested in Ref. 5) the resonant tunneling
via localized states is important. Glazman and Matveev
and Larkin and Matveev have calculated resonance con-
ductance. They have analyzed the impact of one site
Coulomb energy on simultaneous resonant tunneling of
two electrons through a single site.

The resonance states increase the transparency of the
barrier. In the case of the superconductor-insulator-
superconductor (SIS) Josephson junction, this opens the
way for the multiple Andreev rejections. Such multiple
rejections are typical for superconductor —normal-
metal —superconductor (SNS) junctions ' as well as for
the SIS point junctions when the barrier transparency in-
creases. ' ' These reAections lead to the formation of
the subgap structure on I-V characteristics of Josephson
junctions. Many aspects of resonance tunneling in
Josephson SIS and S~Sm~S junctions were analyzed be-
fore. ' ' Nevertheless the problem of combined An-
dreev and resonance scattering remains unresolved. This
work aims to investigate the current-voltage (IV)-
characteristic of Josephson junctions which have barriers
with resonant scatters (such as aSi), in particular with re-
gard to the possibility of observing the subgap current
caused by multiple Andreev rejections. Here we consid-
er the simple case of a single resonant state localized in
the insulator (weak link). When resonance tunneling is
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critically examines our results and notes the limitations
of approximating the voltage distribution in the contact
region.

II. BASIC EQUATIONS

For our purposes, the most adequate approach for
studying the dynamic properties of the Josephson junc-
tion follows the method suggested Feuchtwang and Ar-
nold. ' ' ' These authors derived the tunneling current
through an insulating barrier beyond the lowest order in
the transmission probability. The main impact of the
theory' ' ' is an expression for the tunneling current
which is given by the second derivative of the exact
Green's function for a three layer system. This derivative
is taken at the interfaces between insulator and supercon-
ductors. The equation for the exact Green's function of
the three layer system in the particle-hole (Nambu) space
assumes the form

X(rt, r't') =5(r r—')X(rtt') .

The method which was used in Refs. 13, 20, and 21 re-
lates the exact Green's function for a three layer system
to the Green's functions of three isolated layers (we
denote them by small character letter g). In each isolated
layer, g, (rt, r't') satisfies the same equation (1), but only
in the restricted ith region with Ho, X replaced by
Ho;, X;, where i =0 defines the left-hand superconductor,
i =1 the barrier, and i =2 the right-hand region. As in
Refs. 13, 20, and 21 we choose the boundary conditions
such that the first derivatives of g, (rt, r't') with respect to
x,x' vanish at the interfaces. In the case of a single local-
ized state in the weak link, the self-energy X is

X, (rtt') =5(t —t')[ V~(r)+ V„,(r)]~3 if i =0,
=5(t —t')b (rt) =hr, exp[i @(xt)~3]

for i =1 and 2, (4)

Ho(r)= +2' Qx 27tg
(2)

x is the coordinate normal to the plane of interfaces,
P~~

= —i(B /By +B /Bz ) is the Laplacian which acts in
the superconductor-insulator (SI) boundary, and p stands
for the chemical potential. Furthermore, here and below
'r( 'r2 1 3 denote Pauli matrices and r+ =(a~+i rz)/2

Self-energy X(rt, r't') is approximated by a spatially lo-
cal form

—f dt, f dr, X(rt, r, t, )G(r, t, ,r't')

=5(r —r')5( t —t '), (1)

where

where the barrier potential Vs(r) = Vs is taken from the
rectangular form. V„,(r) stands for the short-range reso-
nance level potential situated in the insulating region, 6
is the constant module of the order parameter, and N(xt)
represents its phase. Due to the low transparency of the
barrier, in the weak link domain the Gor'kov amplitude
5 is small. Therefore we ignore the renormalization of
the self-energy X and in each region keep it equal to the
X;. To achieve the expression for the exact Green's func-
tion we generalize the theory' ' ' ' on the three-
dimensional case (due to the localized level in the weak
link, the homogeneity in the z,y directions is lost, and the
system cannot be considered as one dimensional). The
equation which relates the exact Green's functions (re-
tarded or advanced) to Green's functions of separate lay-
ers g; assumes the form

G(rt, r't')=g(rt, r't')+ fdt, fdp, fdx, g(rt, r, t, )HT(r, )G(r, t, , r't') .

Here the explicit integration in the plane of the Josephson junction (in the plane of SI interface) (p) and normal to it
(x, ) is shown r, = (p, x

&
). Also, the quasitunneling Hamiltonian HT is introduced

HT(rt ) =— [—5(x, I. )+5(x, I.+)—5—(x, —R )+5—(x, —R+)], x,
Br&

= —HT+(r, ) .

I. = —d and R =d (2d is the thickness of the weak link) stand for left or right SI interfaces; superscripts +( —) indicate
an infinitesimal distance to the right (left) from corresponding superconductor-insulator boundaries, and curly brackets
indicate an anticommutator. The quasitunneling Hamiltonian constitutes the essential point of the method. It absorbs
the boundary conditions at the SI interfaces and is the time independent. To find the current, we use momentum and
energy representations. For this it is convenient to introduce Dirac notations for the bra and cat vectors:

(pt ~G(x, x')ip't') =G(xpt, x'p't'),

(ptiF(x, x&)G(x„x')ip't') =fdt, fdp, F(xpt, x,p, t, )G(x,p, t&,x'p't') .
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The current through the Josephson junction is defined
by nonequilibrium Green's function 6((x,x') which is
directly proportional to the distribution function.
Equivalently, we cpn express the current by the Keldish
function 6 (x,x '). Similar to Eq. (5), these Green's func-
tions may be written symbolically into two different
forms as

St =S (LL)

„a
73 x

2m Br
x', G (x,x') „, ~r3 . (13)

Br

act operator [operator in the sense of Eq. (7)] Green's
functions 6,6, 6', and 6", respectively,

6 =g +g Kz-6'+g "Hz-6

or

6 =g + G Hz g'+6 "Hz g

Superscripts a and r stand for advanced and retarded
Green's functions, respectively.

To resolve Eq. (8) or (8') with respect to 6 (x,x'), two
additional relations are useful:

g 1=6-1+HT,g-1=6-1+HT+

where arrows above operators indicate the direction in
which they act.

Thus with the help of Eqs. (9) and (5) for G or 6 we
get

6 =g +g H+6'+GH+ g +6H& g Hz G' .

S(LR)Sl
S(RL) S(RR)

Formulas (12) and (13) are the three-dimensional general-
ization of the corresponding one-dimensional, homoge-
neous in the y, z plane result for the current. We have to
average J(t) over the energy and coordinates of the local-
ized state. This will be done later. Here we note that ac-
cording to Eq. (10) all derivatives of 6 at the interface
are defined by corresponding derivatives of retarded and
advanced Green's functions 6' and 6'. In the case of
equal effective masses of weak link and of superconductor
electrodes, S'"are related to the Green's functions g'" at
the interfaces by a matrix equation which is similar to
that obtained in Refs. 13, 20, and 21. Unlike the one-
dimensional limit, however, in our case the matrix equa-
tion acts not only in time space but in the momentum
space as well. This equation follows from exact Eq. (1)
applied in the vicinity of SI interfaces and from boundary
conditions on 6'" and g". As a result we obtain an
equation for S'"in an operator matrix form

The tunneling current in x direction yields

J(t)= Jdpxj(r)

(10) gL(LL)+gti(LL)
g~(RL)—

gii (LR)—
g~ (RR ) +gti (RR )

(14)

equi

yd
8

m Br
a

Br'

XSp

Using the momentum representation

X E Jt
SL gL gLSL +SLgL

—gLSL) Ip~~t& (12)

where gL =gL(LL) is the layer Green's function of the
left superconductor at x =x'=L = —d and the S func-
tions are directly related to the second derivatives of ex-

we evaluate the x,x' derivations of 6 (x,x") or
6 (x,x"). After the difFerentiation at the left interface,
the current reduces to the form

Here g~(x, x') is the matrix Careen's function, retarded or
advanced [see Eq. (7) for the matrix elements] of the
separate layers in the barrier region taken at the points of
the SI interfaces.

Now we outline the procedure for obtaining the
current through the junction. At the first step we get
from Eq. (14) the function SL'" in terms of g'"; at the next
step with the help of (10) we find S . Finally including a
resonant level, we calculate g" for our system. To con-
sider the nonequilibrium situation, we assume that the
entire voltage drops across the barrier so that the chemi-
cal potential in the left electrode differs from that of the
right on eV (thus p&,t, =eV+p, p„. h, =p). We ignore the
inAuence of the voltage on Green's functions inside the
insulator, considering that the barrier height Vz —p
satisfies inequality

e(V~ —p)))eV, E .

This holds for all characteristic energies E and voltages
V. For such barriers, Green's functions in the weak link
are affected negligibly by the applied voltage. On the
other hand, the electrodes Green's functions are strongly
time dependent due to their phase @(t). Therefore, we
express nonequilibrium Green's functions in the banks in
terms of the equilibrate ones as follows:
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and momentum representation we have [gL (LL)=g—L ]:

Here we take'

=exp — @—(t)r3 gL (t t')—

Xexp N—( t ')r3

&p~(EIgLIPIE') =, 5 5« E—')gL«»
p

g~ (E}=i [e",(e)+g"(e)~,],
8( I e I

—1) I
e

Ie[(e)=
(17)

4(t) =No+ 2e Vt /R

and @0 is equilibrium phase at V =0.
Due to the short range of the V„„ the electrode

Green's functions g, (t t') (i =—1,2} with resonant level
in the weak link are the same as they would be without
such a level. They were obtained earlier. ' In the energy

I

where c. is the dimensionless quasiparticle energy in the
units of order parameter: e=E/6 and
k (p ) =Qpg —

p~~, ri "(E)=e &/e, pz stands for Fermi
momentum in superconductors, 8(x) is the Heaviside
step function: 8(x)=1 if x &0 and 8(x)=0 if x &0. The
advanced Green's functions are given by complex conju-
gate of (17). When the time dependence is included, we
have'

&EIgL IE')=&EIexp ——Ci, gLexp —C13 IE )

5(E E—'}[gL (E+—eV)&&(1+F3)+gL (E —eV)2z(1 r3)]—
1

+5(E E'+2e V )gI—(E +e V),2r+e '+5(E E' 2eV—)gL (E —eV)2,—~ e

5(E E'+ 2e Vk —
)gL ( e, e+ 2uk ),u = eV

The g~ is the quasiparticle Green s function in the barrier with localized state, and because of the lack of homogenei-
ty in the plane of junction it depends on p, p' (rather than on the difference between p, p'). We relate gz to the unper-
turbed Green's function go& which describes the system without resonance level' ' and corresponds to the one-
dimensional problem. Using the Fourier transformation on energy variable, the differential equation (1) in the insulator
can be transformed into the integral equation for gz(E, r, r')

g~(E, r, r') =go~(E, r, r')+ fdr, V„,(r, )go~(E, r, r, )~3g~(E,r„r'), (19)

where the short-range potential V„, is defined in the
range Ir —roI &a «d. Here ro is the coordinate of the
localized state in the insulating layer. Green's function
go~ has the zero derivatives at the interfaces and can easi-
ly be found. After Fourier transformation on in-plane
coordinates of the junction we get

I

where

Lz(xo)= fdr V„,(r)

X 1 fdr Vr&&(r)goy(Ero r)r3 (23)

2m cosh[(R —x')g]cosh[(L —x )y]go~(Ex x )=
y sinh(2yd )

if x')x . (20)

After inserting the explicit form (20) for go+ into the last
equation, the latter is reduced to the resonant propagator
of a quasiparticle

Here
1/2

[LE(xo)] En
2m

[a—ao —l(xo )]+
2 Vz —p

X= „, (V —
S )+p~~ (21)

The case x & x' follows from Eq. (20) by simply replacing
x by x' and vice versa.

For short-range resonance level potential, the solution
of Eq. (19) in momentum representation is given

g (p)[p((Ex, x ) —5, g~o(
p((

Exp x)
~ll'~ll

1/2
2mao= (V~ Eo)—2'

fi
a= (V —p)

1/2

(24)

1( )=xo—e " [f(xo)+f( —xo)]/d,

Here Eo denotes the resonant energy value of the local-
ized state. The function l (x) was obtained in Ref. 23 and
takes the form

+go@(p)~EX xo)r3LE(xo)

Xgo", (pi~E „) (22)

exp(2xoa )f(xo)= p[pFa(d —xo)]d;d xo

(25)
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y(x) is a complicated function which includes a combina-
tion of Kummer's functions. In the limiting case x —+ ao,
the function y(x) turns to unity, and for the small argu-
ments y(x) =2x /3. In the following we use approximate
formula I (x o ) =exp( —Zd a )cosh(2ax o ) /d, which is
correct for short-range potential, and a(d. Near reso-
nance we approximate Eq. (24) as follows:

(LE) '= [A, , +(e+i0))3] . (26)

Here the dimensionless resonant energy variable k& is in-
troduced. We also set 2m =1 everywhere but in the eo, e
[the formula (26) contains I which come out from the ao
and a]. By this choice the current obtained preserves
proper units. Below we will neglect the usual tunneling
that compares with the resonance one. In this approxi-
mation the g Green's functions in Eq. (14) take the forms

gBL(PllPllE) =5 'gOBL(PllE) ~B(Pll)13E (Pjl)'r3LE
II' ll

gB(LL) =gBL, gB(RR) =gBR

gB(RL) =gB—EL; gB(LR) =gB—LE;

and

cosh [g(xo L—) ]
PL(P )=

y sinh(2yd )

gOBR ( PllE ) gOBL (PllE ) ~ r3

a = — coth(2yd) .
x

(29)

The function /3z can be obtained from pL by simply re-
placing L by R.

Due to the factorized form of the resonant terms the
operator solution of the basic equation (14) for retarded
or advanced exact Green's function S'"can be written as

5p, p'goBB PllE l L Pll ~L(PII r3L
II' ll

(27)
gBLR (PllPllE ) = ~E(Pll)~L(Pll)r3LE

gBE (pll pl'lE ) = —
&L (Pll)13E (PI )r3LE

where the notations are introduced,

SL =(g",L) '+qL W"qL,

S"(LR)= —
qL W"qE,

S"(RL)= —
qE W"qL;

where the matrix elements of coef5cients are

(30)

r3[gR (E) gOBR (Pll) ] 31+a

& pllElqL, E IpjlE'& = &pllEI(g)L E ) 'IE'pll&l E,L(pll) ~5,5(E E')k(p )—
II' ll

II

(31)

Here we have omitted the E argument in go~+ because
this function does not depend on E [see Eq. (29)]. The
matrix elements of (g",L ) consist of the same objects as
the last line of Eq. (31) (R should be replaced by L) but
rule 18 must be applied to them. This is because of the
time dependence of left-hand superconductor Green's
functions.

The matrix function 8' which is the solution of Eq.
(14), represents the complete resolvent Green's function
of a quasiparticle which tunnels due to the resonant state
in the insulator

(32)

I

they directly de6ne the nonequilibrium Keldish Green's
function S . Indeed with the help of Eq. (10) we obtain

S=SL (gL +gBL )—SL SLgBLE S'—(RL)

S"(LR )gBELS—L +S "(LR )(gE +gBE )S'(RL ),
(35)

where the functions g are connected to distribution
function f which in the energy representation is
tanh(E/2T) (T being the temperature) by relation

g =g'f fg"—
where L" is the operator. In the energy representation it
is reduced to Lz, yo, y' are related to the retarded
Green's functions at the right and left SI interfaces, re-
spectively,

(33)

and angular brackets stand for momentum integration

&f&=, fdpf(P).
The propagators 8'" and 8"are of central importance

for calculating the current through the junction because

and the rule of finding the matrix elements of gl is the
same as for gL [see Eqs. (16) and (18)]. The relation be-
tween S, 8'", and W' follows from Eq. (30).

III. CURRENT IN JOSKPHSON JUNCTION

We rewrite Eq. (12), which gives the expression for the
current through the Josephson junction using the dimen-
sionless energy variables E, c' and the chosen units
(2m~1). Inserting the formulas (35) and (30) in Eq.
(12), after some algebra we get
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J(t)= 4e—b, Re ' 8F i))(c E—')t& etlsp
2m.

1+~3 (a, W'+D "W"FtV') le&

where

JJg=rof fr—o, D"=ro —«"r3) ' F=&z+&L, (37)

The matrix elements of these quantities follow directly from the definition of the layer &reen's functions g; [Eqs. (17)
and (33)], from the time transformation rule for g, and the distribution function f [see Eq. (1g)]

f( —xo)
&Elr"Ie'&= &slexp

f(xo)

—i 4~3
yoexp (38)

rol, &
= —A5(s —E )[i(s)(E)—~"(e)r))+r3p~/a]f{xo}

&eIB„Is' &
= —2iA5(c, —s')f(xo)f(s)N(E)(1 —~)e

D =—[(1+vi)D' D'(1+—3r)],
1

(39)

(40)

(41)

&elD IE'& = iA—5(E—e')f(xo)[(1+vi r)e —')N(E) —~2K(s)],

&eIFIE'& 1+W3 1 —
W3=5(s—e') f( —xo) f(s+u )N(e+u ) +f(s —u)N(s —u )—2iA 2 2

(42)

+f(xo)f(e)X(s)(1—r)e ) f( —xo)—5(E—E'+2u )r+e—1 ;c, f(e+u )N(e+u )

E+9

g 2 } )@f(E u )X(s u )

Q

n = —1,0, 1

5(E—e'+2un)P(e, s+2un) . (43)

Here A =(a/4mp~)e /d contains the parameters of the Josephson junction; the function D will be used below. The
two functions N(e) and K(s) select the quasiparticle states outside and inside the superconducting gap, respectively,

x{e)= 8{IEI 1); X{E)=e{1—Iel) (44)
v'E' —1 &1—s'

The junctions of sufficiently large area which were used in the experiments' on aSi are in the self-averaging region.
For such junctions we need to average the current over the coordinates and the energies of the localized states. This
averaging results in two additional integrations of the formula (36},one over xo and the other over A, ). It is convenient

to rescale the resonant level A, ) ~A, = I A, ) so that the important dependence from characteristic resonant parameter I' is
explicitly revealed,

1 =(ba ~)mdp~exp(2da)=
Ad

Vz —p V&
—p

a exp(2d a ) . (45)

We include the energy independent term r3pz/a in the variable of integration A. ~k+pF /a, and finally get for the full

propagator (32) the expression

&El(A'") 'IE'&=5(E —E') kr, +rE+)f( —x, )

e)(a+u )
+if (xo )(s)(e)—g)(s)r) )

e) e u

—if( —xo)[5(s—E'+Zu)r+ri", (e+u }+5(s—e' —2u)r g)(s —u }] .

Here we introduce the notation: W= A 'lk Now the formula for the total time dependent current averaged over po-
sitions and energies of the resonance states can be written as

J(t)=— Re f dxo f dA, fde fds'e' " "& lSpsi (Bz@"+D"O'PA ') le&
7T Pn 2

(47)

where values Bz, F, D", and later D with the cap are equal to the corresponding values Bz, F, D', and 2D divided on
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the coefficient —2iA. Here p„ is part of the resistivity of the Josephson junction which is determined by tunneling pro-
cesses due to the localized level

e mn(E 0)n( xo) Vzi
—p

Pfd p

1/2
e ~n(Eo)n(xo}h2

exp( —2d a) = (48)

where n(EO) and n (xo) are, respectively, the density of energy states of the localized level and the density of the reso-
nance scatters. The part of the resistivity which is determined by direct tunneling processes pd;„ if we consider the usu-
al NIN normal junction, has an additional, in comparison with Eq. (48), factor 2 in the exponent. Also, pd, , includes the
density of states of the normal-metal electrodes which replaces the density of the localized states in p„. Therefore, if the
thickness of the insulator is sufficient to suppress the rather large density of states of the normal metal, then the reso-
nance tunneling contribution becomes dominant as was observed in experiment. '

The calculation of the current density (47) can be simplified if one notes that the energy difFerence E —e of the resol-
vent Green's function ( s

~

W"'~s' ) is an integer multiple of 2 eu, the same as in Ref. 13, i.e., ( s~ W"'~ E') is given by the
sum

(E~ k~E'}= + 5(E—s'+2un )k(s, E+2un ), (49)

W(s+2um, e+2un) = k(s~mn, ) . (50)

Here n and I are any positive or negative integers.
Equation (50) introduces matrix notations (the analogous definitions are true for the other functions F, Bz, and D).

Below we will restrict our calculations to the zero harmonic contribution to the current. From Eq. (47) we obtain

Jo=—,f dxo f dkfdESp. [(iP+(kii k' —k"B„)+Dlk"PA")(s,E)],
e& p„

(51)

where P+ =(1+ran)/2 and (f)(s, s) means f(s, E) as in Eq. (50).
The current density Jo can be presented in a form which explicitly consists of the di6'erences of distribution functions

shifted on nu values of argument and f(s). To do this we rewrite with the help of Eqs. (38) and (40) the first term of Eq.
(51) as the function of these differences. Performing the trace in Nambu space we get

Sp[P+(Bz O' —W Bz )(E,s)]=f(xo)X(E)f(s) [@'"((4") ' —( k') ') 4']» — [ W"(( lV") ' —
( 4') ') k']z,

+(1=2)+(@"+ 0'")zi —(1~2) (E,s); (52)

here the subscripts stand for matrix notations in the Nambu space. Combining Eq. (52) with the matrix elements of F
Eq. (43) and D Eq. (42) we find

JO=Ji+J2

where

J, =—,f dxo fdkfdEK(, E) (( k'+ 4")iz—(1=2))(E,E)+
2nd &'f (s)

e7T pn 26

+2($'"F@"),i(s, s) —s '(( O'F@")zi+(@'"Fk')iz)(e,E) f(xo), (53)

J =—
2 f dxo f dA, fde%(E)[((@'"Pk')z,—(@'"Pk'),z)(E, E)]f(xo) .

e& pn

The matrix elements of F follow from the corresponding matrix elements ( si ~P~ Ez } if we replace the distribution
functions in expression (43) by the difFerences of these distribution functions with f(s}. Equations (53) are convenient
for numerical analyses. To solve the problem numerically, we truncate the basis I n, m ] [see Eq. (50)] in the energy
space and consider a matrix of size (2%+ 1)X(2N+1) with the N value related to the number of Andreev refiections.
The diagonal element (s, E) will be chosen in such a way that it corresponds to the matrix indices X+ 1,X+ 1. It is the
central site of the matrix.

IV. ZERO-BIAS JOSEPHSON CURRENT. NORMAL METAL JUNCTIONS. NUMERICAL RESULTS

In this section we will apply the theory which was developed above to analyze the current through the barrier in the
tunnel junctions. In the two limits investigated here we achieve analytical results. The erst is the symmetric NIN junc-
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tion when the electrodes are normal metals (not superconductors). In this case the matrices ( W'") ' and W"" of the
resolvent operators are diagonal in the energy as well as in Nambu space

(k")-'(E,E)=zr, +r,—+2l cosh(2ax ) . (54)

The other functions which describe the current [see Eqs. (40)—(43)] are reduced to diagonal form as well

f(E+eV)f( —xo)+f(E)f(xo) 0
P(E E)= f(E eV)f—( —xo)+f(E)f(xo)

D(E,E)=P+f(xo); kq =f(xo)f(E) .

Here I T=I'(T/b, ), and we have returned to the dimensional notation for the energy variable E. The second term in
Eq. (51) takes the form

f(xo)[f( —xo)f(E+eV)+ f(xo)f(E)]

A, + I r—+2i cosh(2ax0 ) it+ I z.— 2i c—osh(2ax0 )

(55)

We now consider the case d ) 1/a. Inserting Eq. (55)
into Eq. (51) and performing the integration over xo and
A, , we obtain the expected formula for the current of the
normal junctions in which the tunneling occurs due to
the localized state, P+ f PP+—=r2exp(i 4~3)f ( —xo);

(58)

age over the coordinates and the energies of the localized
state. In Eq. (57) the functions with cap [see Eq. (47)] are
given

J„= fdE[f(E+eV) —f(E)] .1

ep„
(56) A r3+ ir T

—+2i s, (i' )cosh(2ax o )T

Let us now consider the second example: zero bias
symmetric Josephson junction. This is the equilibrium
case, and therefore we use the thermodynamic (Matsu-
bara) representation for Green's functions and the
current. From Eq. (12) we get

J, =2eT g &p~~lsp[P+(SLgl. gLSL, ) ]Ip~~&

—ig(iso)[f(xo)+ f( —xo)exp(i@r3)]

where s, (ice) =co(co + b, ) and ri(iso) =s, (iso)b /in
With the help of Eq. (58) we get

Js= T g f dxo f dk, q)(xo, k, , co)g (ice),
&ep~ —d

=2eTQSp[((P+r 7' P+—)IV ) ] (57) p(xo, A, , co) = A, + I T
—+2E,(iso)cosh(2axo)

Here co =a T(2k + 1), where k is a positive or negative in-
teger, and the superscript T stands for identification of
the Matsubara functions S, gL, W, and y [see Eq. (33)].
These functions can be obtained from their retarded form
by replacing E~im —5. As we did before for the I-V
characteristic, Josephson current, J„(57)needs to aver-

2riz(i co ) c—osh(4ax 0 ) +cos@

After averaging over the energies of the localized states,
we arrive at the following expression for the Josephson
current:

4a sin@ T~ f d

%8p~ —d

(~2+ g2) —1

I'T —+2s&(ice)cosh(2axo) 2' (ice)[—cosh(4axo)+cos@]
1/2

If the dimensionless parameter I is small, then the last
formula can be simplified:

2ad dZ
s(y) =- y&1.

7T —2ad cosh2z
(6O)

where

mh sinC + 1
, Asin—

2

co +6 (59)

If the effective radius of localized state 1/a is less com-
pared with the thickness of the weak link 2d, the function
s (y) weakly depends on a and its argument y. For T not
too close to zero temperature, s (y) = 1. For I"(( 1 and
for the temperature in the vicinity of the critical tempera-
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ture, J, coincides with the result which was obtained in
Ref. 24 for metal contact. Near T, Eqs. (59) and (60) also
represent the Josephson current which has been recently
calculated in Ref. 25, though deviation appears at low
temperatures.

There are other systems where the resonance tunneling
can be handled directly on the basis of the suggested
theory. The simplest example is the three layer NIS junc-
tions where one of the electrodes is normal metal. The
I-V characteristic can be derived from Eq. (53). In this
case the resolvent operator is diagonal in the energy vari-
ables.

Now we will address the general problem of the subgap
current in Josephson junctions under applied bias volt-
age. For the numerical calculations, we consider a
simplified limit when the localized state has the coordi-
nate xp=0, i.e., it is situated in the middle of the weak
link. We also put the constant phase @p equal to zero be-
cause the current does not depend upon it. We write all
terms in the expression for current (53) in the matrix
form using the basis [n, m ] [see Eq. (50)]. For example,
we have

(@"Pk')

6 z (ElN+ I,m )P &(elm, n ) k@(sin, N+ I), (61)

+f(E+2mu )N(e+2mu )],
f(a+2mu )N(a+2mu )

6+2mQ
f(E+u+2mu )N(e+u+2mu )

a+Q+2mQ

f(s+2mu )N(e+2mu )

e+2mQ

f(e —u+2mu )N(s —u+2mu )

6 —Q +2mQ

P~( elm, n)= —5

m+1, n

(62)
Ppi(Elm, n )= 5

m —1,n

Pzz( elm, n)=5 „[f(e—u+2mu)N(s —u+2mu)

+f(s+Zmu )N(s+2mu )] .

In a similar way, with the help of Eq. (46), we get the ma-
trix elements of the resolvent ( k) &'.

We have considered the case of the subgap voltage
eV(d and low temperatures T (b, (here T=0.16) be-
cause the most pronounced signature of multiple An-
dreev rejections belongs to these regions. The subgap
current is proportional to p„'. Due to resolvent Green's
functions, it also has the complicated, implicit depen-
dence from resonant parameter I . Therefore, we may
represent the results of our numerical calculations [Fig.
1] as a plot for the product Jq =aJop„versus voltage (in
the units of superconducting gap) at the diff'erent values
of resonant parameter I . Here a =e m/4nd is the func-
tion of the barrier thickness d which yields the preex-
ponent to the exponential d dependence of the resistivity.

We can expect a weaker dependence of a or even for it

where the Greek subscripts indicate Nambu space. From
Eq. (43) follows

P»( Eml, n )=5 „[f(s+u+2mu )N(E+u+2mu )

0.2

0.6

1.0

2.0

0.2 0.6
eV/6

1.2

FIG. 1. Normalized tunneling current J~ =ap„Jo versus volt-
age for Josephson junction with the resonant scatters in the bar-
rier. The different curves correspond to the resonant parameter
I between 0.2 and 2. The temperature T=O. 15; the coe%cient
a =e m/4ud. If the only variable parameter of the tunnel struc-
ture is the thickness of the weak link, the plot J=J~I
displays the full current density dependence on I .

3.5—

2.5

2

0
0

FIG. 2. The plot of J~=ap„JO versus I for the particular
bias voltages u = 1 and 0.5 (u =eV/5).

to be a constant if an averaging over the positions of reso-
nant levels were performed, as it had been for the Joseph-
son zero-biased junction [see Eq. (59)]. In cases when the
only variable parameter of the tunnel structure is the
thickness of the weak link, we have p„—I, and the plotJ=aJpp I =Jz I ' displays the full current density
dependence on the resonant parameter. This plot can be
easily obtained from Fig. 1. The results represented on
Fig. 1 clearly show the existence of the subgap current.
From Fig. 1 one sees decrease in the current density with
the enhancing of I . Such behavior is more pronounced
in Fig. 2 where J is plotted as the function of resonant
parameter at the two fixed values of the applied voltage
eV=E and 6/2. The fact that the subgap current be-
comes less when I grows is related to the physical mean-
ing of the resonance parameter I . The latter is provided
by the ratio of two characteristic times: I =~, /~z where
~, -e " is the decay time of a localized state into the
conduction electron states and r& =iri/b, define the corre-
lation time of the electrons in a Cooper pair. If ~& &&z,
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then the superconducting correlations in the weak link
are not destroyed during Andreev reflections. In this
case the perturbative approach (the tunneling Hamiltoni-
an theory) breaks, all orders tunneling have to be con-
sidered, and the resonance tunneling processes assume
importance. The same phenomenon occurred for Joseph-
son current in the junctions with resonance tunneling via
the localized level in the Kondo limit. ' If the opposite
inequality takes place ~&&&~, the Andreev reflections
make only a small contribution to the subgap current, so
the latter will be strongly suppressed.

In order to clarify the origin of the subgap current, we
point out that it can be defined by resonance tunneling
while the normal current for eV&26 affects the direct
tunneling region. To demonstrate this, let us introduce,
similar to I, parameter I d;, =~d;, l~z where ~d;, -e "
represents the direct tunneling decay time. Since the
values I, I d;, do not include the density of states, we ex-
pect I d;, ))I, and thus in spite of p„)pd;„ it is possible
to provide a larger current (see Fig. 2) for the resonance
tunneling.

We end this section by estimating for I in the case of a
aSi

~

SiO„barrier. ' For the resonant parameter we use
Eq. (45) written in the terms of the Fermi momentum p~
and the coherence length go of superconductors,

pFI = exp(2da) .
mgoa'

Let us take Al (go=1.8X10 cm) as the superconduct-
ing electrodes with long coherence length. For the thick-
ness of aSi barrier 2d =d„=51 A, which belongs to the
crossover between direct and indirect regimes' and the
values of other parameters, a ' =8.25 A and pz —1 A
we have I -15. For 2d =d„—2.3a ' the normal Ohm-
ic current will be dominated by the direct tunneling of
electrons. As for the subgap current, we estimate I -1
and p„-pd;,e —10pd;„while I d;, =50&&I . Current
density Jo for voltages below the gap will be defined by
the tunneling via the resonant scatter. This is because
the large I d;, drives the direct tunneling contribution to
negligibly small values (see Fig. 2), a smallness which
could not be overcome by the larger than p„' value of
conductivity pd;,'.

V. CQNCLUSIQN

In this paper we have presented a quantitative analysis
of the multiple Andreev reflections in Josephson tunnel
junctions when the tunneling processes occur due to the
localized state in the weak link. This approximation is
justified if the effective radius of the localized state is less
than the thickness of insulator which separates the super-
conductors. If a ' ~ 2d, then ordinary tunneling
through the barrier is relevant and I-V characteristics be-
come the functions of two parameters: direct tunneling
probability across an insulating layer and the resonance
tunneling via a localized state. It is possible to generalize
our formulas for the current; in this case, however, the
numerical calculations are more complicated. We have,
moreover, assumed noninteracting quasiparticles. This
approximation is relevant for the tunneling structures
with rather small resonant parameter, i.e., in cases in
which decaying time determined by the resonance tunnel-
ing is less than the time of superconducting correlations.
The influence of Coulomb repulsion on the resonant su-
percurrent was studied in Ref. 17. A generalization of
this theory on a nonequilibrium case considering multiple
Andreev reflections in SIS Josephson junctions would be
interesting. We shall leave this case for future study.

Starting with the equation for the exact Green's func-
tion of the SIS three layers system we made several ap-
proximations to achieve a solution for this equation. We
have considered that the localized states do not cause
self-energy corrections to the quasiparticle energy in the
electrodes, an approximation which restricts our analysis
to the short-range potential of localized states.

In the above analysis we took a simple time depen-
dence for the phase of the order parameter [Eq. (16)].
This is not a self-consistent description. However, be-
cause the voltage drop is mainly in the region of weak
link, the approxim. ation is qualitatively correct.

The dependence of the I-V characteristics from reso-
narit tunneling parameter I shows that we have a larger
subgap current for smaller I . Our theory, which is based
on BCS approximation, can be applied to the high-T, su-
perconductors to estimate subgap current density, though
a possible symmetry of the order parameter, especially
d 2 2 symmetry, has yet to be considered.
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