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We investigate the linear spin-wave spectrum of two-dimensional easy-plane classical Heisenberg
ferromagnets in the presence of a vortex, using numerical diagonalization on small systems. The
spectra of normal modes for both in-plane and out-of-plane vortices are determined, for square, trian-
gular, and hexagonal lattices. Some of the modes show a strong localization of their amplitudes near
the center of the vortex. Moreover, we investigate a particular mode that drives the crossover in the
static vortex structure from purely in-plane to a vortex with well-localized out-of-plane component
as the easy-plane character of the system is reduced below a certain threshold.

I. INTRODUCTION: VOR.TKX INSTABII ITY

In classical models for quasi-two-dimensional magnetic
materials, it has been found that vortex nonlinear ex-
citations play an active role in phase transitions, ' and
are expected to be important in the spin dynamics.
The vortices are topologically stable excitations, carry ef-
fective charges, are created in particle-antiparticle pairs,
and are expected to make contributions to correlation
functions, especially, to central peak intensity in the
dynamic structure functions S(g, ur). In particular, in
models of three-component classical spins with easy-
plane (AV) anisotropy, there are two types of vortices
possible, ' known as "in-plane" and "out-of-plane" vor-
tices, depending on whether the static vortex has zero or
nonzero out-of-easy-plane spin components, respectively.
For ferromagnets and antiferromagnets, the static struc-
ture of the in-plane vortex is known exactly, while the
static structure of the out-of-plane vortex is only known
approximately (or numerically) . Approximate results are
also known for the modification of these spin structures
for slowly moving vortices. ' Furthermore, the dynam-
ics of pairs of vortices has received some study; for pairs
of out-of-plane vortices, there are interesting orbital and
translational relative motions with faster cyclotron-like
oscillations superimposed.

Some attempts have been made to describe these mo-
tions as found from numerical simulations by efI'ective
equations of motion for the vortex centers, ' ' includ-
ing efI'ective masses and charges ' ' that determine
the dynamics (collective coordinates~s). However, these
approaches have assumed that a vortex has no internal
dynamics, that a moving vortex consists of a uniformly
translating spin profile of fixed shape, with no internal
oscillations or other intrinsic time dependence. However,
it is expected that the vortex spin profile can have some
kind of internal oscillation, perhaps even when it is sta-
tionary (i.e. , not translating), in analogy with the inter-

nal modes of nonlinear excitations in one dimension.
Little is known about such dynamic modes of individ-
ual vortices. A description of their properties could
be valuable in application to the collective coordinate
theory and in calculations of dynamic response furic-
tions. These modes can be determined, however, by
evaluating through numerical diagonalization the small
amplitude normal modes of oscillation of the spin field
about a single vortex. The resulting spin-wave spectrum
may contain particular modes that are strongly associ-
ated with the presence of the vortex itself, and otherwise
absent if the vortex is absent. It is likely that these modes
would be localized on the vortex. In addition, the spec-
trum will contain other modes that are extended over the
entire system, and possibly only modified slightly by the
presence of the vorte~. Those modes, however, will con-
tain information about the interaction of the spin-waves
with the vortex. For these reasons, we investigate nu-
merically the spin-wave modes of a system containing an
individual vortex, and analyze one particular spin-wave
mode that is responsible for an intrinsic instability ' of
the in-plane vortex towards developing large out-of-plane
spin components and becoming an out-of-plane vortex as
the easy-plane anisotropy is reduced.

Specifially, we consider a set of classical spin variables
on a two-dimensional (2D) lattice, interacting with easy-
plane anisotropic near-neighbor exchange. The easy-
plane anisotropy will be described by the parameter A

(0 & A ( l) in the following Hamiltonian:

II = —J ) (S„S„+ + S„"S„"+ + AS„'S„'+ ). (l.l)
(n, e.}

The sum is over nearest-neighbor pairs of spins S on a
2D lattice with sites (n), and the set of displacements to
the nearest-neighbors is (a).

Much of the theory for magnetic vortices in this model
has been developed in continuum limits. In the present
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context, Costa, Gouvea, and Pires and Pereira, Pires,
and Gouvea have considered the spin-wave modes
about single vortices and vortex-antivortex pairs in the
XY model (A = 0), using a continuum limit description
of the lattice. However, a continuum description of a
magnetic vortex on a lattice presents diKculties, because
the spin field. varies rapidly &om one lattice site to the
next in the core region of the vortex, violating the usual
continuum assumptions. Also, the short distance cutoff
(for example, in energy integrals) in the continuum the-
ory is not well prescribed, whereas these diKculties do
not appear if one solves for the spin-wave modes in the
original lattice model. For these reasons, we consider vor-
tices in this model on a lattice, where the discrete lattice
effects that are most inQuential in the core of the vortex
can be correctly accounted for.

It is well established that for this model with a specified
strength of easy-plane anisotropy, only one of the vortex
types is numerically stable when placed on a lattice. '

Numerical simulations have led to the conclusion that
static in-plane vortices are stable only when A is less than
a critical value A . On the other hand, static out-of-plane
vortices are stable only when A is greater than A . To say
that one type is unstable means that it will evolve into
the other type. The critical value A was found to have a
substantial lattice dependence; A, is approximately 0.62,
0.70, and 0.84, for triangular, square, and hexagonal lat-
tices, respectively (for ferromagnets). This strong lattice
dependence is due partly to the discreteness effects near
the vortex core, for which the usual continuum limit the-
ories are likely to be inadequate.

This instability or crossover has been found to be
driven by a particular dynamic mode of the in-plane
vortex, whose &equency goes to zero as A approaches
A . Preliminary numerical diagonalizations were made
for the spin-wave modes of a 10 x 10 square lattice
system containing one vortex, with a &ee boundary
condition. ' A mode that became soft was found to have
its amplitude concentrated near the center of the vortex,
suggesting that it is a localized mode associated with the
presence of the vortex, as opposed to an extended con-
tinuum spin-wave mode of the entire system. More re-
cently, an ansatz was made for the structure of a vortex
on a lattice, in order to explain the lattice dependence
of A . In this ansatz, it was assumed that only a small set
of spins near the core of the vortex could have nonzero
out-of-plane spin components, while all other spins far-
ther out &om the core were held fixed in the easy plane.
The out-of-plane spin components were assumed to de-
pend only on the radial distance &om the vortex center.
The analysis was used to determine very accurately the
values of A for the different lattices mentioned above.
More importantly, it also was used to make estimates of
the &equency of the dynamic mode responsible for the
in-pLane to out-of-plane vortex crossover. However, it
is clear that a more complete analysis of the spin-wave
modes about a static vortex is needed, especially includ-
ing an understanding of how that eigen&equency depends
on the system size.

Therefore, we have made a set of numerical diagonal-
izations for finite systems, to obtain the normal modes

(i.e. , spin waves) in the presence of a single in-plane vor-
tex for A & A, and in the presence of a single out-of-
plane vortex for A ) A . The calculations described here
are semiclassical; the spin equations of motion have been
linearized about a numerically determined static vortex
solution, using local Cartesian spin components with dif-
ferent local spin axes at each site. The notation for the
calculation is described in the following section. Ap-
proximately circular systems on triangular, square, and
hexagonal lattices were used. A set of calculations was
performed for each lattice, with a range of system sizes.
For each system used, the dependence of the eigenspec-
trum on the anisotropy A was determined. This includes
measuring the rms "sizes" of the wave functions associ-
ated with the modes, and comparing to the size of the
6nite system that was used, to decide which modes are
localized and which are extended. The mode whose &e-
quency approaches zero as A approaches A, has occupied
much of our attention. We give substantial analysis of
its dependence on A, the type of lattice, and the system
size.

II. PERTURBATION ABOUT A STATIC VORTEX

We begin by describing how the numerical diagonaliza-
tion problem for the normal modes of spin-wave motion
about a static vortex was set up. For classical states we
can parametrize the spins in terms of an in-plane angle

and an out-of-plane angle 8 (or spin component),
where sine„= S'/S, i.e. ,

S = S(cose cosg„, cos8 sing, sine ). (2.i)

For in-plane vortices, the low energy static states of this
model will have all S = 0 = 0, and then the equation
to determine the in-plane angles becomes

H„s = —JS ) cos(P —P + ),
(n,a)

(2.2)

) sin(P —P + ) = 0. (2.3)

= qarctan
~

&V- —uo&

(&n —&o j (2.4)

where the vorticity q is an integer. For out-of-plane vor-
tices, the in-plane angles are given by Eq. (2.4), while
there are nonzero S components. In general, for a given
value of anisotropy A, we have used a numerical relax-
ation procedure to determine the static vortex structure,
for either in-plane or out-of-plane vortices. We start with
an in-plane vortex, but perturb the spins in the unit cell
containing the vortex core by giving only those sites small

Only when the vortex center (zo, yo) is at a point of high
symmetry, such as the center of a unit cell of the lattice,
or directly on a lattice site (with the spin at that lat-
tice site set perpendicular to the easy-plane) is a simple
analytic solution of Eq. (2.3) known, namely,
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F„=J) [S„+ e + S„"+ e„+AS„'+ e,]. (2.5)

positive S components. Then every spin in the lattice
is redirected to point along the direction of the effective
field F due to its neighbors, as determined &om the
Hamiltonian above:
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The set (aj includes only the displacements to the neigh-
bors of site n. Sites on the boundary of the finite system
will tend to have weaker eBective fields because of their
smaller number of nearest-neighbors in this sum. Upon
iteration, this procedure relaxes the spins quickly into a
static energy minimum vortex (in-plane or out-of-plane
vortex) that is stable for the given value of anisotropy
A. This is because the spin equations of motion can be
written in the form, S~ = S~ x F~; the time deriva-
tives vanish when the spins are aligned with the effective
fields of their neighbors. The relaxed vortex configura-
tion, So = (S„,S" o, S' ), can then be used to obtain
the in-plane and out-of-plane angles of the static vor-
tex, (po, 8o), using the definition in Eq. (2.1). Some
typical profiles of S so obtained for various values of

—0.70 for a circular system on a square lattice
are shown in Fig. 1.

Now the approach is to make the spin-wave perturba-
tion calculation using the directions, S, as the di8'erent
local quantization axes for each site. This is similar in
spirit to a spin-wave calculation for an antiferromagnet,
in which the classical ground state can have sets of spins
on the diferent sublattices aligned along di8'erent direc-
tions, and the perturbation analysis uses diferent coordi-
nate systems for diferent sublattices. Usually, to deter-
mine the spin-wave spectrum for some system, the small
amplitude spin deviations are assumed to be relative to
the local classical ground state directions. In the case

I
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FIG. 1. Pro6les of S vs distance r from the vortex center,

for single static out-of-plane vortices at the center of a circu-
lar system with 180 sites on a square lattice. The curves are
labeled by the diferent values of A. These results were ob-
tained by the relaxation procedure described in the text (Sec.
II), using a fixed boundary cond. ition as described in Sec. IV.

S = —S sin P —S"sin 8 cos P + S' cos 8 cos P
Sg = S cosP —S"sin8 sing + S' cos8 sing„,

To simplify the notation that follows, we write

mn sin On& p = cosO (2 7)

With this transformation, the Hamiltonian in the tilde
coordinate system is

here, the spin deviations are taken to be relative to a
state with one vortex, which is not the ground state,
but is a local energy minimum. Thus we rotate locally
into new coordinates at each site, where the new axes for
quantization of each site (z axis) are along the spin di-
rections for the relaxed vortex, while the new x axis lies
in the original xy plane [see Fig. (2)]:

a = —J) ) (S„*S*~ s(y'„—y' ) + S„S [m'„m' co.(y„' —y' )+ Ap'„p' ]
n m=n+a

+S„'S' [p„p cos(P„—&P ) + Am„m ] + [S„S"m —S„"S m„—S„S'p + S„'S p„]sin(P„—P )
+S„"S' [

—m„p cos(P„—P ) + Ap m ]+S'S" [ pm cos(P ——P ) + Am p ]) . (2.8)

The sums are over each bond in the lattice once. Sites
on the edge of a finite system will contribute less, due to
the smaller number of neighbors for those sites.

In what follows we impose semiclassical quantization
by considering the operators S*,S",S to be quantum
operators, satisfying the Heisenberg equations of motion:

ihS„= [S„,II],

with the standard canonical commutators,

S„,S" = ihS„b„ (2.10)

and its cyclic permutations. Because we are studying the
small amplitude deviations from the static vortex config-
uration, we need the equations of motion linearized in S
and S", with S S. Doing so, we obtain

FIG. 2. Diagram showing the relation between the original
xyz coordinate system, and the local coordinates, xyz, where
the z axis lies along the direction of the spin at a particular
site in the unperturbed vortex, and the a axis lies in the xy
plane.



52 NORMAL MODES OF VORTICES IN EASY-PLANE FERROMAGNETS 7415

S = JS ) (m sin(P —P )S
m=n+a

+[pOp cos(P„—P ) + Am m ]S"
—[m m cos(&g —P ) + Ap p ]S"j.

S„" = JS ) (m sin(P —P )S"
m=n+a

—[p p cos(P —P )+Am m ]S
+ cos(P —P )S

(2.11a)

(2.11b)

iurgu)q2 ——JS ) ( m—„sin(P„—P )mq
m=n+a

+[ 0 0 (yO yO ) + p 0 0
]

(2.14b)

For numerical diagonalization, the lattice sites are num-
bered in some arbitrary order, and then a vector can be
formed out of the m& and mA, variables as

7 t

B~ = ):(~~, S.*+~~,.S.") (2.12a)

together with the conjugate definition,

B~ = ) .(~~,'.S.*+~~, '.Sg) (2.12b)

Now we look for eigenstates or normal modes, in the sense
that we try to find operators which are linear combina-
tions of the S and S" operators, with a single-&equency
time dependence. Or, in quantum language, we look for
creation and annihilation operators B& and BA, in which
the Hamiltonian will be a sum of terms in the simple diag-
onal form B&BA, , where k is an index that distinguishes
the difFerent modes making up a complete set. While
the equations are solved for finite systems, the usual mo-
mentum is not a good quantum number, due to the lack
of translational invariance. But the modes will be dis-
tinguished by the effective wavelengths of the standing
waves present, and by the locations of nodes and antin-
odes in the wave functions or their squares. In any case,
we suppose the modes are ordered in some way, perhaps
&om largest to smallest frequency, and notated by an in-
dex k. Some modes may be energetically degenerate, in
which case k must denote more than just the frequency.
It is clear that this type of problem will produce pairs
of conjugate modes, BA, and B&t, and we suppose these
unknown operators are the linear combinations,

(
1 2 1 2 1 28)y ) tUg ) QPg ) QJg ) tUg ) 'Ng ). . . (2.15)

This will allow Eqs. (2.14) to be solved numerically
for the eigenvalues uA, and their respective eigenvectors,
given in terms of the coeKcients m and m . In this
notation, the matrix to be diagonalized is real, but not
Her mitian.

Once we have the complete set of these normal modes
and their eigen&equencies, the Hamiltonian will be ex-
pressed in the diagonal form;

H, = ) RugBqiBg,
A:

(2.16)

where Bp and B&t have equal &equencies, but with oppo-
site signs.

III. NORMALIZATION, SPIN EXPECTATIONS,
AND FLUCTUATIONS

The complete eigenspectrum will contain all the infor-
rnation needed to determine the expectation values and
fluctuations of the individual spins in the system, either
for a single spin-wave mode, or, for the system in thermal
equilibrium. To determine expectation values of the spin
components or their squares, we need to know S and S"
in terms of the normal modes BI, and B&t. This means
we need to invert the defining relations (2.12). First of
all, the overall normalization of BI, and B&t must be cho-

sen so that their commutator is unity, [B~,B&,] = b'I, I, .
From the definitions, we must require

BA, = 'L(dA Bg.t (2.13)

Using Eqs. (2.12) and (2.11) in Eq. (2.13) leads to the
following matrix equation for the coeKcients:

i~„m„'„=JS ) (—m' sin(yo —y' )~„'
m=n+a

+ (yO yO )
2

[
0 0 (yO yO )

+Am„m ]m„„j, (2.14a)

where the complex expansion coefBcients m& and m&

are to be determined. (This being a linear problem, there
should be no confusion that the superscripts "1"and "2"
are not powers. ) With the requirement of expiurgt time
dependence, where ~p is the unknown eigen&equency to
be determined, B&t must satisfy

[BI,Bq] = hS) [(ill', 'mI. ) + (imI, 'mq )']

(3.1)

S.* = ) .(e.',.B~+"..B.')
A:

(3.2a)

„=) (e„' „BI + e„' „B„')
Ic

(3.2b)

where S ~ S was used. We assume in what follows that
the m and n coeKcients are now rescaled to give the
unit normalization and unit commutator of BA. with B&
in Eq. (3.1). Then, the following inverse expressions are
assumed,
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[B~~, S„]= —ihu)i, „S„'= i hSm—t, „, (3.3a)

To determine the new coefBcients e & and e & in terms
t

of the m& and m& coefficients, one can form the com-
't t

mutator of Bt, or B&~ [Eqs. (2.12)] with S and with St',
glvlng

therefore do not appear here. The expectation values of
the BA, and B& operators will be determined by the type
of state, whether it be a state with one mode excited or
a therinodynamic ensemble of states (equilibrium state).
For example, if the state that we are perturbing &om
(single vortex) is denoted l0), then single-quantum ex-
cited states are denoted lk),

[Bi„S„]= i hurri,
—'„S' = —ihSt()1, „*, (3.3b) lk) = B„'lo). (3.8)

[Bq~, S„"]= iht()„„S„=ihSu)i, „, (3.3c)

[Bg, S„"]= ihti)i, *„S„'= ihSiot, „'. (3.3d)

[B„,S„]= —e„'~, [B~ S.*] = e.',~ (3.4a)

On the other hand, forming the commutator of BA, and
B&~ with S and S„" [Eq. (3.2)] leads to equivalent results,

The fundamental expectation values are (OlB&tBi, l0) = 0,
and (OlBi, B&l0) = 1. On the other hand, if the interest
is in a thermal ensemble, then. the expectation value re-
quired will be the Bose-Einstein occupation, (B&BI,) =
[exp (Pkuj, ) —1],where P = k~T is the inverse tem-
perature. It is clear that the expectation values of the S
components will be less than S as a result of Huctuations,
while the expectation values of S and S" will be zero.
As a result, it is straightforward to use Eq. (3.7) in the
coordinate transformation Eq. (2.6) to obtain the expec-
tation values in the original lab coordinates, i.e., the spin
is just reduced in effective length,

[B„',S„]= —.„'„, [B,S„"]= (3.4b) (S ) = (S') (cos 8 cos P, cos 0 sin P, sin 0 )

Thus there is the conversion between the coeKcients; = (S„')S„/S. (3.9)
e q

——ihSmA, „,

e I,
———ihSu)I, „,

2 1 e
~n, I = ~n, a~

4 3 e
~n, A; n, 7c

(3.5a)

(3.5b)

We also want to know the spin Huctuations associated
with some state. The spin Huctuations will be de6ned in
terms of squares of Cartesian spin components, relative
to the vortex state. For instance, the in-plane and out-
of-plane spin Huctuations are described by

As an application of these results, we can determine
the local magnetization for a site by finding an expecta-
tion value of the original lab kame spin components, to
quadratic order in the creation and annihilation opera-
tors. In order to do this, we 6rst need expectation values
of the spin components in the tilde coordinate system.
From their definitions, (S ) = (S") = 0, because these
are linear in Bg, and B&t. However, the z component will
be reduced slightly below S due to spin Huctuations of
the modes. In order to preserve the overall spin length
and the commutation relations of S and S" with S', it
is necessary to use the following expression for S' (as in
the standard Holstein-PrimakofP transformation):

((~S.'") ) = ((S.* —(S*))'+(S" —(S-")) )
((~S-"') ) = ((S:—(S:))'). (3.10)

((&S.'") ) = (S* )+(S" )»n'~'

((hS "
) ) = (S" ) cos 0„.

(3.11a)

(3.11b)

Making use of the expansion of spin components in the
operators BI, and BI,, Eq. (3.2), together with Eq. (3.5),
one can write the Huctuations in the tilde coordinates,

Using the definitions of the tilde coordinates, Eq. (2.6),
these are equivalent to

S„' = S — (S„—iS") (S + iS"„),2S (3.6) (S.* ) = (hS)').
I ',.l (».'B.+ 1) (3.12a)

where the latter terms are the spin lowering and raising
operators. Using Eq. (3.2) and Eq. (3.5), the expectation
value of this expression is (S." ) = (hS)'). l-,',.l (»,'B. + 1) (3.12b)

(S;) = S —
2 ) .El~~,.+ i~~,.l'(B~B~)

+lt(. „' „—it()„„l (B B„)),

where terms linear in the By and B& operators and terms
like (Bi,B&) and (B&~Bt) are zero in the unperturbed
(single-vortex) state and in single-quantum states and

((~C) ) = ("~)'):(1~41 + I~(,.l
»~'4)

x(2B~tB), + 1). (3.13a)

Finally, the resulting in-plane and out-of-plane Huctua-
tions are
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((~~„"') ) = (~~) ) le„,„l cos 8„(2BtB + 1) .

(3.13b)

IV. NUMERICAL APPLICATION

First, for a given value of A, the static vortex struc-
ture was found using the relaxation procedure described
in Sec. II. This static structure acquires nonzero out-of-
plane spin components for A ) A . Then, the eigenvalue
problem [Eq. (2.14)] was solved numerically for the eigen-
vectors and corresponding eigenvalues, for systems with
hundreds of sites. Because there are two variables per
site, the size of the matrix to diagonalize is 2N x 2N,
where N is the number of sites in the lattice. Calcula-
tions were performed for approximately circular shaped
systems, with the vortex centered in the system. For
these finite systems, there is a choice of either a free
boundary condition or a fixed boundary condition. For
the free boundary condition, the lattice is cut off along a
circular boundary, and then the sites on the edge of the
system simply have a lower coordination number than
those in the interior, and have a lower effective stifFness
as a result. For the fixed boundary condition, the set
of spins on the boundary of the system is coupled to an
extra set of spins that are outside the system, still on
the same lattice, but held 6xed in the directions that the
static in-plane vortex would give them. In this way, even
the spins at the edge of the system have the same coor-
dination number as those in the interior; however, they
are coupled to spins that do not move that are outside
the system. Therefore, this fixed boundary condition,
which is stiffer than the &ee boundary condition, tends
to give higher eigen&equencies. Additionally, the fixed
boundary condition results in values for A, that converge
faster to a limit with increasing system size, and for this
reason, most of the results reported here were produced
with fixed boundary conditions.

For a given system, the eigenspectrum was determined
for a sequence of closely spaced values of A between 0
and 1. An eigenvector for one value of A was projected
onto the eigenvectors for the previous value of A, and
then identi6ed with the one with which the overlap was
the greatest. This allowed the eigenfrequencies for the
different modes to be tracked as a function of A. For
a system with N sites, N modes of positive frequency,
corresponding to the B&t operators, resulted, along with
an equivalent set of N modes of negative frequency, cor-
responding to the conjugate BA, operators. Double pre-
cision was used so that degenerate pairs of eigenmodes
could be unambiguously identi6ed, a necessity for per-
forming the eigenvector overlaps.

1.0

0.0 I-

0.0
I

0.2
I

0.4 0 u 0.8 1. . 0

1.0

00[-
0.0 0.2 0 4 0 6 0 8 1 0

quency mode is the mode which becomes soft at some
& 1. On the other hand, when free boundary con-

ditions are used, there are also a few modes that can
lie below the soft mode, refIecting the greater freedom
of movement of the boundary spins; the lowest mode is
at u = 0, corresponding to a uniform rotation of all the
spins in the easy-plane, a motion that is frozen out by the
fixed boundary condition. Some typical spectra (ug for
B&~) for the two different boundary conditions are shown
in Fig. 3 for a 180-site system. For both types of bound-
ary conditions in Fig. 3, out-of-plane spin components
are present in the static vortex for A ) 0.70 —A .

There are some striking features of these results, which
are typical of all the eigenspectrum results for different
sized systems and lattices. Consider the Gxed boundary
condition [Fig. 3(b)]. One mode of the in-plane vortex
(the lowest mode) comes close to zero frequency as A ap-
proaches A from below. This mode is still present for
A ~ A, with the out-of-plane vortex as static structure,
and its frequency again rises away from zero. The spec-
trum suggests that this mode can be considered as a soft
mode that is responsible for the energetic instability of
an in-plane vortex to become an out-of-plane vortex, and

V. RESULTS: SQUARE LATTICE

Calculations on systems with 4 & N & 492 were made.
For the fixed boundary condition used, the lowest fre-

FIG. 3. Comparison of the lowest 19 modes in the
spin-wave spectrum for a square lattice circular system with
180 sites, containing an in-plane vortex at its center, with (a)
free boundary conditions, and (b) fixed boundary conditions.
Degenerate modes are marked with solid circles. The solid
and dotted lines are used only to distinguish nearby modes.
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actually several modes higher up in the spectra that also
come to downward cusps near A, while other modes show
no particular features near A .

We can also consider how the size of the system aKects
the low-&equency spectrum. For example, the lower part
of the spectrum for a system with 492 sites is shown in
Fig. 4(a). In general the low-frequency modes found for
the 180-site system are also seen in the 492-site system,
but slightly shifted in &equency. The same sets of twofold
degeneracies are also found, which are again related to
a symmetry in S for these modes of the in-plane vor-
tex. And, once again, there are modes higher up in the
spectrum with downward cusps at A = A, .

In Fig. 4(b), the low-frequency spectrum for the 492-
site system toithout a vortex is shown. The sites were
initially aligned in the xy plane ferromagnetically. We
find more or less the same sequence of nondegenerate and
degenerate modes, which do not split at any A. There is
no mode that goes soft, as expected, since the ferromag-
netic state is a stable energy minimum for 0 & A ( 1,
and there are no cusps.

For fixed boundary conditions, the soft mode for A &
A has been fit to the following functional form, as sug-
gested through the simple ansatz by Wysin:

LaP = ld gl —A/A~, (5.1)

0.5
I

where u and A are the fitting parameters. Generally, if
all the data where u ) 0 are used in the fit, this func-
tional form produces an accurate fit only for the smaller
systems, up to about 24 spins. More generally, we can
use only a limited number of the data points nearest to
the zero &equency point, and apply this form there to
estimate A . Some typical asymptotic fits are shown in
Fig. 5, for systems with 12, 68, and 492 spins. The val-
ues of A determined this way converge to a limit near
A —0.70 for the infinite sized system. The &equency of
the soft mode at A = 0, uo = u(A = 0) gives an. indication
of the overall &equency scale for this mode, and is shown

in Fig. 6 versus system size (numbers not obtained from
any fitting). The result is compared with an asymptotic
fit to the function, ~o ——6.92N . This is close to a
linear dependence on inverse system length.

The above results show how there i.s one particular
mode that goes soft for A ~ A, . To get a better idea of
the physical structure of this mode or any of the modes,
it is necessary to look at the associated wave functions.
Also, it is important to measure the spread of the wave
functions, to understand whether a particular mode is lo-
calized on the vortex or extended throughout the system.
For a system with 180 spins, the wave functions of the six
lowest energy modes are shown in Figs. 7—9, for A = 0,
A = 0.69, and A = 0.76, corresponding to well below A,
just; below A, and slightly above A .

In these diagrams, two squares representing the
squared wave function are plotted at each lattice site,
in order to present both the in-plane and out-of-plane
Buctuations for the selected mode on one diagram. The
area of the inner solid square is proportional to the out-
of-plane spin fluctuations for that site, as in Eq. (3.13b).
The area of the larger open square is proportional to
the total in-plane plus out-of-plane spin Huctuations, as
in Eq. (3.13). The difference of the two areas (the white
area outside the solid square, and inside the open square)
is proportional to the in-plane spin Quctuations, as in
Eq. (3.13a). For the soft mode (a), there is a substantial
increase in the out-of-plane Huctuations as A approaches
A, while the relative size of the in-plane Buctuations di-
minishes. For the other lowest modes, there are only
minor changes in the Auctuations with A. The mode la-
beled (b) is doubly degenerate, while (bl) and (b2) are
its two components that are split above A, (Fig. 9). Also
note that the orientation of the two components of this
mode is rather arbitrary, because there is an arbitrary
phase between the two modes involved. This is the cause
for the oblique angle of the line of nodes in mode (bl) in
Figs. 7 and 10.

For comparison, Fig. 10 shows the lowest modes on the
180-site system in the absence of the vortex, at A = 0,
starting instead &om a ferromagnetically aligned state.
Some modes, including the one that most resembles the
soft mode when the vortex is present, do not appear very
diferent whether the vortex is present or absent (for this
value of A far from A, ). On the other hand, some modes,
such as (b) and (d), clearly have amplitude at the vortex
core that is not present when the vortex. is removed.

To study the tendency of the vortex to concentrate a
mode near its core, we define the rms spread B, , of a
wave function using the total in-plane plus out-of-plane
Quctuations as a weighting factor, as follows:

0.0
0.0 0.2 0.4 0.6 0.0 1.0

FIG. 5. Asymptotic least-square fits (solid curves) of the
frequency of the soft mode (data points) for square lattice
circular systems with 12, 68, and 492 spins, using the func-
tional form u = u(1 —A/A, ) ~ . Only the data with A very
close to A were used to obtain the fitted curves. This func-
tional form fits well over the full range of A only for small
systems (N & 24).

(5.2)

In a similar way, the rms spread of the system itself can be
evaluated by using a constant weighting factor. For the
system with 180 sites that is discussed in Figs. 7, 8, and
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6.92 N0

FIG. 6. Size dependence of
the soft mode for square lat-
tice circular systems with N
sites, using fixed boundary con-
ditions. The frequency up of
the soft mode at A = 0 is shown
on a log-log plot, and compared
with an asymptotic fit to the
function, cc)p = 6.92N
This is close to a linear depen-
dence on inverse system diame-
ter.

1.0
I I I I I I I I I 1 I

2.0 2.5
log(N)

9, the rms spread of the system is 5.355 lattice constants.
The rms spreads of the lowest &equency wave functions
are shown in Fig. 11. There is a substantial reduction in
B, , for the soft mode as A ~ A, while for the other
modes there tend to be less drastic changes. Only mode
(bl), which crosses the soft mode (a) slightly above A„
shows a similar sized change. Because the soft mode has
an rms spread much smaller than the rms spread of the
system for A near A„we interpret this to mean that the
soft mode is a mode localized on the vortex, while the
other lowest modes are more extended over the whole
system. It is possible that there could be other modes
higher up in the spectrum which are also localized in this
sense, but it could be diKcult to detect them because of
the limited size of the systems that can be easily solved
numerically.

VI. RESULTS: TKIANGULAB.
AND HEXAGONAL LATTICES

For comparison, we have also calculated the spectra
for 6nite circular systems on triangular and hexagonal
lattices. The same methods as described above for the
square lattice were used, in which the primary physical
difference is the coordination number z = 6 for the tri-
angular lattice, and z = 3 for the hexagonal lattice. This
leads to the different values of A 0.62 for the trian-
gular lattice, and A = 0.84 for the hexagonal lattice, as
seen in the spectra shown in Fig. 12. These results are
completely consistent with the ansatz calculation for this
mode. There are substantial similarities in the spectra
for the different lattices, including the splitting of the de-
generacies for A ) A, the modes with downward cusps at
A = A, and the one component of the lowest degenerate

pair coming close to zero kequency somewhat above A .
On the other hand, the symmetries of the lattices lead to
small differences in the wave functions (not shown here).

VII. DISCUSSION AND CONCLUSIONS

Through numerical diagonalization of the spin equa-
tions of motion linearized about a nonuniformly magne-
tized state, we have found the spin-wave spectrum for
finite circular systems containing a single vortex at the
center. The spectrum shows some important dynami-
cal properties of individual magnetic vortices. The most
significant feature is the presence of a particular mode
[mode (a) in the figures] whose frequency comes close to
zero near A, and whose rms radius comes close to one
lattice constant at the same time. For A just below A,
such a localized mode has a time-dependent spin struc-
ture with radial dependence of its amplitude very similar
to the static out-of-plane vortex structure present for A

just above A, . This is suggested by comparing mode (a)
in Fig. 8 and the lowest curve (A = 0.71) in Fig. 1.
Thus, this mode is the precursor to the instability of an
in-plane vortex to become an out-of-plane vortex. This
idea is further supported by the fact that the rms radius
of mode (a) becomes comparable to the "vortex core"
radius of an out-of-plane vortex for A = 0.70, defined by

(7.1)

On the other hand, for A far below A„mode (a) bears
a lot of similarity to the lowest mode when there is no
vortex present. This can be seen by comparing Figs. 7(a)
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and 10(a). However, in the absence of the vortex, this
lowest mode undergoes no substantial changes as A is
increased, even through A .

We have found that some of the higher modes also have
strong changes associated with the vortex instability;
partial evidence is the downward cusps in the spectrum.
Additional evidence appears in the wave functions them-
selves. For example, mode (c) [third lowest in Fig. 3(b)] is
one of the modes with a cusp, and for A = 0, there is not
too much difference in this mode's structure, regardless
of the presence or absence of the vortex [compare Figs.

7(c) and 10(c)], except that the mode is more concen-
trated at the system center when the vortex is present.
However, this mode also concentrates itself additionally
onto the vortex core for A near A, just as mode (a) does,
as seen in Fig. 8(c). Presumably, the other modes higher
up in the spectrum that possess downward cusps in their
A dependences are also strongly afFected by the vortex
instability.

The crossover &om in-plane to out-of-plane vortices
exhibits itself in an even more obvious way. A significant
&action of the modes are degenerate for A ( A, but all
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of these degeneracies split for A & A . These degenera-
cies must be associated with a symmetry of the in-plane
vortex, that is broken in the out-of-plane vortex. For ex-
ample, consider the lowest degenerate mode, (b), in Fig.
3(b), for A ( A, . We might expect that a vortex in an
in6nite, continuum limit system would have a degenerate
pair of zero-&equency modes associated with translation
of its position in the two lattice directions. This pair
would then be shifted to Gnite &equency on the discrete
lattice, and when the vortex is additionally confined to a
Rnite system as we have here, they would correspond to

the two difFerent directions along which the vortex cen-
ter position could oscillate, rather than translate. But
clearly, with this interpretation there is some problem
to understand how this spatial symmetry could be bro-
ken in the out-of-plane vortex, or why the out-of-plane
vortex would not have a degenerate pair of translation
modes. On the other hand, it is known that the dynam-
ical response of the out-of-plane vortex to an external
force is substantially di8'erent &om that for the in-plane
vortex. This is because the gyrovector (vorticity times S'
at vortex core) of the in-plane vortex is zero, but for the
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out-of-plane vortex it is nonzero. However, one would
still need to explain the additional symmetries associated
with the other degeneracies as well.

A simpler way to view the degeneracies is that they
are most closely associated with symmetries of the in-
plane vortex in spin space, the most important of which
is that it is invariant under reversal of the out-of-plane
component, because that component is zero. Then, all of

the degeneracies must somehow be associated with the
symmetry of those modes under reversal of their out-of-
plane spin components, S —+ —S . For the in-plane
vortex, this is equivalent to S" ~ —S&. Once we have an
out-of-plane vortex for A ) A, the static vortex structure
has all S either greater than 0 or all S less than 0. Then
it is clear that the perturbations (specifically, S") about
that static structure cost diferent energies depending on
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whether they increase or decrease each 8, leading to a
breaking of the up-down S symmetry that was present
in the in-plane vortex. However, thinking this way, there
is still a problem to understand which of the modes would
be in degenerate pairs for A & A .

To obtain one more way to understand the degenera-
cies, we can plot the complete wave functions, including

the phase information. This can be done by drawing an
arrow in the complex plane for each lattice site, where
the length of the arrow is proportional to foal& f, and the
direction of the arrow is determined by the phase of m&
Similar arrows can be drawn for the other component of
the wave function, to& . For in-plane vortices, mA, rep-
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FIG. 10. Maps of the spin Quctuations in a square lattice system as in Fig. 7, but without a vortex present. In comparing
with Fig. 7, modes (bl), (b2), and (d) there have extra Quctuations present due to the vortex, at its core, not seen in the
absence of the vortex.
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(e)

(c
(ba)

0
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 11. The rms spreads of the 6 lowest frequency wave
functions for the square lattice system with 180 sites, versus
anisotropy parameter A. The letters refer to the modes shown
in Figs. 4—6. For the lattice itself, R, , = 5.355, while the
radius of the system is about 8 lattice constants.

resentation of the two modes (bl) and (b2) is shown in
Fig. 13, for A = 0.40, well below A . Here we clearly see
the distinction between these degenenerate modes, which
is made in terms of the phase of the spin-wave and the
way it changes around the center position of the vortex.
Mode (b2) has the phase of both components ts& and

mA. changing in the positive sense around the vortex
7

center, while mode (bl) has the phase of both compo-
nents changing in the negative sense around the vortex
center. Of course, this representation is not unique; we
could make linear combinations of these two modes and
produce equivalent wave functions that do not have this
"vortexIike" and "antivortexlike" appearance, but which
would produce squared wave functions more like those
already shown for A = 0 in Figs. 7(bl) and 7(b2).

This representation has the great advantage that it
contains the physical explanation of how the symmetry
is broken; for A ) A, once there are static out-of-plane
spin components, the two diferent senses of change in

resents the in-plane spin Huctuations, while m& repre-
sents the out-of-plane spin Huctuations. For out-of-plane
vortices, m& represents only a part of the in-plane spin

'l

Huctuations, while wI, represents a combination of out-
of-plane and in-plane spin Buctuations, depending on the
static out-of-plane spin structure. This interesting rep-

(b 1) A==0. 40

0-,
0.0 0.2 0.4 0.6 0.8

T ~ ~ $ ~~ T~ ~ I~ T

(b)

(b2) X --0.40

0.0
0.0 0.6

FIG. 12. Normal mode spectra (lowest 19 modes) of cir-
cular systems containing a vortex at the center, with fixed
boundary conditions, for (a) triangular lattice with 174 sites;
(b) hexagonal lattice with 192 sites. While many features of
these results also appear in Fig. 2, the different values of A

are notable.

FIG. 13. Wave functions for the lowest degenerate modes
(bl) and (b2) in the 180-site square lattice system with a vor-
tex at the center, at A = 0.40, well below A . The line-head
arrows are the complex amplitudes mI, , and the hollow-head
arrows are the complex amplitudes m& . The relative sizes
and phases of these amplitudes are preserved in these dia-
grams. m& relates to the out-of-plane spin Quctuations, and
m& relates to the in-plane spin Huctuations. The frequency
of these modes is cujJS=0.6776.
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the spin-wave phase are not equivalent. Then mode (bl),
with its phase changing in the negative sense around the
vortex center, falls lower than mode (b2). The two wave
functions are shown in Fig. 14, for A = 0.71, just above

Once there are nonzero S spin components in the
static vortex structure, this lack of equivalence for the
two senses of rotation of the phase is very reasonable.
It can also explain the higher degenerate pairs, because
they also have the spin-wave phase changing smoothly
as one moves around the vortex center, some with higher
minding number8 —the phase change of the spin-wave in
these cases changes by 2mn, where n is an integer (see
Fig. 15). Furtherinore, this viewpoint shows why all of
these degeneracies are split at A, because the plus and
minus senses of rotation of the phase are not equivalent,
no matter what the winding number. Conversely, the
modes that do not occur as degenerate pairs do not have
a slow change in the phase around the vortex center.
This new effect might be described as a coupling of the
vorticity of the original vortex to the winding number of
the phase of its spin-wave excitations. Further details on
the forms and characteristics of these wave functions will
be published elsewhere.

There are some finite size and boundary effects in

these results that cannot be avoided, but that do not
invalidate the results. For example, the choice of fixed
boundary conditions eliminates the Goldstone mode re-
lated to global rotation of the spins in the XY plane
that is present for free boundary conditions. However,
the fixed boundary condition has the advantage that it
reduces the spin fIuctuations at the boundary, whereas
the &ee boundary condition artificially enhances those
'boundary fIuctuations. These are minor differences. The
efFect of the finite sized system, for the most part, can be
understood to produce a finite frequency spacing between
the modes that becomes smaller as the reciprocal system
length. This causes the &equency scale of the soft mode
(a) at A = 0, in Fig. 6, to go to zero for the infinite sized
system, which is partly an artifact of the calculation, be-
cause this is the lowest mode for fixed boundary condi-
tions. For the free boundary conditions, this soft mode
lies higher up in the spectrum. In a real system of phys-
ical interest at some temperature above the Kosterlitz-
Thouless temperature, we could not consider an isolated
vortex and its normal modes, because entropic effects
would always produce a length scale (i.e., correlation
length) at which the nearest-neighboring vortex would
be found. Thus, it may not be necessary to consider

(b1) 3.=0.71
(b1) X=0.40

ck Ct&

~CA %—W

(b2) P =0.71 a=0.5062

FIG. 14. Wave functions for the modes (bl) and (b2) in
the 180-site system with a vortex: at the center, as in Pig.
13, but for A = 0.71, just above A, where they are now
nondegenerate. Mode (bl) has frequency fbi/JS = 0.4203,
and mode (b2) has frequency urbg/ JS = 0.5062.

(h2) A =0.40 ~ =- 1.267

FIG. 15. Wave functions for the third lowest degenerate
pair of modes of the 180-site system with a vortex at it center,
as in Fig. 13, at A = 0.40. The frequency of these modes is
&u/ JS = 1.267, and they have winding numbers —3 and +3.
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the infinite sized system limit, because the neighboring
vortices will produce an effective finite length scale over
which we might think that the vortex is restricted.

In conclusion, we have found a rich structure in the
spin-wave modes of an individual vortex, and have shown
how these modes are related to the instability of in-plane
vortices to become out-of-plane vortices at A . This in-
formation can be valuable for improving the description
of the dynamics of interacting vortices in t~zms of their
positions, and the internal vibrational motions we have
found. Because this is a zero-temperature single-vortex
calculation, we can only speculate that it might be possi-
ble for the vortex instability to affect dynamical correla-
tion functions. If there is an effect, it would be most

prominent in the correlation function 8"(q, a") of the
out-of-plane spin components, especially for a material
whose anisotropy constant A is near A . It will be a fu-
ture challenge to consider whether the &equency spectra
we have found can be related to these dynamic correla-
tions in thermal equilibrium in a quantitative way.
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