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Magnetic properties of disordered Ising systems with various probability distributions
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The disordered Ising spin-2 systems on square and simple cubic lattices are investigated with three

types (the Handrich-Kaneyoshi s, the Gaussian, and the rectangular) of probability distribution of the
exchange integrals. The general expressions of average magnetization for various distributions are de-
rived by means of the differential operator technique. The Curie temperatures Tc of the systems are cal-
culated with the use of the effective-field theory, the correlated effective-field theory, and the improved
correlated efFective-field theory (ICEFT), respectively. The dependence of Tz upon the parameter 5,
characterizing the fluctuation of the exchange integrals is given. It is obtained, under ICEFT, that for
the case of the square lattice, these distributions give almost the same results and no reentrant phenome-
na occur, while on the simple cubic lattice, the reentrant phenomena only exist under the discrete distri-
bution.

I. INTRODUCTION

Much attention has been paid to the investigation of
disordered Ising systems in which the disorder is
represented by the randomness of the exchange integrals.
Various methods have been used to discuss disordered
ferromagnetic or ferrirnagnetic Ising systems, such as the
effective-field theory (EFT),' the finite cluster approxi-
mation, ' and the Mastudaira approximation. The
differential and the integral operator techniques are also
developed. In all these investigations the disorder of the
exchange integrals J," is described by the Handrich-
Kaneyoshi (HK) type probability distribution function,
according to which J; may only take two discrete values.
Although the EFT is quite simple and better than the
molecular-field approximation and has got many useful
results for various spin systems, it is still far less satisfac-
tory, because it approximates the average of the product
of spin variables to the product of the average of the sin-
gle spin variable, and thus neglects all the multispin
correlation functions. Kaneyoshi et al. ' '" introduced a
better approximation —the correlated effective-field
theory (CEFT). This theory uses a correlated effective-
field parameter to partially consider the spin-spin correla-
tion. Its results are equivalent to the Bethe-Peierls ap-
proximation.

Recently more accurate theories, namely the improved
correlated efFective-field theory (ICEFT) (Ref. 12) and the
equivalent crystal transformation (ECT) (Ref. 13) were
applied to the disordered Ising systems and obtained
some results. Take the reentrant magnetism phenomena,
for example; there are interesting conclusions. For a
square lattice, the phenomena exist in EFT and CEFT.
But with the increase of calculation accuracy, they disap-
pear in ICEFT and ECT.' For a simple cubic lattice, the
case is just the opposite —they do not exist in EFT and
CEFT, but occur in ICEFT. ' (For the simple cubic lat-
tice, ECT, which is based on the exact result for an ideal

system, cannot be used. )
Also recently some continuous probability distribution

functions of the random exchange integrals J; were in-
troduced, namely the Gaussian type' and the rectangu-
lar type functions. With the help of the integral opera-
tor method, these functions were applied on a square lat-
tice. The results were compared with those obtained with
the HK function.

In this paper S=—,
' disordered Ising systems will be

studied on the square and simple cubic lattices with the
J;J of the HK type, the Gaussian type, and the rectangu-
lar type probability distribution functions, respectively.
The differential operator technique will be used. We will
derive the general expressions of the average magnetiza-
tion. The derivation procedure is much simpler than that
in previous investigations using integral operator tech-
nique. Furthermore, we will calculate the Curie tempera-
tures of the systems in the framework of EFT, CEFT,
and ICEFT, respectively, and compare the results ob-
tained.

II. THEORY AND APPLICATIONS TO SQUARE
AND SIMPLE CUBIC LA I I'ICES

where S;=+1 is the spin variable on site i, J;~ is the ran-
dom exchange integral between sites i and j, and is de-
scribed by the probability distribution function P (J;J ).
The summation takes all the nearest-neighboring pairs i
and J.

For the disordered Ising spin- —,
' system, the exact Cal-

len identity is'

((s,. )),=((tanh sg J„.s, ))
(2)

The Hamiltonian of a random disordered Ising fer-
romagnetic system is written in the form

H= —
—,
' g JJS;SJ,
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z

((s;)),=((exp x J; s D tanh(fix)~~,
j=1 p

where z denotes the coordination number of the lattice.
According to the well-known relation for S=

—,',

exp(J; S D)=.cosh(J; D)+S sinh(J;. D),
we may write

(3)

where the summation takes all the nearest-neighboring
spin sites of i and (( ))„refers to double averaging, name-
ly the ensemble ( ) and the random configurational ( )„,
concerning spin and random exchange integrals, respec-
tively. Introducing the difFerential operator D=I3/Bx,
we can rewrite Eq. (2) as

A HK probability

In this case

P(J; ) = —,
' [5(J; —J—b, ) )+5(J; —J+b, , )], (10)

(cosh(DJ 1 ) )„=cosh(DJ)cosh(D5, ),
( sinh(DJ; ))„=sinh(DJ)cosh(DE)) .

where J and 5& represent the mean value and the stan-
dard deviation of the exchange integrals J;J, respectively.
Although the concrete forms of E„,with HK probability
have been obtained in Refs. 14 and 15 for square and sim-
ple cubic lattices, we will derive its general form.

With Eq. (10) we have

exp J,"S.D

~

~

~

z

g [cosh(J; D)+SJ sinh(J; D)]
j=1 T

(5)

The coefFicients K„, can be expressed as

K„,=cosh' "(DJ)sinh"(DJ)cosh'(Db, () tanh(px ) l

Here we will, as usual, make the following approxima-
tions described in Ref. 17: (i) the configurational average
of spins and exchange integrals is taken independently
and (ii) the exchange integrals J," for different j are also
independent of each other. Thus Eq. (5) can be written in

the form

z/2
cosh'(x) = g laq" lcosh(2qx ), (12)

where

The function cosh'(x ) for even z can be written as the fol-
lowing expansion:

((s, ))„=g K„,
n=1 J)~J2 »J„ =1

(j( (j~, . . . ,j„)

&(s, ,s,, s,„))„, (6) 2—5 o z
(z) qio

( 1 )z/2 —q
z 12 Z

2

in which

(13)

where all the spins SJ1,Sj2 Sj are the nearest neigh-
bors of S;, and the coe%cients E„,are defined as

K„,= ( cosh(DJ~ ) )'„"(sinh(DJ 1 ) ) "„ tanh(px ) l „
(7)

Because tanh(Px ) is an odd function of x, only odd n ap-
pear in X„,for square or simple cubic lattice.

For a square lattice, z =4, we have

((s, ))„=4K„((s,))„+4K„((s,s,s, )), .

For a simple cubic lattice, z =6, we have

« s, » „=6K„«s, ))„

1, q=O
qo 0 q~0

and ()&z,
'

) is the binomial coefficient.
The function cosh' "(x ) sinh"(x ) for even z and odd n

can be expressed in the expansion
z/2

cosh' "(x)sinh"(x )= g b'"'sinh(2px ) . (14)
p=1

The coefticients b'"' can be obtained by differentiating
both sides of Eq. (12) n times with respect to x. Here we

only present some of them which will be used later:

b())—P la(z)l
p z ap

+4K (3((S,S S ))„+2((S,S S ))„)

+6K ((S S S S S )), ,

b(3)—
p

b(5)—
p

i=0

2p

(z —i)

2p

[(2p )' —(3z —2)] la,"I,

[(2p ) —10(z —2)(2p )

(16)

where S1,S2, . . . , S5 are all the nearest neighboring spins
of S;. The spin sites 1, 2, 3, and i are situated on a same
plane, but 1, 3, and 5 are not. (See Figs. 1 and 3 in Ref.
12.) Now we will derive the formulas of K„, for difFerent

probability distribution functions P(J, ). The following"
derivation will be restricted in odd n and even z.

i =0

+15z —50z+24]la~" l
. (17)

Using Eqs. (12) and (14), and noticing e f(x )
=f(x + a ), we obtain
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z/2 z/2

p=1 q=0
(18)

where

g~~
=tanh[p(2P J+2q 6, )]+tanh [p(2pJ—2q 5, ) ] . (19)

Equation (18} is the general expression of K~ for any
even z and odd n in the case of HK type function of J,-..
When 6,—+0 we have g =2 tanh(2pPJ), irrelevant to q,
and

where J and 52 are the mean value and the standard devi-
ation of J;z, respectively. With the help of Eq. (27), we

may obtain

( cosh( DJ; ) )„=cosh(DJ )exp(D b,z/2 ),
(sinh(DJ J ) )„=sinh(DJ )exp(D hz/2) .

The coefficients K„, can be written as

K„,=cosh' "(DJ)sinh"(DJ)exp(zD bz/2)

z/2

q=0

Xtanh(Px)i„o .

Having in mind the relation

(28)

z/2
K„,= g b~"'tanh(2PpJ) .

p=1
(20)

exp(zD b,z/2) = f~2~z S, exp
t 2

+Dt dt
2zh2

and eD'tanh(px ) =tanh[p(x+t)], we have

It is nothing but the coeKcients E„,for an ideal Ising sys-
tem. "

For a disordered square lattice, the coe%cients a" and
b'"' are calculated from Eqs. (13) and (15)—(17): ao ' =—'„
Q1 — Q2 —and b'" = —b' ' =—,', b"' =b'

1 1 g& 2 2

therefore

1
K14 5 [3g2 0+4 gzl +g22 +2( 3gio+4 gll +gi2)], (21)

1
K34 5 [3g20+4g21+gz 2 2(3gio+4gii+gi2)] . (22)

For a disordered simple cubic lattice, a o
' =

32,
& (6) —1s (6) — 6 (6) —l nd g (1) —y (&) —5

b(3) 3 b(1) = —~(5) =
—,
'„~(3)=0, ~(1) =b

32 Therefore

f" exp
2nz b2

t'
+Dt dr cosh' "(DJ)

2zh2

Xsinh" (DJ )tanhp(x +.r ) i

By the use of Eq. (14),

z/2
K..=-,' g b,'"'f P(r, &z b,,)[tanhp(t+2PJ)

p=1

tanhp(—t 2pJ )]d—t,
(29)

= 1Ki6= ii (56i+462+G3),211

1K36= „(—36, +63),211

1K56= ii (56i 46z+63),211

where

6 =10g o+15g 1+6g 2+g&3 .

(23)

(24)

(25)

(26)

where P(t, 't/z hz) is defined as Eq. (27). From the
definition of P(t, &z b,z), we know that when b.2 —+0 it
tends to a 5 function 5(t ); K„, thus reduces to Eq. (20) as
expected.

For a square lattice, with the value of b'"', we have

Ki&= ,' f P(t—,252}Itanhp(t+4J) —tanhp(t —4J )

+2[tanhp(t+2J )

Equations (21)—(26) were also obtained in Refs. 14 and
15; now we have derived a more general and concise for-
mula for K„, in Eq. (18).

B. Gaussian probability

—tanhp( t —2J ) ] ]dt,
K34= ,' f P(t,—282)Itanhp(t+4J) —tanhp(t —4J)

—2[tanhp(r +2J )

—tanhp( t —2J ) ] j dt .

(30)

(31)

In this case

P(J")=P(J J b, )= e— " (27)

These expressions are the same as those in Ref. 16 by the
use of the integral operator method. Our derivation is
not only inuch simpler, but the general form of K„, (for
even z and odd n ) is given in Eq. (24) as well. For a sim-
ple cubic lattice,
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K,6= —,', f P(t, ~6hz)[tanhP(t+6J) —tanhP(t —6J)+4[tanhP(t+4J) —tanhP(t —4J)] .

+ 5 [tanhP( t +2J ) —tanhP( t —2J ) ] ]dt,
K3s =

—,', f P ( t, v 6hz) j tanhp( t +6J )
—tanhp( t —6J ) —3[tanhp( t +2J ) —tanhp( t —2J ) ] I dt,

0

IC„= ,', f—P(t,&6b,,) [tanhP(t+6J )—tanhP(t —6J)—4[tanhP(t+4J ) —tanhP(t —4J )]

+5[tanhP(t+2J) —tanhP(t —2J)]]dt .

7263

(32)

(33)

The distribution function is'

1/(24, ), J—6, &J,, & J+b, ,PJ" ='
0, elsewhere,

C. Rectangular probability

(35)

where J and 263 are the mean value and the width of the probability distribution, respectively. With the help of the
function P(J/) we have

(cosh(DJ; ))„=cosh(DJ)sinh(Db3)/(D53),

(sinh(DJ 1 ) )„=sinh(DJ)sinh(Db3)/(D63) .

The coefficients X„,can be expressed as

X„,=cosh' "(DJ)sinh" (DJ) sinh'(D b3)tanh(Px )
~

(D&3)'

Noticing (for even z )

z/2
sinh'(x ) = g a "cosh(2qx ),

q=0

where a" are given in Eq. (13) and applying the Laplace transformation for D

D 1 ~z —1eDtdt
(z —1)! 0

we have

1 sinh'(D b,3)tanh(Px )
(D53)'

(36)

(37)

(38)

g (z)
z/2

2(z —1)!b,3 q o
tanh[p(x —t)][(t—2qb3)' 8(t —2qb3)+(t+2qb3)' '8(t+2q&3)]dt, (39)

where 8(t) is the Heaviside step function,

0, t(0
1 t 0

Substituting Eq. (39) into (36) and using (14) we get
z/2

b~"' f f, (t )[tanhP(t+2pJ) —tanhP(t 2pJ)]dt, —
P

00

where the function f, (t ) is defined as

f,(t)= g a ' [(t 2qb3)' 8(t 2q—h3)+(t+2qb3)' —'8(t+2qb3)],1

2(z —1)!a;, , '

(40)

(41) .

(42)

which is an even function of t. Because of the step functions the integration in Eq. (41) actually only takes from —zh3
to zh3, then

z/2 zb 3
K„,= g b~"'f f,(t)[tanhP(t+2pJ) —tanhP(t 2pJ)]dt . —

p=1
(43)
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It can be proved that f,(t ) has the following properties: when 53~0, f,{t)~~ and

I f, (t)dt =1, (44)
0

i.e., f,(t) is a 5 function when 53~0. The proof is presented in the Appendix.
From Eq. (43) we know that only the function f,(t ) in the range 0 & t &zb, 3 need to be considered. For z =4 and 6

they are, respectively,
—(t —4b, ,)'+(t —2b, ,)', 0 & t & 2h,

f4(t)=
3!(2+3) (t —463), 2b 3 & t & 463

6(t)= 1

5!(2b, )

—(t —6b, ,)'+6(t —4b, , )' —15(t —2b, , )', 0 & t & 2h,
. —(t —6b, 3) +6(t —463), 2b, 3 & t &463
—(t —6&, )', 4b, , &t&65, .

The expression (43) is similar to Eq. (29) in the case of the
Gaussian distribution, only the function P(t, ~z b.2) and
the upper limit (x) of the integration are replaced by f,(t )

and zh3, respectively. Therefore we may easily write
down the expression of K,4, K34 and E &6, E36, E56 from
Eqs. (30) to (34) with the above replacement.

Although the formulas E„, for z =4 have been derived
in Ref. 17, here we, by the use of simpler methods,
present the general expressions of K„, (43) and f,(t ) (42)
for odd n and even z. Of course, it is not difticult to get
more general expressions of E„, for any integers n and z
by means of similar methods. Having obtained K„, for
various probability distribution functions of J;, we can
calculate the average magnetization ((S;))„—:p in each
case in terms of various spin-spin correlation functions
from Eqs. (8) and (9) and investigate the properties of the
Ising systems on square and simple cubic lattices.

III. APPROXIMATIONS

From Eqs. (8) and (9) the average of a single spin vari-
able is related to the average of the product of more spin
variables. The latter will be related to even more spins
according to the following identity

((g(s;)s;)),=((g(s, )tanh sz J~.s.
ll

where g(S;) is any function of spin variables except St g

Hence in order to get a closed set of a few equations,
some appropriate approximations must be made. Three
decoupling techniques, namely EFT, CEFT, and ICEFT
were used to calculate the Curie temperatures of the ideal
Ising systems' and of the disordered systems in the case
of HK type probability on the square'" and the simple cu-
bic' lattices. Now these methods will also be applied to
evaluate the Curie temperatures Tc in three probability
distributions of the exchange integrals.

(i) EFT. All the multispin correlation functions are ap-
proximated as the products of single spin averages. All
the ((S; ))„"=p"for n ) 1 are neglected when the Curie
temperatures are considered.

=
As& + (1—A, )p, (46)

where SJ and S& are the nearest-neighboring spin vari-
ables inside and outside the cluster, respectively, and A, is
the correlated effective-field parameter. With the help of
Eqs. (46) and (45) the set of simultaneous equations for
determining the Curie temperatures Tc can be derived
and found in Ref. 12.

(iii) ICEFT. It is an improvement on CEFT. If the
spin Sk outside the cluster has two equal nearest-
neighboring spins SJ &

and S~2, both inside the cluster, it is
better to change Eq. (46) to

s„=«s,»„+ ) zt(s, , —«s, , »„)+(s,,—«s, ,»„)]
=

—,'A(SJ&+Sjz)+ (1—A, )IM . (47)

The set of equations for Tc can also be derived with the
use of Eqs. (47) and (45). It can also be found in Ref. 12.

According to Eq. (10) or (ll), the closed set of equa-
tions for evaluating Tc is the same for each distribution,
even for ideal systems, only the concrete forms of E„,are
di6'erent. These equations are quite lengthy and will not
be written here. They can be found in Ref. 12 with only
the replacement of various E:„, by Eqs. (21)—(25),
(30)—(34), and (43) for corresponding cases. These equa-
tions can only be solved numerically.

IV. RESULTS AND DISCUSSIONS

For the sake of comparison of the results in three dis-
tributions we introduce a unified parameter 6 and discuss

{ii) CEFT. It is a z+1 spin cluster approximation.
The cluster consists of a central spin i and all its nearest-
neighboring spins. Any spin correlation functions about
spins in the cluster are undecoupled and calculated with
the use of Eq. (45). Any spin not in the cluster appearing
in correlation functions is approximated to only one spin
in the cluster according to the formula'

s, = «s„»„+x(s,. —«s,. »„)
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its inhuence upon Tc, where 6 is the standard deviation

of each distribution and defined as Q((J;-—J) )„. The
values of b, are equal to b, &=b,z=b, 3/&3. Figure l
shows the dependence of the reduced Curie temperatures
k~ Tc/J upon the parameter 6 on the square lattice. As
can be seen, for small 6, three curves for various distribu-
tions and each approximation can hardly distinguish
from each other. When 5~0, k~Tc/J tend to 3.089,
2.885, and 2.281 for EFT, CEFT, and ICEFT, respective-
ly. These values are the corresponding ones of the ideal
Ising systems on the square lattice for three approxima-
tion. ' The behavior of the curves when b, ~0 is due to
the fact that any probability distribution function dis-
cussed here reduces to the 5 function 5(J;.—J) and the
systems become ideal, without randomness.

Under each approximation the Curie temperatures are
always the largest in the Gaussian distribution and the
smallest in the HK type. When EFT or CEFT is used,
with the increase of 6 the difference among various dis-
tributions is getting larger. In particular, there appear
reentrant phenomena under the discrete distribution, but
they do not exist under the continuous ones. This
behavior, however, cannot be deduced to the difference

haTc /S

between the discrete and continuous distributions. When
the more correct approximation ICEFT is applied, no
reentrant phenomena exist and the three curves are very
close to each other. Therefore it seems unnecessary to
distinguish these distributions. In other words, the sim-
plest HK type can be regarded as a good description of
the randomness of the exchange integrals in the disor-
dered square Ising systems.

Figure 2 presents the same dependences as Fig. 1, but
on the simple cubic lattice. As shown also, for small 5,
three curves for various distributions under each approxi-
mation become identical. When 4—+0 they tend to the
same values: 5.076, 4.933, and 4.663 for EFT, CEFT, and
ICEFT, respectively. They are also the corresponding
values of the ideal Ising systems on the simple cubic lat-
tice. '

Similar to the result of the square lattice, the Curie
temperatures in the Gaussian distribution are mostly the
largest. Under EFT and CEFT, the difference between
the discrete and continuous distributions is remarkable.
The curve of the former first is concave, then changes to
convex, while the curves of the latter are always concave.
For ICEFT the difference is not very great except within
a small range of 5, 1.5&5 &1.549, where the discrete
distribution shows the reentrant phenomena.

In this paper we investigated the disordered Ising sys-
tems, in which the disorderness of the exchange integrals

es--

0.4

\ ~

li
'L'- 1 ~

l; l:
l:~ ~

'I'. l ~

1.2 1.4

3

FIG. 1. The dependences of the reduced Curie temperature
k&Tc/J upon the parameter 5/J on a square lattice. The
letters 1, 2, and 3 on the lines refer to EFT, CEFT, and ICEFT,
respectively. The HK, Gaussian, and rectangular distributions
are represented by solid, dotted, and dashed lines, respectively.

0.2 0.4 o.e O.O 1.2 1.4 1.d 1.O 2
h/4

FIG. 2. Similar curves to Fig. 1 but on a simple cubic lattice.
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is represented, respectively, by three different probability
distribution functions: the HK type, the Gaussian type,
and the rectangular type. By the use of the differential
operator technique, we derived the general expressions of
the coefficients K„, which connect the average of various
number of spin variables in each case of distribution.
The infiuence of parameter b, (standard deviation of each
distribution) of the exchange integrals upon the Curie
temperatures of the systems is studied. For a square lat-
tice, the results of the ICEFT approximation are almost
the same for various distributions. We may conclude
that the simplest HK distribution is a quite good descrip-
tion for the randomness of the exchange integrals if
ICEFT is used. For a simple cubic lattice the ICEFT is

APPENDIX

(i) By differentiating Eq. (37) 2m times (m —integer)
with respect to x, then letting x =0, we may easily get

i/2 0, 0+2m (z
(z)( )2m

q=0

(ii) To prove Eq. (44),

(A 1)

also a good approximation. The discrete and continuous
distributions have different inQuence upon the Curie tem-
peratures. The reentrant phenomena only occur under
the discrete distribution within a small range of h.

1 i/2

f f,(t)dt = g aq" f (t 2qb3)' '—dt+ f (t+2qb3)' 'dt
3 q=O

1 i/2 a" t —2q 3' '+ t+2q 3' ' t
2(z —1)!h3 '~3

q o

1 i/2 . id, , ih3
+ g aq" f (t 2qh3—)' 'dt+ f (t+2qb3)' 'dt

2(z 1 )!h3 =o
—2qb, 3

The first summation of the right-hand side is equal to zero from Eq. (Al). Completing two integrations in the second
summation of the right-hand side, we get

i/2

f f,(t )dt = g a "[(z+2q )'+(z —2q )'] .
oo 2z o p

Expanding (z+2q)'+(z —2q)' we know from Eq. (Al) the summation is equal to 2g'~~oa "(2q)'=2z!; thus Eq. (44)
has been proven.
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