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Gradual freezing of orientational degrees of freedom in cubic Ar1 (Nq) mixtures

M.H. Muser and P. Nielaba
Institut fur Physik, Johannes Gut-enberg-Unioersitat, KoMa 882, D $50-99 Mainz, Federal Republic of Germany

(Received 9 February 1995)

The mixed crystal Arq (N2) is studied by Monte Carlo (MC) methods for x = 0.33, 0.67,
and 1.0 over a wide range of temperatures. For x = 1 we find a first-order transition from ordered
cubic to disordered cubic, while for x = 0.33 and x = 0.67 we find broad nonuniform distribution
functions of the local quadrupolar Edwards-Anderson order parameter at low temperatures. The
short-range order of the quadrupolar mass distribution of the Nz molecules in the mixed systems is
difFerent from that observed in the pure Nz crystal, although the fcc symmetry has been chosen for
the translational degrees of freedom. Quantum efFects and the eifects of the translational rotational
coupling are quantified by path integral MC and classical MC, respectively.

Orientational glasses (OG's), such as
(para-H2) q ~ (ortho-H2) ~, (Ar) q ~(N2) ~, and
(KBr)y (KCN), exhibit some features which distin-
guish them &om other types of glasses like canonical
glasses or spin glasses on the one hand and molecular
solids on the other hand. The main characteristic of
OG's from a structural point of view is the presence of
an underlying crystal lattice for the mass centers of the
molecules and atoms, and the absence of a long-range or-
der of quadrupole moments associated with the molecules
even at very low-temperatures. A lot of experimental
data, like di8'raction spectra, low-temperature specific
heat, mechanic modulus C44, and NMR data, are avail-
able (for a review see Ref. 1) and many of these data show
unusual behavior. Some of these data are interpreted
in terms of computer simulation and concepts like mean
field theories and random bond and random stress models
(for a review see Ref. 2). Many aspects of the theoretical
descriptions, however, lack a realistic microscopic mod-
eling and. even in simulations the quadrupole-quadrupole
interaction is mostly realized by an ad hoc distribution
of coupling parameters between neighbored quadrupoles,
so that competing interactions are introduced. analog to
spin glasses.

A key quantity to microscopically characterize
quadrupolar glasses (QG's) is the distribution P(o) of all
local orientational order parameters o, = 1imt~ g;(t),
where g, (t) is the time autocorrelation function,

of the quadrupole moment tensor ff"(t) = n,. (t)n,". (t)—
h" /3, where n,". (t) is the pth Cartesian component of
the unit vector, describing the orientation of the ith
molecule, and b~ being the Kronecker symbol.

The distribution P(o) has been obtained in an
early NMR study of a hcp Arq (N2) solid mixture
(x=0.67) . Broad nonuniform distributions, smoothly
evolving with the texnperature, have been measured and
their characteristics seem to have a general character
for QG's, since quantum solid (para-H2)q (ortho-H2)~

shows a very similar behavior. Li et al,. presented a phe-
nomenological model for the distribution function P(cr),
ignoring lattice vibrations and using normally distributed
site energies. The obtained distributions are qualita-
tively similar to the measured ones, but they also show
some systematic deviations of the available experimen-
tal data. Devoret and Esteve presented a Monte Carlo
(MC) study of a highly idealized model where the de-
scribed behavior of P(o) could be found. However, only
quadrupole-quadrupole interactions had been taken into
account, ignoring the coupling of the orientational de-
grees of freedom to the translational degrees of freedom.
Within this model, cooperativity of the reorientational
diffusion could therefore not be found at low N2 concen-
trations even at very low temperatures. Even in more
recent MC studies, ' where the site-averaged Edwards-
Anderson-type order parameter o.EA = [O'I is computed,
the coupling of the molecules to each other and to the
crystal field as well as to the translational degrees of &ee-
dom is treated in a rather phenomenological way. Thus
computer simulations using realistic potentials are highly
desirable, in order to get a more detailed microscopic un-
derstanding of the freezing-in process of quadrupole mo-
ments.

In this paper we present Monte Carlo data of unmixed
and. randomly mixed molecular crystals, containing linear
molecules and point particles, interacting via Lennard-
Jones potentials, whose parameters already have been
used in a molecular dynamics simulation by Klee et al. ,

~

resulting in a very rough estimation of the phase bound-
aries of the Arq (N2) mixed crystal in the T xplane, -

but compatible with the experimental data. The sam-
pled variables are the center of mass coordinates of all
atoms and all molecules, as well as the orientational co-
ordinates of every molecule. Periodic boundary condi-
tions are chosen as cubic, according the symmetry of the
Ar-rich fcc phase for x & xi 0.5 as well as the sym-
metry of the N2-rich Pa3 phase for x & x2 0.8.
The concentrations x = 0.33, 0.67 and x = 1 have been
investigated. The MC simulations were performed in the
(N, V, T) ensemble. For x = 0.67 and x = 1 we chose
N = 4 x 4; for x = 0.33 we chose N = 4 x 5 . Such
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small system sizes are suKcient to characterize the sys-
tems away &om their phase boundaries. For x = 0.33
and x = 0.67 we have averaged over four sample con-
figurations, where the Ar atoms and N2 molecules were
distributed over the available lattice sites. The lattice
constant a was extrapolated linearly with x between the
lattice constants aA, and a~ 3, minimizing the classical
potential energy of the pure Ar system and the classical
potential of the pure N2 system in the Pa3 phase, respec-
tively. The orientations of the N2 molecules have been
set up according to the Pa3 phase. Depending on the
temperature of the samples, we performed up to 4 x 10
MC steps (MCS) for equilibration and up to 1.5 x 103
MCS, where the observables have been averaged.

We first consider the case x = 1. At Tq ——35 K the
transition of disordered fcc N2 to the long-range-ordered
Pa3-%2 structure takes place in the real system. Both
phases, the cubic disordered phase at higher tempera-
tures and the cubic long-range-ordered phase, can be sta-
bilized for N2 concentrations down to x = 0.8. ' For
N2-rich systems there exist experimental and theoreti-
cal evidence for a first-order orientational order-disorder
transition &om Pa3 to fcc, due to x-ray diffraction, Ra-
man scattering, Landau-type analysis, and mean field
theory. In the hcp phase, long-range ordering of the
quadrupoles does not occur, nor in the Ar-rich phase.

With our choice of the potential parameters we find
a transition at the temperature Tq ——17.5 K. The order
parameter 0. changes &om zero to 0.65 at Tq. The ob-
tained 0, internal energy, and specific heat could easily
be described within the Landau-type analysis. The dif-
ference between simulated and experimental T~ clearly
originates from neglecting the interaction of the perma-
nent electrical quadrupole of the N2 molecules, which is
nearly exactly half of the total quadrupole-quadrupole
interaction. (See Ref. 18, where the phase diagram of
pure N2 could be computed in the p-T plane in very good
agreement with experiment, by using the full interaction
between the molecules. ) Thus we are not aiming at a
quantitatively accurate model of the system, but this
simplification enables us to compute with much better
statistics. Note that for lower N2 concentrations these
permanent electrical quadrupoles do not play such an
essential role, since they do not couple to the electrical
neutral Ar atoms, which have no permanent electrical
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FIG. 2. Time correlation function gEA(t) for the temper-
atures T = 5, 10, 15, 20, 30, 40 K (from the top to the bot-
tom). Circles refer to MC data; lines represent fits according
to Eq. (2).

multipole moment. In a later study, we plan to consider
this transition, focusing on the transition region. More
convenient potentials will be used to do this.

We now consider the case of x = 0.33. The distribu-
tion of 0. is peaked around zero for temperatures above
T = 30 K. With decreasing temperature the peak of the
distribution shifts gradually to larger values without any
apparent discontinuity; see Fig. 1. This behavior and
the fact that the specific heat has no anomaly lead to
the conclusion that the system under consideration has
no phase transition into a long-ranged disordered phase
with local Pa3-type ordering of the N2 molecules. How-
ever, the simulated &eezing of the orientational degrees
of &eedom is in a good qualitative agreement with the
experimentally observed one for hcp lattices of the mass
centers and a concentration x = 0.66. Clearly the real
distribution is broadened by the finite observation time,
so that slightly negative values of o. are detected. This,
however, is only a statistical effect.

The site-averaged correlation function gEA (t)
[g;(t)], whose plateau value for limi~ gives crEA, con-
tains two further important points: (i) it can be seen
whether or not the samples had been equilibrated. (ii)
The form of the relaxation functions gives information
about the cooperativity of the reorientational motion. In
Fig. 2, it can be observed that equilibration took place for

3O o'

25

TABLE I. Relaxation time 7 in MC steps and Kohlrausch
exponent P for diIFerent concentrations and difFerent temper-
atures; see Eq. (2).

FIG. 1. Evolution of the order parameter distribution func-
tion P —0,33(o) with the temperature as deduced from classi-
cal MC simulation.

T [K] T~&&i Pa&&i T~ 1/3—
5 630 0.80 2800

10 140 0.84 340
15 74 0.78 180
20 48 0.79 110
30 25 0.71 43
40 16 0.68 21

P =i)3
0.23
0.40
0.45
0.56
0.58
0.59

7m=2/3
)10
1900
340
140
46
27

P*=3)3
(0.20
0.25
0.37
0.50
0.56
0.58
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all temperatures investigated. The correlation functions,
fitted by a Kohlrausch law

gEA(t) oEA + (1 oEA)e

become broader with decreasing temperature, indicat-
ing an increasing cooperativity. This cooperativity, ex-
pressed by a small value of the Kohlrausch exponent P,
increases with increasing number of N2 concentration;
see Table I. The relatively small values of P for the di-
lute case x && 1 at high temperatures is not a sign of
cooperativity. If the thermal energies are comparable or
higher than the &ee energy barriers, the motion. between
different stable states is not activated and therefore the
description of a relaxation process by an exponential is
not appropriate. In the case of an isolated N2 impurity
in an Ar crystal the &ee energy barrier is of the order
of 15k~K. The increased collectivity of the reorienta-
tional motion presents itself in an increased relaxation
time ~ with decreasing temperature and increasing N2
concentration. Even the ratios w, &,/w, grow when
the temperature is lowered, indicating larger correlation
lengths of systems with higher N2 concentrations. The
question arises whether or not a long-ranged disordered
phase with local Pa3 symmetry will be the thermal state
for very low temperatures.

It is very instructive to compare O.EA for all systems
under consideration; see Fig. 3. The pure system shows
the above mentioned thermodynamic transition from dis-
ordered fcc to the ordered Pa3 phase. The line describing
the pure system has been obtained by a fit to the com-
puted data on the basis of a Landau-type approach. For
the dilute limit, x ~ 0, we postulate a kinetic transi-
tion for the classical system, because the energy barrier
of the reorientational motion of an isolated N2 becomes
infinitely large in comparison to the thermal energy. At
finite temperatures, the molecules move in between the
three stable oriented states, parallel to the x, y, and z
axes of the surrounding Ar crystal.

For the mixed systems we also postulate the value
o(T = 0 K) = 1. All other values for O'E~ have been

obtained numerically and only in the case of z = 2/3
and T = 5 K did the plateau value have to be obtained
by extrapolating the measured correlation function. The
manner in which 0FA tends to 1 with decreasing temper-
ature for the mixed systems differs clearly from the case
where a kinetic or a thermodynamic transition is found.
Also the specific heat show three types of different behav-
iors. The thermodynamic transition is accompanied by a
singularity in the specific heat at the transition tempera-
ture. In the classical case of the dilute system there is no
maximum observable and in the case of the mixed sys-
tems we observed a small relative maximum at T = 15 K.
This coincides with the temperature region where the or-
der parameter begins to grow considerably and it coin-
cides with the free energy barrier (over k~) separating
the three stable orientational states in the dilute case.

The orientation correlation function Piv ~ (n, n~ ),
which gives the probability of the scalar product of the
directors of two neighbored N2 molecules, can indicate
whether the freezing in process of fcc Arq (N2) with
x & x is related to the fcc to Pa3 transition. In Fig. 4
we plot the site-averaged P~~ (n; . n~). It turns out that
the short-range order in the mixed crystal prefers paral-
lel directors of the molecules, while for the pure system
cos(p) = 1/3 is preferred for T ( Tq, according to the
Pa3 symmetry and for T ) T» a nearly constant distri-
bution is found for cos(p) in the pure case.

We conclude that even in cubic Arj ~(N2)~ an orien-
tational glass state can be found that is not related to
the Pa3 reference phase. The preferred parallel align-
ment of N2 molecules in mixed Arq (N2) crystals may
explain the orthorhombic distortion of hcp Arq (N2)
found by Klee and Knorr as well as an anomaly in the
mechanical modulus Cqq in mixed Arz (N2) found by
Westerhoff et al. , while usually a perpendicular align-
ment of neighbored rotators leads to anomalies in C44.

In order to quantify quantum effects, path integral
Monte Carlo simulations have been carried out for
x = 0.33 and T = 20 K. On the one hand T is already well
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FIG. 3. Site-averaged order parameter for various N2 con-
centrations. Error bars are smaller than the symbol size.
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FIG. 4. Site-averaged orientation correlation function
P~~ (n, ni) for the pure system 10% above and 10% below
the transition temperature and for the mixed system x = 2/3
atT=10K.



7204 M. H. MUSER AND P. NIELABA 52

below the Debye temperature TD of both pure systems;
on the other hand it is still easy to reach the quantum
limit by a suitable simulation method. The translational
degrees of &eedom were treated quantum mechanically
with a Trotter number P = 10. With this choice of
P and T, the quantum limit is nearly reached, because
PT 2TD. The orientational degrees of &eedom have
been treated classically. The influence of quantizing the
orientational degrees of &eedom on real space correla-
tion functions and the inHuence of lattice distortions on
internal rotational quantum states have been discussed
elsewhere. ' The peaks in the Ar-Ar spatial correla-
tion functions are broadened by quantum effects and by
disorder effects. At a temperature T = 20 K the nearest
neighbor peaks are broadened mainly due to the quan-
tum nature of the particles. For next nearest neighbors
the amount of the broadening due to quantum and dis-
order effects is nearly identical and for the fourth nearest
neighbors quantum and classical distributions coincide.
The effect of decreasing the quantum influence with in-
creasing distance may be explained by the fact that low
wave number Fourier components corresponding to (more
classically) low-energy excitations are responsible for the
long-distance effects. Due to the center of mass quantum
delocalization the N2 orientational degrees of &eedom
are more strongly localized, resulting in a 9% increase
of o.EA ——0.214 compared to a classical treatment, where
OFA ——0.197.

In order to quantify the effects of the translational ro-
tational coupling, we performed a comparative study of
the system with the same parameters as in the last para-
graph, but fixing all translational degrees of &eedom to
their fcc lattice points. This results in a stronger re-
duction of the order parameter to o.EA ——0.104 and a
reduction of the correlation time of about 50%. These
effects can presumably be attributed to the two points:
(i) Some of the N2 molecules have only Ar atoms as near-
est neighbors and therefore the rotational potential has
nearly cubic symmetry, resulting in the local order pa-
rameter being zero. (ii) Translational rotational coupling
leads to an effective longer-ranged interaction of two N2
rnolecules, compared to the case with fixed translational
degrees of &eedom. Therefore the number of interact-
ing molecules is reduced in the latter case, resulting in
a smaller collectivity and thus in a reduced correlation
time and order parameter.
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