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Acoustic properties of a-B&03 and a-Ge02 are investigated at low frequencies in the temperature
range 10 mK ( T ( 200 K, using a vibrating-reed technique; the results con6rm earlier measure-
ments on other amorphous dielectrics. Whereas the low-temperature data are well described by
Jackie's perturbation theory in the framework of the tunneling model, the strong relaxation above
5 K requires a difFerent approach. Up to 20 K incoherent tunneling of two-level systems seems to
govern the relaxational dynamics; at still higher temperature the two-level description breaks down,
and thermally activated barrier crossing leads to a Arrhenius-like relaxation rate.
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According to the tunneling model, its parameters obey
the distribution function P(Ao, b, ) = P/Ao with P being
constant; the ensuing constant distribution for the two-
level splitting

E= 4 +4 (1.2)

explains in particular the linear specific heat.
In order to account for the observed relaxation phe-

nomena one needs to consider the coupling of the two-
level systems (TLS's) to the thermal motion of the atoms
constituting the glass. In linear order in the elastic strain
field, the coupling energy reads

At low temperature the thermal, acoustic, and dielec-
tric behavior of glasses difFers significantly &om that of
crystalline solids; as examples we note the linear tem-
perature dependence of the specific heat and the most
surprising variation of sound velocity with frequency and
temperat~e. '

Most experimental observations are well accounted for
by the tunneling model which states the existence of al-
most degenerate configurations for small groups of atoms;
these may be simplified to a double-well potential V(q)
for some collective coordinate q. For a sufIiciently low
barrier quantum tunneling permits the atoms moving to
and &o between the two configurations.

At low temperature only the ground states ~L) and
~R) in the two wells are important; with the Pauli ma-
trices cr, = ~L)(L[ —~R)(R~ and o = ~I)(R~ + ~R)(Li,
the asymmetry energy 4 and the tunneling amplitude
Ap = (R~V~L), the Hamiltonian reads in two-state ap-
proximation

here Ak = —2ipk gh/(2mkioq) where p is the deformation
potential and k = i,i/ov labels the phonon modes. With
(1.1) we obtain the Hamiltonian

1H=Ho+ —fo, + H~,
2

(1.4)

where H~ = P& hioi, bt&bi, describes the bath modes
whose operators fulfill [bi„b~&, j = hk i, .

At temperatures below a few K, the dynamics of the
two-level systems is only weakly afFected by the thermal
motion; accordingly one finds coherent oscillations be-
tween. the states localized in the two wells. Treating the
elastic coupling energy (1/2) fo, as a small perturbation,
logarithmic temperature dependence of sound velocity '

and a constant sound attenuation have been derived.
Both have been observed for several glasses in the range
100 mK ( T ( 2 K2. This approach, however, fails at
very low and at higher temperatures.

For T ( 100 mK the attenuation does not vary with T
as expected &om Jackie's theory, but rather like T" with
an exponent close to unity; in general the observed atten-
uation seems to be too large. ' Similar deviations have
been reported for the sound velocity. It has been no-
ticed recently that at very low temperature the damping
of the two-level systems may be governed by the vibra-
tional amplitude rather than by the elastic distortion; in
particular this would explain the excess attenuation and
the smaller exponent q.

Above 5 K the sound velocity decreases linearly with
temperature instead of the logarithmic behavior pre-
dicted by theory, ' and the attenuation shows a strong
relaxation peak with a maximum at about 30 K.~' In
order to explain these deviations, two difFerent scenar-
ios have been proposed, namely (i) t'he breakdown of the
two-level description and (ii) incoherent tunneling arising
&om overdamped two-level systems.
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(i) In the two-state approximation (1.1), phonon scat-
tering occurs between the two ground state levels sepa-
rated by the energy E (see Fig. 1); perturbation theory
yields the one-phonon rate

1ph

2

2~ gn'h4 (2k~T)

p and v are properly averaged over the longitudinal and
transverse phonon branch. With rising temperature, ex-
cited states in the double-well potential become impor-
tant and contribute to the damping' rate a term of the
form constxe @'~"~+ (sometimes referred to as Orbach
process), with the excitation energy Eq, under certain
circumstances, summing over all higher levels Eq, E2,
E3 ~ . . results for L (& T in the rate

&th

1 f V= —.xp ]-
kaT)

B T2
214

2 gv555
(1.7)

This picture still relies on the two-state description; yet
the thermal motion strongly inBuences the tunneling dy-
namics and destroys the phase coherence of quantum os-
cillations.

where 1/'Tp is of the order of the Debye frequency and
V is the barrier height between the two wells. In any
case, because of its activated behavior, such a rate will
at some point exceed the quantum tunneling rate (1.5)
which varies only linearly with T.~s ~~ (Due to the large
prefactor 1/wp, this crossover will occur at a temperature
well below the barrier height V.)

(ii) Damping of tunneling systems in dielectric glasses
has been mainly treated using perturbation theory with
respect to the elastic coupling energy. '4' By means of a
mode-coupling approximation, finite-order perturbation
theory has been shown to break down above a tempera-
ture T* oc 1/p [see Eq. (2.79) below], resulting in inco-
herent tunneling motion. Summing all noncrossing di-
agrams, the characteristic relaxation rate is given by

In this paper we discuss acoustic and dielectric prop-
erties of amorphous solids for temperatures up to 50
K. Particular attention is given to higher temperatures
where we compare experimental data with the theoretical
approaches sketched above. A short account of the main
results of the mode-coupling approach has been published
earlier. The paper is organized as follows.

In the theory part in Sec. II we treat the dissipative
dynamics of a two-level tunneling system in the limits of
both weak and strong coupling; relying on Mori's pro-
jection method and a mode-coupling approximation, we
derive novel results for the case of strong coupling or high
temperature resulting in the rate (1.7). Then we apply
our theory on tunneling systems in glasses and compare
with findings obtained earlier for the thermally activated
process.

In Sec. III we describe the experimental setup and
in Sec. IV we present the experimental results. Section
V contains a comparison with theory; in particular we
discuss the physical origin of the relaxation peak and the
linear sound velocity above 5 K.

II. THE&BR

If not otherwise stated, we use units such that A, = 1 =
kB in this section. To specify the bath it is convenient
to define its spectral density and its spectral function as
the Fourier transform of the commutator, respectively,
anticommutator of the distortion operator f (t),

J( ) =- " '-([f(&) f]-) «
2 2

J(~) = — e' '-([f(t), f]+)~«.
2 2

(2.1)

(2.2)

J(ur) = vr —(us exp( —(u/~D), (2.3)

Here, [A, B]~ = AB+ BA and the average as well as the
time evolution is taken with respect to HB.

In Debye approximation we can rewrite these functions
as

J(~) = J((u) coth(P(u/2), (2.4)

E2

where n/w is a phenomenological coupling constant con-
taining the deformation potential, the mass density, and
the sound velocity; uo is the Debye &equency.

In Sec. IIA the time evolution of the symmetrized
correlation functions

~&(t) = G(t) —(&.) (2.5)

with

1
G(t) = ([ (t) ]+) (2.6)

FIG. 1. Schematic representation of an asymmetric dou-
ble-well potential; in addition the lowest energy levels are
indicated with the ground state splitting E (& Eq.

and

1
&(t) = —([ *(t) *]+) (2.7)
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are calculated &om the equation of motion

~ ~—ZO tJ
~ ~—ZOz

= [H, o.
] = i Ao „+ifoy, .

= [H, o.y] = iApo —ib.o—.ifo

= [H, o, ] = —ib, po.y .

(2 8)
(2.9)

(2.10)

Here, cr;(t) = e'c o; = e'~ cr;e ' denotes a spin op-
erator in the Heisenberg picture, Zs = [H, +] is the
Liouville operator, ( . ) indicates the thermal average
with respect to the equilibrium density matrix p q
exp( P—H)/trexp( —PH) and [A, B]+ ——AB + BA is the
anticommutator. These functions are calculated in the
&amework of the Mori-Zwanzig projection formalism
using a mode-coupling approximation. 2

All experimental information is contained in the cor-
responding spectral functions

o; '= o. —(o.;) . (2.15)

These operators span an orthogonal basis

(bo;]ho~) =—rI;~ = g;;8;i (2.16)

with respect to the scalar product (AIB):= ~(AtB +
BAt), where due to (o~) = 0

In this basis, H is diagonal in the limit of vanishing spin-
phonon coupling (p —+ 0). The operators (2.12) and
(2.13) satisfy the commutation relations [op, o.~] = +2O~
and [o+, o. ] = harp.

In the coherent regime it is most convenient to project
the dynamics onto the space spanned by all spin-
fluctuation operators (i = 0, +)

OO

G"((u) = — e' 'G(t)dt,
—OO

(2.1i)
happ ——1 —(o.p)

g~~ =1.
(2.17)
(2.i8)

and C"(u) defined analogously.
In Sec. II A the TLS dynamics is treated in a pertur-

bative and a mode-coupling approach.
In Sec. II B we review the dynamics beyond the two-

level approximation leading to thermally activated relax-
ation. In Sec. II C the ensexnble average over the param-
eters of the tunneling model is performed and dynamical
quantities are derived which can be compared directly
with the experimental data.

A. Spin dynamics

We will treat the dynamics of the TLS's in the two
asymptotic regiines of coherent tunneling (weak damp-
ing) and incoherent tunneling (strong damping) sepa-
rately. In the coherent regime first-order perturbation
theory in the spin-phonon coupling is applicable, whereas
the incoherent regime requires a nonperturbative ap-
proach. Here we apply a mode-coupling approximation
analogously to Refs. 21 and 18. In both regimes we will
use the Mori-Zwanzig projection operator formalism. Al-
though a formulation of the dynamics in one projection
scheme is possible it turns out convenient to apply dif-
ferent projection schemes for the two asymptotic regimes
in the present context.

Coherent myime: Pertut bation theory

In the low-temperature limit a formulation of the dy-
namics in the eigenbasis of the spin part of the Liouvillian
is most convenient. For this purpose we de6ne the new
spin operators

Lo
00 -'= Ox+ &z ) (2.i2)

1 (bpo+ ..=
I

o, ——o. +'o„ IqE ' E * ") (2.i3)

With respect to the scalar product (*I*) in Liouville
space, the complex correlation matrix (i, j = 0, +)

hC;i(z) =i e"' bC;~(t) dt, Im z ) 0
0

(2.i9)

of hC;~ (t) = (ho.;(t) Iho~) can be expressed as a resolvent
matrix element

hC;, (z) = (bo, [6 —z]
' bo., ) . (2.2o)

Mori's reduction scheme is now performed by defining
the projector

P = ) Ibo;)g, , (ho;I =X —Q
i=0,+

(2.21)

and applying the resolvent identity onto (2.20)

'P P=1
8 —z z —'Pl P+ 'PZQ QZ'P1 P. (2.2'2)

This yields the matrix equation

—1
bC(z) = rI (2.23)

where the &equency matrix

in, , = hC, , (t = o) (2.24)

contains the &ee dynamics of the spins, and the memory
matrix

(2.25)

the in8uence of the bath onto the spin dynamics. For the
former we obtain

which transform the Hamiltonian into

E 1 f'A 1 bp
H = —op + —f I

—op + (o++o' ) I
+ HI3

2 2 iE 2E )

~0 0 0~
A= o E 0

&0 O —Ej
(2.26)

(2.14) The derivatives appearing in the memory matrix are
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easily calculated. Since the operators Qdb'0, are al-
ready linear in the coupling constants Ap, the lowest-
order Born approximation is achieved by replacing QCQ
with the &ee spin dynamics 80 —— (1/2)E[cro, e] and
calculating thermal expectation values with respect to
Ho ——(1/2)Euro. Thereby, one finds that the spin and the

'(t):= ( '(t)f(t)l 'f)o (2.27)

the memory function reads, in Born approximation,

bath dynamics factorize and that (oo) = —tanh(PE/2)
and igloo

——1/ cosh (PE/2). With the definition

(2.2S)
(2r(m++m ) 0 0

M(t) = ' 0 2rmo+ (1 —r)m+ —2rmo
—

2 PmP 2z mo + (1 —r)m

where r = b 0 /E . The Fourier transform of m;(t) is given by the weighted convolution integral of &ee spin spectral
functions

Coo ((u) = ~b(ur),
C~'~((u) = nb(~ p E)

with the spectral function of the bath (2.3) and (2.11),

m,"((u) = Co" (ur) * J(ur),
where we have de6ned the weighted convolution integral

=1 dO cosh(Pu/2)
g(ur) * h(ur) = — g((u —0) h(A) .

(2.29)

(2.30)

(2.31)

(2.32)

This convolution is easily performed. ; after evaluating
the frequency depending memory functions m',.'(u) at the
poles ~ = 0, +E, one 6nds the damping constants

I, = q,—,'(rm+(0)+r~ (O)"), (2.33)
1

I'z —— il~~ (rm'0 (E—) + (1 —r)m~(+E)),

which yield with (2.31)

(2.34)

where

b 2/E I'i A /E
cosh (pE/2) ~ + I'

I'2
X 2+

((u —E)2 + I'2

I'2

((u + E)z + I'22

(2.36)

r, —= 2I, = r~ —,E' coth(PE/2) . (2.35)

Using again the transformation (2.12) and (2.13) and
calculating the residues of the poles z~ ——+E —iI'2,
zo ———iT'i, where E = QE2 —I'2, up to O(I'ig2/E) one
6nds for the experimentally relevant spectral function

~G"(~) = G"(~) —~&~ ) +(~)

2. Incoherent tunneling: Mode-coup/ing theor y

G(z) = (~.l[& —z] 'i~. )

C(z) = (~*I[~-z] 'l~*)
(2.39)
(2.40)

is most appropriate for determing the dynamics of (2.6)
and (2.7). In the sequel we will repeat the projection
procedure for both resolvents up to that point where all
meinory functions are built by spin-bath operators f0, '

Longitudinal correlation function C(z). Applying
Mori's reduction procedure with the projector 'P
la. )(o l

yields

Vfith increasing temperature the spectral lines of
G"(ur) broaden and move towards the central peak. For
the symmetric case L = 0 two of the authors have shown
that in the frame of a mode-coupling approximation the
two inelastic resonances of G"(w) merge in one single
quasielastic resonance at (a/u )T 1 whose width nar-
rows with further increasing temperature. This picture
remains essentially unchanged in the biased case A g 0.

In the incoherent regime the dynamics is most easily
formulated with the spin operators 0.» o.» and o, . Be-
cause correlation between diferent o; become less impor-
tant with increasing temperature, a continued fraction
representation of the resolvents

(0, )2 = G(t m oo) = tanh (PE/2) .

Fourier back transformation 6nally yields

Q2 /2
~G(,)

& /E, r, i
cosh (PE/2)

+ e "cos(Et —P)/ cos(P),

where tan(Q) = I'2/E.

(2.37)

(2.38)

with the memory function

~(z) = (Q*~*l[Q*~—z] 'IQ*~*)

where

Q o = —Ao.„—fay .

(2.41)

(2.42)

(2.43)
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Now we separate N(z) into two terms

N(z) = 4 Y(z) + Ni(z),

with

&(z) = (~wl[Q-& —z] 'l~u)

(2.44)

(2.45)

Y'(z) =
z+ N(z)

(2.46)

and Ni(z) containing the reminder. Repeating the pro-
jection for Y(z) yields

fa;, and correlations between spin-bath fo, and spin
operators fr~ furnished with a complicate projected QZ
dynamics.

Mode cou-pling approximation. The projected QZ dy-
namics in the memory functions cannot be treated ex-
actly. In a mode-coupling approximation correlation
functions of products of operators are decoupled into
products of single-operator correlation functions, and the
projected QZ dynamics is replaced by the full 8 dynam-
ics. Thereby the dynamical equations get closed and the
correlation functions can be calculated self-consistently.

In the present case this means

with

Splitting oK the part arising from Lpu provides

N(z) = Ao G(z) +Mi(z) (2.49)

N(z) = (Q Q*~.l[Q Q*& —z] 'IQ Q*& ) (2.47)

Q„Q~(r„= f(r* —&oo' (2.48)

M, (t) = M2(o = —
( (rr (t)a )(f(t)f)

+(~-~.(&))(ff(')) }=M(')

A', (t) = N~(t) = —
( (~„(t)~„)(f(&)f)

+(~ ~, (&))(f f(&)) }=—~(&)"

(2.55)

(2.56)

with

G(z) = (~.l[Q.Q-~ —zl 'l~-) (2.50)

as above Mi(z) contains the reminder. Due to
Q Q„Q o, = 0 the correlation function G(z) has no dy-

namics and is therefore given by G(z) = —I/z.
Thus we have derived a continued fraction representa-

tion for the longitudinal correlation function (2.40),

C(z) =
z + Ni(z) +

Q2
2

z+ Mi(z) +

(2.51)

G(z) = —1
—Lp 2

Q2
z+ M2(z) +

Z + 2 Z

(2.52)

Both continued &actions clearly show the difBculties aris-
ing &om a finite bias E g 0. Whereas in the symmetric
case C(z) has one pole and G(z) has two poles, here both
functions have a three-pole structure. This becomes evi-
dent by writing Eqs. (2.51) and (2.52) as

Transverse correlation function G(z). Proceeding as
in the former case yields a similar representation for the
transverse correlation function (2.39),

In this approximation mixed correlation functions like
(o;(t)o~ f) vanish since the bath operator f appears only
linearly.

Using 8, (o, (t)o. ) = 4o'(—o„(t)o„) and. taking the
Fourier transform yields, for the spectral functions,

M" (~) = [C"(~) * J(~)l
N" (~) = [(~!&o)'G"(~) * J(~)]

(2.57)

(2.58)

where the convolution product is defined in (2.32). The
reactive parts M'(w) and N'(u) are determined &om the
spectra M"((d) and N"(~) via a Kramers-Kronig rela-
tion. Together with (2.51) and (2.52), these equations
form a closed set of nonlinear, self-consistent equations
for G(z) and C(z) or M(z) and N(z). A numerical solu-
tion has shown a transition &om coherent to incoherent
tunneling occuring analogous to the symmetric case.
To make this transition qualitative we will present be-
low an approximative analytical solution of the mode-
coupling equations (2.51), (2.52), (2.57), and (2.58).

Pole approximation. A numerical solution of the mode-
coupling equations (2.51), (2.52), (2.57), and (2.58) yields
that the spectrum of G(z) consists in the strongly over-
damped regime of one single peak centered at u = 0. The
width narrows with increasing temperature and the line
shape approaches a I orentzian form, i.e., the memory
functions (2.57) and (2.58) become less &equency depen-
dent. This justices a pole approximation at u = 0 in
which M" (ur) and N" (of) are set equal,

z[z + Mi(z)] —Ap'

[z + Ni (z)][z2 + zMi (z) —b, o ]
—zb, 2

M"(0) = N"(0) =—I . (2.59)

(2.53)

G(z) =- [z + M2 (z)][z + Ng (z)] —4
[z+ N, (z)](z'+ zM2(z) —Ap'] —ZA'

(2.54)

The memory functions M (z) and N (z) (n = 1, 2)
contain autocorrelations between spin-bath operators

In this approximation the reactive parts M'(u) and
N'(pf) vanish since they are odd in pf.

The poles of G(z) and C(z) are determined by the
complex roots of

(z + il )(z' + izI' —b,o') —ZA'

—:(z + iI', ) [(z + iT', )' —E'] + B(l') = 0, (2.60)
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where we have already used the de6nitions 3. Relaxation of asymmetric tnnneling systems

Lo I'
r1= E2+ I"2

r2 —= I' —I'i/2,

(2.61)

(2.62)

E = E2 —1 2+ (r —I' )2, (2.63)

R(r) —= ~,'r —r, (E' + r' + r, (r, —2r) ) .

(2.64)

I'i ——Ap /I',
r, =r,
E=L.

(2.65)

(2.66)

(2.67)

It is easily seen that R(r) is negligible in both asymptotic
regimes I' (( E and I' )) E. The cubic equation (2.60) is
essentially identical to the pole equation for the Ohmic
bath in the high-temperature limit. In the present case,
however, the width F shows quite a different temperature
dependence. In the sequel we neglect the term R(I').

Thus the roots of G(z) and C(z) are approximately
given by zo ———ir1 and z~ ——+E —ir2', in the strongly
overdamped regime I' )) E we have b'G" ((u)

I'2 + A~/cosh (PE/2)
I'2 + E2

+ Ap'/2

r2 + E ~ 1 + ~22((u + E)'

71
1+(d7

(2.74)

with the relaxation rate (I', = h/~;)

In this section we reinsert h and k~. In the two pro-
ceeding sections we have solved the dynamics of an asym-
metric TS in the two asymptotic regimes of underdamped
and overdamped motion by applying a perturbative and a
mode-coupling scheme, respectively. In the intermediate
regime where 1 = E, both approaches are not expected
to be valid and no analytical result is available in the
present formulation of the dynamics.

However, for aB practical purposes this regime is of
minor relevance and it may be sufBcient to interpolate
between the two asymptotic regimes. Since at high tem-
perature k~T )) E static spin polarizations {o;)are neg-
ligible, we can identify bG(z) and G(z) in the incoherent
regime. Then the following formulas reasonably interpo-
late between the behavior in the coherent (2.35), (2.36)
and the incoherent regime (2.68), (2.73):

In this limit the residue of the damped pole zp of G(z)
approaches unity whereas the residues of the oscillating
poles z~ vanish, and vice versa for C(z). Thus we find
for I" )) E the spectra

r E2I'
r2 + E2 &min

;„being independent of r = Ap/E,

(2.75)

G~~(~) ~

Ci~(~) ~

z.'/r
(u2+ Ap /I'2

r
~2+F2

(2.68)

{2.69)

rr, T&T*,
I', T &T*,

(2.76)

which yield the correlation functions

G(t) Ao t/r

C(t) = e r'.
(2.70)

(2.71)

r z P E coth(PE/2) =: rich, T ( T*,
2p (ktiT) =:1MC, T ) T*.

(2.77)

4a 0' dO
I' (u p fl2 + ~p /r2 sinh(pA)

(2.72)

Because of T )) Ap /I' we neglect b, p /r2 in the denom-
inator, which permits integration of (2.72),

The temperature dependence of the rate I' remains to
be determined. For this purpose we insert the expression
(2.68) for G"(u) into (2.58) and evaluate the convolution
at cu = 0. This yields a self-consistent equation for I',

Here we have expressed the phenomenological coupling
constant a/u through the mass density g, the sound
velocity v, and the deformation potential 4 p,

2n/(u2 —= 5'72 = p'/(gv'li) . (2.78)

At the critical temperature T* the dynamics changes
drastically. T* is de6ned by I' = E or, with E k~T,
by I'Mc(T') = k&T', yielding

~2

(d' (2.73)

21k~T*
7r y

(2.79)

Inserting (2.69) into (2.57) provides the same expression
for I', thus aKrming the consistency of our initial as-
sumption (2.59) and completing the solution of the mode-
coupling equations in the incoherent regime.

In an ensemble of TI S's with a wide distribution of level
splittings E, this is the temperature where all thermal
TI.S's (E ( k~T) are overdamped. This is equivalent to
the condition (a/w )T' 1 derived previously for the
transition to incoherent motion in the symmetric case.
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B. Dynamics beyond the two-level approximation

(V't (
rp

' exp
i

—
i

cosh
ikgT) (2kgT) (2.so)

Since the seminal work of Kramers, there has been
much progress on the understanding of the transition be-
tween the tunneling and the thermal activated regime
(for a review see Refs. 26 and 27). These works are
mainly concerned with a modification of the preexponen-
tial factor, the so-called attempt &equency 7.

0 . How-
ever, with respect to the ensemble average to be per-
formed later, the attempt &equency only contributes log-
arithmically and the mentioned modification play no es-
sential role in glasses. Thus, we may safely treat 70 as
a constant which is of the order of the Debye &equency.

With increasing temperature, the occupation of ex-
cited levels in each well can no longer be neglected and
tunneling &om these levels may occur. If there are suf-
ficiently many levels below the top of the barrier, this
results in an effective activation energy V. The rate of
thermally activated barrier crossing reads

OO

&()= e (lo (t) ~j—)"t
0

by a fluctuation-dissipation theorem (FDT),

(2.s3)

y" ((u) = —tanh(PRu/2) b'G" (u)), (2.s4)

where y(z = ~ + iO+) = y'(~) + iy" (ur).
Experimentally accessible quantities, like internal &ic-

tion and variation of sound velocity follow &om this via

ized quasiharmonic modes, universal properties of glasses
at higher temperatures (above 1 K), like the plateau in
the thermal conductivity and the bump in the specific
heat, 6 are qualitatively accounted for. At lower temper-
atures, the SPM yields the same results as the tunneling
model in the coherent regime.

An external field h,„q(t) couples to the operator o,
only, resulting in an additional term o,h,„t(t) in the
Hamiltonian. For not too strong an interaction, linear-
response theory with respect to k,„t,(t) is applicable so
that any experimental quantity may be expressed in
terms of the symmetrized transverse correlation spec-
trum bG" (u). It is related to the dynamical suscepti-
bility

C. Tunneling systems in glasses
2

Q '=, x"(~), (2.s5)

In glasses one finds an ensemble of tunneling systems
(TS s) with a wide distribution of parameters Ap and A.
In order to compare our calculation with experiments, an
ensemble average over all TS's has to be performed. Here
we will stay in the framework of the standard tunneling
models and apply the distribution function P(Ap, A) =
P/Ap for the parameters Ep and A, which is equivalent
to

P(E, r) dE dr = (2.s1)

with a constant P and r = 4p /E, where r;„(r ( 1.
The resulting wide distribution of the two-level splitting
E and relaxation times are the main assumption of the
tunneling model. In the following we will always assume
that the upper bound E „is much larger than all other
energies; thus we set E „equal to infinity. The loga-
rithmic divergence of the integral jdrP(E, r) requires a
finite lower cutoK r;„. Macroscopic quantities are ob-
tained by the average

Emax 1

0 = dE drP(E, r) 0.
0 &min

(2.s2)

An equivalent description of the low-temperature prop-
erties of glasses is given by the soft potential model
(SPM) (for a review see Ref. 17). There, the local po-
tential of the tunneling defect as shown in Fig. 1 is
parametrized. In comparison to the tunneling model, this
leads to a slightly difl'erent distribution function P(E, r)
of the tunneling parameters. In addition to the double-
well potentials, soft harmonic potentials may also exist
in glasses according to this description. With these local-

bv 1
x'(~) .

v 2 gv2
(2.s6)

For low-&equency acoustic experiments on glasses, the
temperature always exceeds the applied &equency, ~ &&

k~T. Then, resonant processes are strongly suppressed
and will be neglected hereafter. In this regime, we may
replace tanh(Pku/2) = P~/2 in the FDT which yields,
together with the Kramers-Kronig relation,

y"(~) = P~ hG" ((u),
y'(u)) = P/rg 8'G" (~) .

(2.s7)
(2.ss)

The relaxation process of biased TS's has been elab-
orated by Jackie using Fermi's Golden Rule. Then the
relaxation rates are given by the one-phonon expression
(2.35) and the dynamics is governed by coherent tun-
nelling, cf. Eq. (2.36).

The relaxation of overdamped TS's has not been con-
sidered so far. Commonly, it was assumed that thermally
activated relaxation is responsible for the experimentally
observed deviation above 5 K &om the prediction of the
tunneling model. This has been worked out in detail by
Tielbiirger et al. , and within the SPM by Buchenau et
al"

Before we summarize this theory in Sec. IIC2, let us
show, how far we can get within the two-level approxi-
mation by including the incoherent tunneling regime.

Dynamics of two leeel tunneling -systems in glasses

Here we assume that the two-level approximation is
valid beyond 5 K; as an essential result we note that the
strong rise of tl-.c absorption and the linear decrease of
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the sound velocity found above 5 K may be attributed
to relaxation via incoherent tunneling.

We have to perform the ensemble average over all TS's
whose dynamics is given by the results of Sec. IIA. In

I

expression (2.74) for bG" (w) only the relaxational pole
at u = 0 is relevant. With this and Eqs. (2.81), (2.82),
(2.85), and (2.86) and the relations for the rates of Sec.
II A 3 one finds

C dE
2I"~T I'2 + E

I'2 E'v'1 —~ ~

(gl —r cosh (PE/2) ) & + ~ r (2.89)

bv (
dr

4kaT I'2 + E2, (Ql —r
E'g1 rl-

cosh (PE/2)) r + ~ r (2.90)

where we have defined the dimensionless constant

+~2
gv

(2.91)

An analytical evaluation of the integrals is possible in the limits u7;„)) 1 and uw;„&( 1. This defines the
temperature T via the condition u7;„= 1. Provided that the one-phonon process dominates at low temperatures
this yields, after substituting E = k~T [cf. Eqs. (2.75) and (2.77)],

(2.92)

One finds for the internal friction by cutting the E-integration at E =max(k~T, I')

mrs C p2 kB T /(24Ru),

q
—i —C 1 — arctan2 2k~T

+ + g MC ~ arCtan MC marl
2 2kgyT 2 her

T&T,

T)T.
(2.93)

I Mc is defined in (2.77). At very low temperature T &
T (corresponding to w7;„)) 1), relaxation attenuation
increases with T; in the range T ) T we distinguish
three different laws,

T&T&T

change of the sound velocity

' ClnT, T&T)
bv

T & T & T*, (2.96)

7r2 T
8 T ) & T & Tmaxy (2.94)

~C'
4& . A, Ty T + Tmsx

The temperature T x where the maximum in the ab-
sorption occurs is obtained from the relation Lu

;„I'Mc [cf. Eq. (2.93)] which yields

7t +~min
(2.95)

i.e., the maximum temperature varies as T „oc ~w.
The three characteristic temperatures T, T*, and T

and the typical line shape of the internal friction are
schematically illustrated in Fig. 2.

After adding the contribution of the resonant part
hv/v~„, = Cln(T/To) to Eq. (2.90) one finds for the

Both the increase with T and the plateau value 7rC/2
of the internal &iction and the logarithmic temperature
dependence of the sound velocity ' have been derived
more than 20 years ago. Below T even the fastest TS's
(i.e., the symmetric TS) are too slow to contribute to
relaxation, so that for T & T the resonant interaction
prevails. Below T* one Ands the well-known logarithmic
temperature dependence of the sound velocity and the
constant internal &iction. At T = T* the temperature
dependence changes to a linear increase in the absorption
and a linear decrease in the sound velocity.

Activated mlaaation in glaaaee

Here we summarize the theory of Tielburger et al.
on thermal activated relaxation in glasses (see also Ref.
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15 for a description within the SPM). In these works it
is assuIned that the two-level description breaks down
before the tunneling dynamics changes &om coherent to
incoherent motion. As a result, the relaxation peak is

I

attributed to thermally activated relaxation instead of
incoherent tunneling.

The expressions for the internal &iction and the sound
velocity read

OO OO Q2 E2
Q = dA dAP(b, o, K)

~

o o (cosh (PE/2)) 1+u we
(2.97)

dAo db, P(Ao, b, ) ~v 2gv o o &cosh (PE/2)) 1+~ &ee,
(2.98)

Since the thermal rate w~& (2.80) depends on the barrier
height V, the distribution function P(Ao, 4) must be
transformed to P(A, V). Most simply, one assumes the
WEB expression for the tunneling &equency

2EO
p e (2.99)

(2.1oo)

with tunneling parameter A = (d/25)v 2mV. Here, Eo
represents the zero-point energy, m the mass of the tun-
neling unit, and d the distance between the minima of
the double-well potential. Assuming the double well to
consist of two harmonic potentials, we have V oc d~ and

P(E, V) = exp {—V /2oo)
0

(2.1O2)

xCk~T x T
Ep 2T (2.10')

Cking T
ln((u~o),

0
(2.1O4)

For barriers V being relevant for relaxational absorption,
V &( oo, Eqs. (2.101) and (2.102) are equivalent. Us-
ing the uniform distribution function (2.101) and putting
b. = E = k~T, the integrals in (2.97) and (2.98) are eas-
ily evaluated and one 6nds

From this one deduces the uniform distribution

P(b„V) = (2.1O1)

up to a cutoff V „. As a smooth physical cutoff,
Tielburger et al. have proposed a Gaussian distribution
with width 00,

for ufo Q( 1. Thus, again, the absorption increases lin-
early, and the sound velocity decreases linearly above
T = 5 K. Comparing these expressions with Eqs. (2.94)
and (2.96), one sees that additional parameters Eo and
7p have been introduced.

From the relation &7gb = 1 one expects the maximum
in the absorption to occur at

Vmax
B max =

l ( )
) (2.1O5)

O

O

V—

log(T)

Typical line shape of the internal friction Q
where the difFerent characteristic temperatures T [cf. Eq.
(2.92)], T [cf. Eq. (2.79)], and T „[cf. Eq. (2.95)] are
indicated. For thermally activated relaxation processes, T
has to be replaced by T .

i.e., the maximum temperature varies with &equency as
T „oc ln(~).

A word of caution is in order concerning the link be-
tween the tunneling amplitude and activation energy,
Eqs. (2.99)—(2.102). At 5 K only low barriers contribute
to relaxation; thus one may doubt whether the activated
behavior really reflects classical activated barrier crossing
or whether it is rather due to tunneling at higher levels
(e.g. , between Eq and E2 in Fig. 1). In the latter case
the distribution of activation energies would be different
from (2.102).

Finally we compare with the results obtained &om the
soft-potential model. Due to the slightly modified distri-
bution function, the SPM (Ref. 15) leads to QTs oc T ~

and accordingly (bv/v)Ts oc Ts~4. The experi—men-
tally observed linear decrease of b'v/v arises in the SPM
only &om the contribution of soft harmonic oscillators
(bv/v)H~ oc T. —
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III. EXPERIMENTAL SETUP

Relative sound velocity bv/v and internal &iction mea-
surements Q were performed using the vibrating reed
technique. The basic idea of this technique is to'de-
termine the resonance &equency and the amplitude of a
small rectangular plate which is clamped on one end and
which is driven electrostatically to forced vibrations on
its free end. In our experiment the samples were about
0.2 mm thick, 3 mm wide, and 10—15 mm long. They were
clamped between two copper blocks to ensure good ther-
mal contact. The sample holder was attached to the mix-
ing chamber of a He/4He dilution re&igerator providing
temperatures down to 8mK. The samples were covered
with a 30—50 nm sputtered gold layer, which served as
a counter electrode for both the driving and detection
voltage. This gold layer is thin enough to exclude any
noticeable influence on our measured quantities.

Figure 3 shows a schematic of the electrical circuit used
to keep the driving force at the resonance &equency of
the reed. The periodical driving voltage Ug is produced
by a synthesized generator (Philips PM 5191). Due to
the quadratic relation between the applied voltage and
acting force I" the reed vibrates with twice the driving
frequency f. The resulting amplitude is detected by a
two-phase lock-in amplifier. Using the lock-in output sig-
nal Acos(P) the synthesized generator is controlled by a
computer to keep the reed at its resonance &equency f
At negligible thermal expansion relative changes of the
sound velocity can be measured by the shift of the res-
onance &equency bf„/f„= bv/v. The absolute value
of the internal &iction Q ~ is determined by recording
and evaluating resonance curves. In order to measure
the variation Q ~ it is not necessary to record complete
resonance curves at each temperature, but measure the
amplitude of the reed Ao, since Q oc A&

The two glasses investigated in this work amorphous
Ge02 and amorphous B203 are both highly hygroscopic.
The a-GeO~ sample was produced by thermal decomposi-

tion under vacuum conditions. An OH concentration
of about 1%%uII for this sample was determined using the
Rutherford-backscattering method. Amorphous B203
was available with two very different water contamina-
tions, 1.6%%uo (Ref. 31) and 130ppm. In the following
we will refer to these samples as wet and dry a-8203,
respectively.

IV. EXPERIMENTAL RESULTS

A. a-GeGg

50 I
i

I I
i

I I
i

I I

In Fig. 4 the internal &iction of a-Ge02 at a &e-
quency of 6.3 kHz is shown. At low temperatures it rises
with temperature and becomes temperature independent
above 200 mK. The initial rise of the absorption is not
proportional to Ts as predicted by Eq. (2.93) of the
tunneling model. The reason for it might be a residual
absorption of just the right magnitude which cannot be
completely avoided. However, in many experiments of
this kind an excess absorption was found below 100 mK,
following a power law with an exponent between one and
two rather than three. ' From the general occurrence of
this phenomenon one might conclude that the disagree-
ment of theory and data is fundamental and not just due
to the residual absorption. Unfortunately our data are
not precise enough to distinguish between these two pos-
sibilities. At temperatures between 200mK and 2 K the
internal friction is constant within the errors of our exper-
iment. Using (2.94) we deduce the value i = 2.45 x 10
&om this plateau.

Above 3 K the internal &iction rises linearly with tem-
perature. Such a variation is expected for both relax-
ation mechanisms, for incoherent tunneling processes [see
Eq. (2.94)] and thermally activated processes [see Eq.

I

I

g
WIPg

I
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I

IR ~
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FIG. 3. Experimental setup for the vibrating reed experi-
ments with digitally controlled phase-locked loop. The reed is
electrostatically driven by the output of a synthesized genera-
tor. The resulting vibration is detected by a lock-in amplifier.
To magnify the detected voltage an electrical dc field of about
140 V is applied between the reed and the detection electrode.

FIG. 4. Internal friction Q of a-GeOq as a function of
temperature. The big dots represent the results of the eval-
uation of complete resonance curve and the small dots the
variation of the reed amplitude. The lines are fits with difFer-
ent theories (see Sec. IV).
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(2.103)j as well.
Around 110 K the absorption of a-Ge02 passes a

maximum, which occurs because of the finite width of
the distribution P(V) of the barrier heights. Following
Tielbiirger et al. we used the Gaussian distribution eq.
(2.102) for the numerical fit of our data. From the fre-
quency dependence of the temperature T where the
maximum occurs, one can find out which of the two re-
laxation processes is dominant at that temperature. If
thermally activated barrier crossing is the dominant pro-
cess we expect T „oc inn, whereas incoherent tunnel-
ing processes would lead to the relation T „oc ~is
By comparing our results with measurements at ultra-
sonic &equencies and Brillouin scattering experiments
at 25 GHz, we conclude that thermally activated pro-
cesses are dominant at the temperature of the maximum.

We have fitted the data in two difFerent ways. In both
cases we have taken into account the one-phonon process
which dominates at low temperatures. The solid line in
Fig. 4 follows from Eq. (2.89), where incoherent tun-
neling processes are included. This calculation was not
continued to temperatures where the absorption peak is
observed because the underlying relaxation process there
is not dominant anymore. The dashed line was obtained
using Eq. (2.97) taking into account thermally activated
processes and the distribution function Eq. (2.102), but
neglecting incoherent tunneling. The relevant fitting pa-
rameters are listed in Table I. Here we want to stress
that in the intermediate temperature range &om 4K to
20 K better agreement between theory and experiment is
achieved if incoherent tunneling is taken into account, al-
though no additional parameters have been introduced.
Therefore we conclude that this process caused the tran-
sition from the plateau to the rise at higher temperatures.

The relative change bv/v of the sound velocity of a-
Ge02 with temperature is shown in Fig. 5. Between 2 K
and 15K we observed a linear decrease of the velocity
with temperature. Using Eq. (2.96) and the same pa-
rameters as for the fit of the internal &iction we found
the solid line. A fit of comparable quality is also provided
by Eq. (2.104) based on thermally activated relaxation
(not shown in Fig. 5).

The variation of hv/v below 1 K is shown in Fig. 6 on a
logarithmic scale. In agreement with the tunneling model
the velocity first increases logarithmically with temper-

12

10

02

0
0 10 20

temperature T (K)

I

30

ature due to the resonant interaction. With rising tem-
perature relaxation becomes more and more important
leading to a maximum around 80mK and a subsequent
decrease which is proportional to ln T again. The ratio
of the ln T slopes in the two regions is nearly 1:—1
in contrast to the ratio 2: —1 predicted by the tun-
neling model. Although similar discrepancies have been
reported for other glasses, an explanation for this phe-
nomenon is still lacking. Furthermore it is known that
the sound velocity of glasses at very low temperature de-
pends on the amplitude of the vibrating reed. We have
observed such nonlinearities in our measurements as well.
However, all data shown in Fig. 6 where taken at such
small driving voltages that the inBuence of the vibra-
tional amplitude could be neglected even at the lowest
temperatures.

0 ~ ~

FIG. 5. Relative change of the sound velocity bv/v of
a-Ge02. The solid line is a fit according to (2.96).

TABLE I. Parameters of the fits of the Ge02 data. To de-
termine the deformation potential p, we have used the mass
density p = 3.6 g/cm and sound velocity v = 2814 m/s.
The average over the longitudinal and transverse phonon
branch is performed via the relations p = p~ ——2p~ and

—5 —5 —5
V = Vg + V~

O

3

a —Ge02

6.3 kHz

~ (eV)
Ep/ke (K)
» (s)
o p/ke(K)

Thermal activation
2 45 x 10

1.35
15

1.6 x 10
2200

Incoherent tunneling
2.45 x 10

1.35 .01 0.1

temperature T (K)

FIG. 6. Relative change of the sound velocity 6v/v of
a-GeOq at temperatures below 1K.
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The internal &iction data of dry and wet a-8203 are
shown in Figs. 7 and 8, respectively. As in the case of a-
Ge02, Q first increases with temperature and reaches a
temperature independent value of about 5 x 10 around
T = 150mK. At the lowest temperature we again find
a significant deviation From the relation Q i oc Ts pre-
dicted by the tunneling model. It is interesting to note
that the internal &iction of a-8203 below 3 K is hardly
in8uenced by the presence of OH units.

Above 2 K the absorption of dry a-8203 increases
again and a broad peak is observed. Compared to a-
Ge02 this rise is much less pronounced. The dashed line
in Fig. 7 shows that this rise is not well accounted for
if incoherent tunneling is neglected and only thermally
activated processes are taken into account. It seems to
be impossible to improve the agreement as can be seen
from Eq. (2.103). Within this model the transition tem-
perature T determines the slope of the internal &iction
at higher temperatures. It is remarkable that again the
theory taking incoherent tunneling processes into account
yields a much better description of the data in the inter-
mediate temperature range although no &ee parameter
exists. Attempts to fit the results of Fig. 8 for wet a-B203
lead to the same conclusion. It has to be mentioned that
the quality of the fit at very low temperatures could be
improved for both sets of data by using a slightly larger
deformation potential p. We will come back to this point
in the following section.

I et us now discuss the slope of the absorption peaks.
Clearly the acoustic loss is strongly affected by the pres-
ence of OH impurities. For the dry sample a rather
broad peak is observed with its maximum at about 50 K,

20
I

C3'

C)
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U
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a —EI20~, wet
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r
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FIG. 8. Internal friction Q of wet a-BqOs as a function
of temperature. The big dots represent the results of the
evaluation of complete resonance curve and the small dots
the variation of the reed amplitude. The lines are 6ts with
difFerent theories (see Sec. IV).

while in case of the wet sample we find a shoulder be-
tween 30 K and 80 K followed by a narrow peak at about
160 K. These observations are consistent with previous
ultrasonic experiments by Kurkijan and Krause on a-
B203 samples with a similar content of OH impurities.
In those experiments the dry sample exhibited one broad
peak whereas the wet one showed two maxima. Having
this result in mind we conclude that also in our exper-
iments intrinsic defects cause a loss peak at lower and
OH impurities a peak at higher temperatures. The
superposition of both contributions thus led to experi-
mental curves. In the wet sample the OH impurities
dominate the absorption behavior and the peak due to
intrinsic defects degenerates to a shoulder. Although the
OH content of the dry sample is lower by 2 orders of
magnitude compared to the wet one, it seems to exist still
a considerable contribution of OH impurities to the ob-
served acoustic loss. Therefore no attempt was made to
fit the whole peak as in the case of a-Ge02 by assuming
a Gaussian distribution function for the relevant barrier
height. Instead we only show the two theoretical fits of
the transition region as discussed above with parameters
listed in Tables II and III.

We want to emphasize that the presence of OH im-
purities does not simply lead to two distinct relaxation
channels. Obviously the OH impurities also change the

, 01
I s i I

0 1 1 10 100
temperature T (K)

TABLE II. Parameters of the 6ts of the data for dry
B203. To determine the deformation potential p, we have
used p = 1.8 g/cm and v = 2310 m/s.

FIG. 7. Internal friction Q of dry a-B&Os as a function
of temperature. The big dots represent the results of the
evaluation of complete resonance curve and the small dots
the variation of the reed amplitude. The lines are 6ts with
difFerent theories (see Sec. IV).

~ (eV)
Eo/ks (K)
~0 (s)

Thermal activation
3.8 x 10

0.65
15
10

Incoherent tunneling
3.8 x 10

0.65
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TABLE III. Parameters of the 6ts of the data for wet
8203. To determine the deformation potential p, we have
used p = 1.8 g/cm and v = 2373 m/s.

20

~ (e&)
Ep/ka (K)
rp (s)

Thermal activation
3.6 x 10

0.65
15
10

Incoherent tunneling
36x10

0.65

properties of the intrinsic systems. This can directly be
seen &om the remarkable fact that the integral absorp-
tion of the dry sample is higher than that of the wet
sample. This is probably due to structural changes of
the amorphous network by the incorporated water. From
NMR experiments it is known that the average coordi-
nation number of the boron atoms increases with OH
concentration &om 3 to 4.

In Figs. 9 and 10 the temperature dependence of the
relative change of the sound velocity of dry and wet a-
B203 is shown. The velocity varies linearly with temper-
ature up to 10 K in the case of the wet sample and up
to 20 K for dry a-B203. Note that the total variation of
the sound velocity up to 30 K difFers for the two samples
by about 40%. The full line in these figures represents a
fit using Eq. (2.96) and the parameter of Tables II and
III.

Below 1 K the sound velocity of the two samples varies
as shown in Figs. 11 and 12. The overall behavior of
both samples is very similar to that of a-Ge02. In the
case of the dry sample it was not only possible to carry
out measurements at 2.8 kHz, the &equency of the fun-
damental mode, but also at 16.8 kHz, the &equency of
the overtone. Independent of &equency the sound ve-
locity increases logarithmically at the lowest tempera-
ture, passes a maximum and decreases logarithmically
to higher temperatures. The maximum temperature T
follows the relation T (x ~ /, in agreement with the
tunneling model. A conclusive statement concerning the

I

300 I I I I I

0 10 20
temperature T (K)

FIG. 10. Relative change of the sound velocity bv/v of wet
a-BsOs. The solid line is a fit according to (2.96).
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FIG. 11. Relative change of the sound velocity bv/v of dry
a-8203 at temperatures below 1K and at two diferent fre-
quencies.
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FIG. 9. Relative change of the sound velocity bv/v of dry
a-B20s. The solid line is a fit according to (2.96).

FIG. 12. Relative change of the sound velocity bv/v of wet
a-B203 at temperatures below 1 K.
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ratio of the slopes below and above the maximum tem-
perature cannot be made because the low temperature
range is not wide enough. However, the 16.8 kHz mea-
surement seems to indicate the ratio 1:—1. From the
data of the wet sample we again deduce the ratio 1:—l.

V. SUMMARY

In the previous section we have reported on measure-
ments of the sound propagation in the oxide glasses a-
Ge02 and a-820'. In both materials the temperature
variation of the internal &iction is characterized by an in-
crease at lowest temperature followed by a plateau range
and finally by a pronounced peak. The sound velocity
first rises logarithmically with temperature; after pass-
ing through a maximum, it first decreases logarithmi-
cally and becomes linear in T at still higher temperature.
A similar behavior has been found for other amorphous
solids. 2 7

At low temperatures the acoustic properties of glasses
are determined by the interaction with tunneling sys-
tems. Depending on &equency and temperature range,
sound velocity and internal friction exhibit a behavior
which is characteristic for amorphous solid. s. With re-
spect to the dynamics of the tunneling systems, four
regimes are to be distinguished.

(i) Resonant interaction. At very low temperatures,
i.e. , for T « 1K, the TS's show weakly damped os-
cillations. The dominant absorption process for sound
waves with &equency ~ is given by the interaction with
TS whose energy splitting fullfils the resonance condi-
tion E = Ru. At higher temperatures or low &equencies,
k~T )) ~, this process is suppressed, since both levels
are equally occupied.

(ii) Relaxati on of asymmetric TS. At temperatures
below 5K sound attenuation via relaxational absorp-
tion occurs because there are TS's satisfying the con-
dition uzi 1. Due to the weak damping condition
I' « E, only asymmetric TS's contribute with an ampli-
tude Q~/Q2

(iii) Relaxation of overdamped TS s. Following our dis-
cussion of Secs. IIA2 and. IIA3, the tunneling oscilla-
tions disappear at k~T* = 2/(mp). For T ) T' the
motion of the TS's between the two wells occurs by inco-
herent tunneling; accordingly the correlation function is
that of a Debye relaxator with rate 1/rq [cf. Eqs. (2.68)
and (2.74)]. Inserting measured values for the parameters
yields T* —5 K.

(iv) Thermally activated relaxation. At even higher
temperature the two-level description becomes invalid.
The finite occupation of excited states in the double-
well potential results in thermally activated relaxation
whose rate can be described by an Arrhenius law v~&

7 p 6 For w~ & much larger than the quantum
—V/k~ T —1

tunneling rate I', quantum eEects have disappeared and
the motion in the double-well potential of Fig. 1 can
be described by classical mechanics. Because of its de-
pendence on the unknown parameters wo and V, the
crossover temperature has to be inferred &om experi-
ment.

For T & 5 K relaxation of tunneling systems with finite
asymmetry and uzi 1 appears to be the most efFective
dissipation mechanism. The relaxation process of biased
TS's has been elaborated by Jackie using Fermi's Golden
Rule; in the weak damping limit I' « E corresponding to
ranges (i) and (ii), our approach yields results identical
to Jackie's.

At about 5 K, experiments show a significant change in
the dynamical behavior of tunneling systems. Obviously
the usual description based on a two-state approximation
and perturbation theory fails to account for the tunneling
dynamics above 5 K; yet it is not clear &om the beginning
which feature has to be modified in order to properly
d.escribe the observed relaxational d.ynamics.

As mentioned in the Introduction, two physical mech-
anisms are to be envisaged. Predominance of a thermally
activated rate implies the breakdown of the two-level pic-
ture [cf. (iv)], whereas incoherent tunneling according to
(iii) still relies on the two-state approximation but re-
quires one to go beyond perturbation theory and to ap-
ply a strong-coupling theory on the interaction of the
tunneling system with phonons.

The mode-coupling approach of Sec. IIA2 yields a
qualitative change in the dynamics at a temperature
T = 2/k~vrp; this picture is supported by higher-order
terms of the perturbation series which indicate the per-
turbative approach to be invalid for T & T*. Our mode-
coupling theory does not allow for additional parameters;
the onset temperature T* and the slopes of internal &ic-
tion and sound velocity are determined by the coupling
constant p. Thus we are led to ascribe the temperature
dependence at T & 5 K to overdamped two-level systems.

Adjusting only the parameters p and C, we find sur-
prisingly good agreement of our theory with various ex-
perimental quantities: the low-temperature increase of
the internal &iction, its plateau value, the onset temper-
ature of the increase towards the relaxation peak and the
corresponding slope, and the slope of the linear decrease
of sound velocity between 1 and about 20 K. The solid
lines in Figs. 4—12 are calculated with the parameters
listed in the tables.

The results &om mode-coupling theory fit the data
for both B203 and Ge02, a similar agreement has been
found for Suprasil W. As a general feature, the calcu-
lated onset of the attenuation plateau occurs at too high
a temperature; here the agreement could be improved by
using a value for the deformation potential p diferent
&om that derived from the high-temperature features.

Because of its much stronger temperature dependence,
at some point thermal activation will exceed the quantum
tunneling rate, ultimately leading to a classical Arrhenius
behavior. The &equency dependence of the maximum of
the relaxation peak, T „oc ln(w) clearly indicates an
activated rate; &om this we conclude that at 40 K, most
systems are already in the thermally activated regime.
(Neglecting thermal activation, the mode-coupling ap-
proach would. yield a variation of the peak temperature
with ~(u. )

Clearly, strong TI S-phonon coupling can only be re-
sponsible for the experimental findings as long as the
concept of long-wavelength Debye phonons is meaningful



52 ACOUSTIC PROPERTIES OF OXIDE GLASSES AT LOW. . . 7193

in glasses. As linear dispersion of phonons has been ob-
served in amorphous solids up to an experimental thresh-
old of about 400 GHz by Rothenfusser et aI, it is proven
that Debye phonons exist at least up to temperatures of
about 20 K. However, one must note that the relaxation
behavior of overdamped TLS's at temperature T is dom-
inated by phonons having frequency I'(T)/h ) k~T, as
the E integration in Eqs. (2.89) and (2.90) is cut at I'
for T )T*. From this we can conclude that our model is
physically relevant at least up to 10 K. For higher tem-
peratures, one expects that the concept of delocalized
undamped phonons smoothly looses its validity. Noting
that relaxation phenomena at 20 K demand phonons of
about 70 K, the quoted temperature of 20 K might serve
as a reasonable order of magnitude where both the two-
state approximation and the concept of Debye phonons
become invalid.

In Sec. IIC we have shown that the strong increase
of the internal friction and the linear temperature de-
pendence of sound velocity observed above 5 K can be
derived &om both incoherent tunneling and thermal ac-
tivation; yet the made-coupling theory does not allow for
additional parameters and fits the data better than the
thermally activated process (see Figs. 4, 7, and 8).

There remains discrepancies at very low temperature
for both sound velocity and attenuation. The measured
internal friction does not increase as Q oc T as ex-
pected &om Jackie's theory; one rather finds a power law
with an exponent between one and two. Similar results
have been reported earlier for coverglass and Suprasil
W. ' Very recently, it has been shown that the spectral
density (2.3) may comprise a part linear in frequency.
Such a term would govern the dynamics at very low
temperature; its weaker variation with &equency leads
to a linear temperature dependence of the internal &ic-

tion and thus provides a possible explanation for the &e-
quently observed excess attenuation. As to the sound
velocity, the prefactors of the logarithmic laws below and
above T do not obey the ratio 2: —1 as expected from
(2.96); instead most experiments show a ratio of 1:—1.

We finally remark that the anomalous homogeneous
linewidth of optical transitions in glasses I'h (x. T
o; = 1 —2, can consistently be explained in the present
framework by incoherent tunneling.

In summary, we find several ranges for the dynamics
of tunneling systems in glasses. Below 5 K, the weakly
damped coherent oscillations are well described by per-
turbation theory; as most prominent features we note
the logarithmic temperature dependence of sound veloc-
ity and the plateau of the internal &iction. Above 5 K
the thermal motion of the atoms destroys the phase co-
herence of the two-level systems, thus requiring a strong-
coupling theory; our mode-coupling approach provides a
quantitatively correct description of the temperature de-
pendence up to a temperature where both the two-state
approximation and the concept of Debye phonons ceases
to be valid; thermal occupation of excited levels results
in an activated rate and ultimately permits a descrip-
tion in terms of classical mechanics and phonons become
overdamped.
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