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Movement of the interphase boundary in KNbos under pressure
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The study of the movement of the paraelectric-ferroelectric interphase boundary in KNb03 under
hydrostatic pressure is provided in the framework of the mean-field theory. The analytical solution
for the parameters of motion of the interphase boundary is applied for the calculations of the width
and velocity of the latter at different pressures. The calculations are based on the experimental data
for the Curie-Weiss constant and for the parameters of the Landau-Ginzburg expression for the free
energy. The response to hydrostatic pressure and the tricritical point were calculated nonempirically.

I. INTRODUCTION

A broad family of perovskite-type oxides with chemi-
cal formula ABOs (A, B metals) includes many practi-
cally important materials which may undergo a sequence
of ferroelectric phase transitions of both first and sec-
ond order. The relation between the chemical composi-
tion and the macroscopic properties of ferroelectrics is by
no means straightforward, and the demand for ab initio
quantitative predictions is considerable.

Whereas most of the ab initio calculations performed.
up to date concentrate on the description of bulk equi-
librium paraelectric or ferroelectric phases (see, e.g. ,
Refs. 1—5), it is not less important for technological ap-
plications to be able to predict the behavior of the in-
terphase boundary, i.e. , kinetic aspects of the ferroelec-
tric transitions (see, e.g. , Refs. 6—8). The kinetics of a
phase transition may be influenced via the adjustment
of external thermodynamic parameters, such as temper-
ature, external fields, and composition. Of these three
parameters, the effect of concentration on the phase tran-
sition kinetics is a delicate matter which demands the
additional experimental (or calculated from first princi-
ples) data due to the inherent modifications of the elec-
tronic structure on doping. The magnetic field response
of the electronic structure of perovskite compounds is
again very complicated, and the theoretical study of this
response should be complemented by the detailed exper-
imental measurements. The investigation of the behav-
ior of the ferroelectric phase transition under pressure
is highly attractive owing to the possibility to predict
theoretically the parameters of the pressure response at
relatively small pressures. These parameters may be
extracted &om the equation of states of the perovskite

under investigation on the assumption of the linear re-
sponse.

The utmost sensitivity of ferroelectric properties
to pressure and hence volume is well known &om
experiments as well as first-principles calculations.
One of the most pronounced pressure effects on the fer-
roelectric properties is the large shift of phase transi-
tion temperatures. The growth and kinetics processes
at symmetry-breaking first-order phase transitions are
associated with the migration of interphase boundaries
separating two coexisting phases. Hydrostatic pressure
can also be a powerful tool of controlling the phase tran-
sition order: first-order phase transitions can be trans-
formed into second-order one with increasing pressure.

Most of the hydrostatic pressure measurements of fer-
roelectric phase transitions have been aimed at the study
of the static properties of ferroelectrics. We assume that
pressure may also essentially influence the phase transi-
tion kinetics which depend strongly on the phase tran-
sition temperature. The picture of the temperature-
induced phase transition kinetics at ferroelectric phase
transitions should be complemented by the investigation
of the pressure effect on the interphase boundary propa-
gation.

The present paper concentrates on the study of the hy-
drostatic pressure effect on the phase transition kinetics
in ferroelectric KNb03. We discuss the interfacial kinet-
ics within an exactly soluble mean-field model which is
the time-dependent Ginzburg-Landau theory. We pro-
pose here to use this model for studying the pressure-
induced motion of the interphase boundary in KNb03.
The calculations are done on the basis of the experimen-
tal data, with some important missing parameters being
calculated nonempirically in the framework of the full-
potential linear mufEn-tin orbital (LMTO) method. i
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II. MODEL FOR. THE INTERPHASE
BOUNDARY MOTION

The present mean-Geld approach is based on the ap-
plication of the time-dependent Ginzburg-Landau theory
for first-order phase transitions. For ferroelectrics, the or-
der parameter is polarization P. Under the assumption of
noncritical dependence of the I andau-Khalatnikov trans-
port coefBcient I' on temperature and pressure, the move-
ment of the interphase boundary is determined by the
equation

P = —r(SG/W),

where G is the Gibbs energy, and the functional deriva-
tive bG/bP is a term tending to restore the value P to
its thermal equilibrium value. In the &amework of the
Landau theory of phase transitions, G may be expressed
in a power series of polarization:

G= g0 p, T +D VP '+ —,'AP' ——,'BP'

+—CP dV (2)

where p, V, and T are pressure, volume, and temper-
ature, respectively; g0 is the Gibbs energy density for
the paraelectric phase. A, B, and C are the Landau
expansion coeKcients, and D is the essentially positive
coefBcient of the gradient term. A erst-order phase tran-
sition takes place when all Landau coefBcients are posi-
tive. In (2), we implied the absence of piezoelectric ef-
fects in the paraelectric phase for cubic perovskites. Sev-
eral recent nonempirical calculations (see, for example,
Refs. 4 and 5) demonstrated the overwhelming impor-
tance of coupling to both isotropic and anisotropic strain.
As shown in Ref. 13 the strain effect in perovskite-type
ferroelectrics can be phenomenologically taken into ac-
count by renormalizing the coefficient B from Eq. (2).
Thus, the experimentally obtained coeKcient B already
contains the strain contributions.

The high-temperature paraelectric phase may exist at
temperatures above, and becomes absolutely unstable
versus ferroelectric transition below, TD, that is, the sta-
bility limit of the paraelectric phase. Correspondingly,
the ferroelectric phase becomes absolutely unstable above
its stability limit T*. In case of a first-order transition,
these two temperature regions overlap: TD & T*, giving
rise to the temperature hysteresis: the system may pass
through the same temperature remaining in the para-
electric state (on cooling), or in the ferroelectric state
(on heating). The phase transition at some temperature
T, where TD & T ( T*, develops as the growth of one
phase at the expense of another one, with the interphase
boundary moving. The equilibrium between two phases
at the Curie temperature Tc; is possible only if their &ee-
energy densities are equal.

Analogously, upper and lower critical values and hys-
teresis exist with respect to pressure: the pressure p
inducing the phase transition at a given temperature is

within limits p0 ( p ( p, pa being the lower pressure
limit for the stability of the paraelectric phase, p*, the
higher pressure limit for the stability of the ferroelectric
phase.

The actual state of the material is determined by the
topology of the free-energy surface in the (p, T) space.
For temperatures T0 & T & Tc (or pressures p0 & p (
p, ), the paraelectric phase corresponds to a local mini-
mum of the free-energy surface and hence is metastable,
whereas the ferroelectric phase corresponds to the global
minimum and is stable. At Tc ( T ( T' (p, & p & p*),
the paraelectric phase is stable and the ferroelectric phase
metastable.

The stability limit of the paraelectric phase with re-
spect to temperature or pressure (T0, p0) is determined
by the condition A = 0, or equivalently ( &, )0 ——0;
the stability limit of the ferroelectric phase follows &om

(~&& ——0, &&~ ——0) and yields ( &, )* = 4,'finally, the
temperature T~ and pressure p at which the phase tran-
sition occurs are determined from (~&& ——0, g = g0) and
hence ( &, ), = is.

At Q = 0, the region (in temperature or pressure)
where two phases coexist shrinks to zero, thus determin-
ing the tricritical point (pq, Tq): T0 -+ Tc = Tt E—T*,
pp M p, = pz E—p*. This means that the phase tran-
sition in temperature changes &om first order to sec-
ond order at pressure pq, as is known to be the case in
perovskites 9& 14 16p 18i 19

The interphase boundary may remain quite sharp un-
less the temperature or pressure get suKciently near the
tricritical point, when the boundary becomes dispersed
by spatially large Quctuations. The temperature differ-
ence between the phase transition temperature T~ and
the temperature corresponding to the stability limit of
the paraelectric phase, T0, decreases with increasing pres-
sure; this is a manifestation of the fact that the phase
transition changes &om first order to second order with
pressure. Such a situation may be described with the
following pressure dependence of B apart &om the tri-
critical point,

H = b(pg —p).

The linear dependence of B on pressure corresponds to
the 6rst-order term in the pressure expansion series in
analogy with the temperature dependence of the coefB-
cient A in the Landau theory of phase transitions.

Considering low pressures and taking into account that
paraelectric KNb03 has a cubic structure, we can express
the coeKcient A according to Ref. 9,

A = p(T —T0) + 2:-p. (4)

Here = is a function of elastic and electrostrictive coeFi-
cients. Coefficient P = 1/2c, where c is the Curie-Weiss
constant, depends neither on temperature nor pressure,
as has been established for KNb03 in Ref. 14.

The present form of the coefficient A in Eq. (2) is cor-
rect in ferroelectrics for which the temperature of the
stability limit of the paraelectric phase decreases linearly
with increasing pressure. This is true, for example, in
perovskites: '
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&o(p) = &o(0)—

It follows from Eq. (2) that the dielectric susceptibility
e obeys the Curie-Weiss law. From the known data for
perovskites at a constant temperature, the Curie-Weiss
law can be written as follows:~5

fx —

xone

o 1+ exp (14)

acquired &om the new phase with the energy lost &om
dissipation. At the equilibrium which should be reached
for t —+ oo, the static form of the interphase boundary in
the original coordinate system is

= 2=-(p - po)

& &P' —2" (o)j
Po —

2 ~ ~

Using the above pressure dependences, we consider the
pressure-controlled interfacial dynamics at ferroelectric
phase transitions. Taking a variation of the functional (2)
and substituting the result into Eq. (1), we obtain for the
uniaxial case the equation of motion for the polarization:

P + I (AP —BPs + CP5) —2FDP = 0. (8)

Here a subscript means a derivation with respect to this
variable. Equation (8) is the mean-6eld representation
of the nonequilibrium interphase boundary kinetics. A
steady-state solution of Eq. (8) may be found according
to Ref. 11. The substitution x —+ 8+ vt introduces the
coordinate system which moves along with the interphase
boundary. The profile of the polarization &ont in the
moving system is defined by

as can be directly seen from the substitution of (14) into
(8). The static shape of the interphase boundary (14)
results &om the competition of two terms: the homoge-
neous part of the Gibbs energy tends to bring the system
to the paraelectric or ferroelectric state, while the in-
homogeneous part of Eq. (2) enhances the tendency to
the nonuniform state. Thus, the boundary preserves its
equilibrium shape while moving. The ferroelectric phase
transition proceeds at a finite rate by means of the phase
transition &ont, which separates stable and metastable
regions of the crystal specimen. The driving force of
the interphase boundary movement is the tendency of
the system to lower its Gibbs energy through a kinetic
relaxation towards equilibrium. Analyzing (13) under
isobaric conditions, we can conclude that the interphase
boundary velocity may be positive or negative, depend-
ing on whether T ( Tc or T & Tc, . The velocity v

depends therefore on whether the sample is being cooled
or heated.

2I'DP„+ vP, —I'(AP —BP + CP ) = 0,

with the solution having the kink form

P=PO 1+exp (10)

III. CALCULATIONS OF THE PRESSURE
DEPENDENCE OF THE INTERPHASE WIDTH

AND VELOCITY FOR KNBOs

2Po
B ( 4ACi
2C q

B' )
1+ 11—

and 4 is the width of the interphase boundary given by

1 —2n+ gl —4n
(3DC)- 1

(12)

where

AC (p —pp) b2

(p~ —p)2 2=C'
which moves with the velocity v:

(2D)t ' I'B
v =

i i
(8n —1 —gl —4n)iC) 3

— —0.5x 1 —2n+ gl —4n (13)

We restricted ourselves to the steady-state solution of (8),
where the interphase boundary moves with a constant
velocity v given by (13), but does not change its shape.
The velocity v is determined by balancing the energy

which clearly represents the boundary between the ferro-
electric phase (P ~ Pp for s -+ —oo) and the paraelectric
phase (P ~ 0 for s ~ oo). Pp is the equilibrium value of
polarization

Some explanatory comments are essential here to un-
derline the distinguishing features of our approach in
comparison with others, including first-principles, calcu-
lations devoted to the study of ferroelectric transitions
for perovskites. The main aim of our paper is to de-
scribe the kinetics of phase transitions but not their ther-
modynamics. The kinetic properties of the system are
much more sensitive to external conditions than thermo-
dynamic ones. Thus special attention has to be attached
to the choice of the model Ginzburg-Landau functional
describing the phase transition as well as to the evalua-
tion of the adjustable parameters appearing in this func-
tional.

In a first-principles approach, the hierarchy of the dif-
ferent phases of the substance undergoing phase transi-
tion is usually studied in terms of thermodynamic po-
tentials. Thus, the thermodynamic factor is declared to
be the main one that determines the energetically favor-
able state. In order to construct thermodynamic poten-
tials the preliminary modeling of the functional has to
be done. For example, in the first-principles theory of
ferroelectric phase transitions two main parameters de-
scribing the phase transition are accounted. They are
the atomic displacements and strain deformations &om
the equilibrium cubic structure (see Ref. 5). The energy
surface is represented by a low-order Taylor expansion
with respect to these parameters. This expansion is per-
formed together with the necessary symmetry conditions
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that have to be put on the appearing terms. Several ad-
vantages of such a first-principles approach are obvious.
The main one is the possibility to account for both mi-
croscopic and macroscopic phase transition parameters
as well as their interaction. On the other hand, the use
of the Taylor expansion, although it represents a regu-
lar procedure with principally controlled accuracy, leads
to a dramatic increase of the number of first-principles
calculations. This disadvantage becomes crucial if some-
body wishes to construct the 4 model functional, which
includes up to sixth-order terms in microparameters and
macroparameters of a phase transition. From the point
of view of the common theory of phase transitions formu-
lated in the Landau approach these terms are of special
meaning. Only their inclusion allows one to describe in a
proper way the first-order phase transition of ABO3 per-
ovskites between two thermodynamically stable states.
Otherwise, restricting by the terms in the order lower
than six in the power series on the parameters that de-
scribe the first-order phase transition, the coexistence
of two stable states cannot be described. This result is
well known and is discussed elsewhere (see, for example,
Ref. 20). Thus, including such terms in the Ginzburg-
Landau functional to describe first-order phase transi-
tions is an essential and principal feature of the phe-
nomenological Landau theory. Now, the question arises
about the physical meaning of the results that may be
obtained by first-principles calculations of ABO3 per-
ovskites, based on the Taylor expansion of the energy
up to the fourth order with respect to microparameters
and macroparameters.

The phases recognized as coinciding with experimen-
tally observed cannot be considered as thermodynami-
cally stable phases. They are not realized as a result
of existing first-order phase transitions. Although the
embryos of these phases may be obtained in theoreti-
cal simulations, the question about their thermodynamic
stability or metastability remains open. Really, in a com-
pletely first-principles approach only supercells of limited
sizes, traditionally small enough, are calculated. These
supercells, even if their structure is the same as exper-
imentally observed, have to be assumed and described
as metastable embryos, which represent the short-range-
ordered structure, but not the long-range-ordered one.

At variance with the Taylor expansion, the phe-
nomenological Landau theory represents the Ginzburg-
Landau functional as a polynomial function of parame-
ters that are responsible for a phase transition, with
the necessary accounting of the symmetry properties
of the initial and final phases of the first-order phase
transition. ' If we are going to investigate the kinet-
ics of paraelectric-ferroelectric first-order phase transi-
tions, two simplifications are possible. The main one ac-
counts for the only macroscopic parameter that is respon-
sible for the transformation (polarization, in the case of
paraelectric-ferroelectric phase transition). The second
one is making use of experimental data on the coefB-
cients of the Ginzburg-Landau functional. This allows
us to account for efFectively also strain efFects, because
the coeKcients of the functional are renormalized. This
result is well known and was discussed, for example, in

-0.38

-0.40

CL

co -0.42
CU
CD

+

~ -044-

-0.46

0.80 0.85 0.90 0.95 1.00

V/V

1.0

CL

0.5E
O

LLI
I

0
LLI

-0.5

V

o-

/r
pw

/ ~~ ~O

j ~r

r 0

/r
r r/ w

~ r
Pr

0.92 0.94 0.96

V/V

FIG. l. (a) Total energies of the paraelectric phase in
KNbOs as functions of the relative volume V/Vo, where Vo is
the experimentally measured equilibrium volume of the para-
electric phase with the lattice parameter 3.997 A. . (b) The
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Ref. 13. Furthermore, the measurements of the tricriti-
cal point in KNb03 are not available, to the best of our
knowledge. That is why we are forced to combine the
phenomenological approach with the first-principles cal-
culations allowing us to estimate the missing data.

Keeping in mind the above-mentioned circumstances
we can analyze the pressure dependences of the width
and velocity of the interphase boundary under isothermal
conditions. For our calculations we used the following
experimental data for KNb03 at room temperature: c =
2.4 x 10s K, Tp ——377'C, C(p = 1 bar ambient pressure)

yp
—22 CGSE and B yp

— QGSE 8

The calculations of the coein. cient = and the tricritical
point for perovskite-type KNb03 have been performed
based on full-potential LMTO calculations using Meth-
fessel's code. With the choice of the basis set as in Ref. 3
we have carried out the calculations of the total energy at
the set of different volumes for the paraelectric phase [see
Fig. 1(a)] and three ferroelectric phases [differences of en-
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ergies &om that of the paraelectric phase are shown in
Fig. 1(b)]. In these calculations, we concentrated on the
ofF-center displacements of the Nb atom as the primary
feature of a ferroelectric transition. First, we have found
the equilibrium ofF-center displacements for tetragonal,
orthorhombic, and rhombohedral ferroelectric phases to
be 0.022, 0.028, and 0.033 of the "theoretical" lattice
constant, correspondingly. ("Theoretical" volume, as is
typical when using the local density approximation, is
underestimated by 5% as compared to the "experimen-
tal volume" which corresponds to the lattice parameter
of cubic perovskite cell extrapolated to zero temperature,
a=3.997 A.) We then scaled this displacement along with
the unit cell dimensions while fitting the total energy ver-
sus volume dependence, in order to obtain the coefficient

V dV2

where (. . .) stands for the averaging over a set of volumes.
For the paraelectric phase, we obtained:" = 0.47 x 10
kbar . The measurements aimed at obtaining this pa-
rameter experimentally are expected to be rather diK-
cult; therefore, nonempirical calculations of this value
are crucially important for our high-pressure interphase
simulations.

As is seen from Fig. 1(b), the cubic phase remains sta-
ble against any ferroelectric transformation for V/Vo (
0.9135. Larger volume favors ferroelectric transitions
first into the tetragonal phase, and then, for V/Vo
0.9253, the rhombohedral phase becomes energetically
favorable over both the tetragonal and orthorhombic
phases. For V/Vo ) 0.9326, i.e., covering the region of
both "theoretical" and "experimental" lattice volumes,
the well-known hierarchy of stabilities of three ferroelec-
tric phases is established. As the temperature increases,
the substance is expected to undergo a transition &om
rhombohedral to orthorhombic, then to tetragonal, and
finally to the cubic paraelectric phase. When an external
pressure is applied, the sequence of transitions initially
remains the same, but the temperature intervals needed
to pass the system through the sequence of transitions
are grad. ually decreased, as is qualitatively evident from
ever shrinking energy di8'erences between phases. This is
consistent with the trends in the phase transition temper-
atures of KNb03 on doping with Ta, that suppresses the
ferroelectric state as an ultimate effect (see, e.g. , Ref. 17),
as well as with the data on phase transition temperatures
as functions of pressure in K(Ta, Nb)Os.

At V/Vo ( 0.9326 our calculation shows that the se-
quence of phases is changed: the rhombohedral phase
tends to undergo, on increasing the temperature, a tran-
sition first to the tetragonal and then to the orthorhombic
phase. For pressures corresponding to this volume re-
gion, it is possible to determine the interphase boundary
as that between cubic (paraelectric) and orthorhombic
(ferroelectric) phases. On further increasing the pressure
to that corresponding to V/Vo ——0.9232, the total en-
ergy of the orthorhombic phase becomes equal to that

of the cubic phase at zero temperature, and the cubic-
to-orthorhombic phase transition is no longer possible.
The pressure related to this critical volume is therefore
the tricritical pressure pq. From the pressure-volume re-
lation

dE/dV = —p,

100.
05

0)

0

380 390 400
'
~

410 420

volume (a.u. )

FIG. 2. The equation of states for the paraelectric phase
in KNb03.

which is shown in Fig. 2 for the cubic phase (corre-
sponding curves for all phases are indistinguishable in
this scale) and assuming that the thermal expansion co-
efBcients for both phases are equal, it was found to be
pq

——58.5 kbar.
We failed to find any experimental reports for tricriti-

cal pressure in KNb03, but the estimated. value seems to
be reasonable, compared with pz ——34 kbar for BaTi03.
The difFerence T~ —To for KNb03 is three times larger
than that for BaTiOs (see, for example, Ref. 8). Con-
sequently, a higher pressure should be required to reach
the tricritical point.

It is worth noting that our results concerning the ex-
act energetics of three ferroelectric phases with respect to
the nonpolar one, and correspondingly the exact estima-
tion of the tricritical pressure, may be somehow afFected
by the lattice strain, if the latter is properly taken into
account in the geometry-optimizing calculations. The ef-
fect of the strain is expected to be most pronounced for
the tetragonal phase, as follows &om total-energy cal-
culations for KNbOs (Ref. 3) and BaTiOs, ~ and would
bring the ground-state energy of the tetragonal phase
closer to that of the rhombohedral phase at least near
zero pressure. It is not as clear, however, how the energy
differences shown in Fig. 1(b) will be changed over the
broader range of volumes. Strictly speaking, one should
also take into account electrostrictive eKects in = by op-
timizing the Nb displacement independently for each vol-
ume. The calculations which account for these additional
factors are in progress and will be published elsewhere.

We estimated the coeKcient D according to Ref. 23:
D = z&d, where d is the lattice parameter. The d(p) de-
pendence was also extracted &om the data of the full po-
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ies proved the theory of the temperature-induced inter-
phase boundary dynamics, which was developed on the
basis of the kink solution of the equation of motion for
polarization. We made an extension of this theory for
the case of the pressure-induced dynamics.

IV. CONCLUSION

-3
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Pressure (kbar)

tential calculations by solving the equation of state. Us-
ing calculated d(p), we see that within the pressure lim-
its where both paraelectric and ferroelectric phases and
hence the interphase boundary exist, the largest change
in the unit cell size induced by pressure is about 6%.

It is seen from (12) that at p = pq the interphase
boundary width 4 tends to infinity and thus at this pres-
sure the first-order phase transition is transformed into
a second-order one as it should take place at tricritical
point. In Fig. 3 the pressure dependence of the width
A [calculated along Eq. (12)] and velocity v [calculated
along Eq. (13)] is shown over the whole range of pressures
for which two phases may coincide; that was found to be
1.5 kbar ( p & 22.6 kbar. Both L and v are ever in-
creasing functions of pressure. Since the width increases
merely by a factor of 2, the interphase boundary remains
well defined under typical hydrostatic pressures. The sign
of the velocity specifies the direction in which the inter-
phase boundary propagates, i.e., which one of two phases
(paraelectric or ferroelectric) grows at the expense of the
other. At p = p = 19.9 kbar, the interphase boundary
stops because the difFerence between the Gibbs energies
of the two phases that is the driving force of the phase
transition becomes zero. True equilibrium between two
phases is possible only at p = p, . The above-mentioned
interfacial broadening results from the increase in the in-
terphase boundary velocity. Analyzing the pressure de-
pendence of the interface velocity for p ) p we obtain
that v oc (p —p, )", where n = 1.37 + 0.02, and for p ( p,
we have e oc (p, —p), where m = 0.56 + 0.02.

Experimental investigations of the temperature dy-
namics of interphase boundaries were carried out in
ferroelectrics2 3~ under isobaric conditions. These stud-

FIG. 3. Curve 1 is the interphase boundary velocity tr [in
units of ( & )

' —] and curve 2 is the width b, [in units of
(3DC') '

&] as functions of pressure in KNb03.

We have presented a study of the pressure-induced
movement of the ferroelectric phase transition boundary
on the example of KNb03. Our research is based on the
exact solution of the time-dependent Ginzburg-Landau
equation taking into account the hydrostatic pressure in-
fluence. The mean-field. approximation describes well
many static and dynamic phenomena in ferroelectrics,
for example, in perovskites discussed here. For this rea-
son, the theoretical results on the temperature-induced
kinetics of perovskite ferroelectrics have been successfully
used for the interpretation of experiments on the inter-
phase boundary motion under isobaric conditions.
Therefore, the application of the pressure-induced kinet-
ics of ferroelectric phase transitions can also be useful for
the interpretation of corresponding hydrostatic pressure
measurements. We want to note that the not yet pub-
lished, to our best knowledge, data on the tricritical pres-
sure in KNb03 were extracted from the nonempirical cal-
culations and may be obtained equally straightforwardly
for other related systems. Experimental estimations of
this important property are possible only when based on
quite delicate high-pressure measurements.
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