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This paper explores the cleavage vs blunting dislocation emission from a crack on an interface in
a two-dimensional simple hexagonal lattice for a variety of nearest-neighbor central force laws, and
compares the results with elastic predictions of the criteria couched in terms of the interfacial surface
energy, vs, and the unstable stacking fault, v.s. The mode conversion characteristic of interfacial
cracks is interpreted in terms of a local phase at the core of the crack, with a cutoff at the force
law range parameter. The results are that the emission criterion has two regimes. When v, > 3.,
the emission criterion is proportional to the product, 7syus, while when s < 3vus, the criterion is
proportional to y.,. Chemical embrittlement of a crack is a direct consequence of these results, and
is discussed. It is shown, however, that the localized interactions associated with chemical effects
at a crack tip are inherently too complex to be encompassed in simple criteria such as these, and
that quantitative predictions for chemical effects will require more detailed considerations of the
specific lattice and bonding configurations in hand. But these results should serve usefully as “rule
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of thumb” guides.

I. INTRODUCTION

The problem of understanding why some materials are
intrinsically brittle, while others are intrinsically ductile
has a long history.1™® A solid will be said to be “intrinsi-
cally” brittle when the atoms at the tip of a sharp crack
can find a configuration in equilibrium between the bond-
ing forces of the atoms at the tip which tend to close the
crack, and the stress concentration caused by the exter-
nal load on the solid, which tends to open the crack. If
no sharp crack configuration is possible, but the cracked
lattice breaks down in shear, with emission of a dislo-
cation, then the material is intrinsically ductile. Thus,
the intrinsic ductility of a material will depend on the
kind of bonding forces in the solid, in addition to other
factors such as the crystallography, crack plane, possible
slip planes, the type of load, etc. In 1992, Rice” opened
a new chapter in the history of this problem by showing
that the criterion for the emission of a dislocation from
a crack tip in what we will call the “Mode II configura-
tion” is associated with the theoretical shear strength of
the solid expressed as an energy—a quantity Rice called
the unstable stacking fault energy, v,,. In the Mode II
configuration, the dislocation is emitted on the plane di-
rectly ahead of the crack, and the emission event does
not blunt the crack tip. Zhou, Carlsson, and Thomson®
(ZCT) showed that in a simple hexagonal lattice with
simple force laws, for a crack in the more important
“Mode I” blunting configuration (emission occurs at a
nonzero angle to the crack plane), the criterion depends
on a product of the unstable stacking fault energy and the
intrinsic surface energy, vu,7.- Thomson and Carlsson®
attempted to understand the results of ZCT by means of
standard dislocation and/or crack models, and showed
that for sufficiently small surface energy, the criterion for

0163-1829/95/52(10)/7124(11)/$06.00 52

emission should shift from one dependent on the product,
Ys7Yus, to one dependent on +,,, only.

Although the ductility criterion for bulk materials is
important, fracture at various types of interfaces in ma-
terials is far more common, and this paper will address
the Mode I emission criterion for cracks on interfaces.
But interest in the interfacial cracking problem is high
also because the elasticity analysis for that case is anoma-
lous, and involves a singular mixing of tensile and shear
modes at the tip of the crack.'%!! Recently, Zhou and
Thomson'? addressed the emission of such a crack in
the Mode II configuration, and showed that the elastic
anomalies can be understood in terms of a “local core
stress intensity factor.” Similar ideas about cutting off
the elastic solution at a critical distance in the core of
the crack had been suggested earlier by Rice, Suo, and
Wang.1! Zhou and Thomson also showed that the Rice
criterion could be applied to the interface case for the
Mode II emission. In this current paper, we extend our
study to the blunting Mode I interfacial configuration,
with the dislocation moving into the “ductile” side of the
interface couple.

As an important byproduct of this study of interfacial
fracture, we shall find that the introduction of the inter-
face also opens up the force law parameter space which
can be explored, so that we can explore force laws where
the arguments of Thomson and Carlsson suggest there
might be a transition to the Rice type of emission crite-
rion. Thus, the results of this study will have implications
for the wider problem of intrinsic ductility in general and
are not limited simply to interfacial cracking.

In the most general terms, the central problem before
us is whether one can find a criterion for intrinsic ductil-
ity which can be couched in terms of simple parameters
of the undeformed material such as the surface energy
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and the unstable stacking fault energy. On its face, one
is greatly surprised that the complex response of a ma-
terial at a crack tip can be characterized by parameters
which do not reflect, directly, the complicated processes
acting at the crack tip. If it should turn out that such
simple criteria can be found, valid for all materials and
all interfaces, then one has in hand a very powerful tool
for material design. It is this general question we shall
address here, even though our modeling will be restricted
to a simple lattice with simple force laws. If it is possi-
ble to find such criteria for our simple case, one has a
powerful hint to explore for more general cases.

In the next section, we review the elastic analysis for
the interface crack and present the basic equations to
be used in analyzing the lattice results. In the third
section, the lattice model is described, and the results
are presented in the fourth section. Finally, in the fifth
and sixth sections, we express our results in a form which
can hopefully serve as predictive guidelines for exploring
the ductility of interfaces in solids.

II. ELASTICITY OF INTERFACIAL CRACKS

Figure 1 shows the coordinate system for a crack of
length 2a lying on an interface between materials 1 and
2, and emitting a dislocation at an angle 6 to the crack
and interface plane. Without the dislocation, the shear
stress field of the finite loaded with a point load at its
center can be written!!
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FIG. 1. A crack of length 2a lying on an interface be-
tween solid 1 and solid 2. The origin of coordinates is at
the right-hand tip, with the cleavage plane on the z axis. A
dislocation is emitted on a slip plane intersecting the crack
tip at an angle 6. In the hexagonal lattice used, 8 = 60°.

K is the (complex) load stress intensity factor of the
bulk material (i.e., without the interface) written as
K = K1 + iKy = |K|expiy, and will sometimes be re-
ferred to as the “lab” stress intensity factor. 1 is the
phase angle of the load. The stress intensity factor of
the interfacial crack is written as K with the connection
given above to the shear stress o,¢9. This definition for
the stress intensity factor differs slightly from that in
common use,!! but is appropriate for the crack and load
geometry in use in this work. In these equations, the
additional phase angle at the crack tip generated by the
elastic mismatch at the interface is given by 7. 7 is seen
to be a singular logarithmic function of the distance r
from the crack tip, which is the mode mixing anomaly
characteristic of interfacial cracks commented on above.
€ is a constant which depends on the elastic mismatch,
where k and p are the standard isotropic elastic param-
eters for the two materials. The expressions for X are
given by!!
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We will interpret our lattice results in terms of the
“effective G” criterion introduced by Rice for the Mode
I emission in a homogeneous bulk solid.” That is, we
convert the K field for the straight interface crack into
the K field for a kinked crack, with the kink lying in
the emission direction.'®> We then consider the emission
process to be equivalent to the growth of the crack in
the emission direction as a pure shear kink. The Mode
II component of the kinking configurational force on the
crack is then set equal to some lattice resistance v. In
Rice’s formulation, v = ., the unstable stacking fault
energy, but ZCT found that ~ is more complicated than
that. The Mode II stress intensity factor for the kinking

[
crack in the Cotterell-Rice approximation is given by
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Here, we have used the idea of the “local core phase
shift” 7, introduced by Zhou and Thomson.'? That is,
the phase shift at the “tip” of the crack is undefined at
7 = 0 because of the logarithmic singularity in the defi-
nition of . Thus, the appropriate phase from which to
compute the kinked crack stresses is not defined. But the
atomic crack has no such difficulties, because the phase
in the core region of the crack, where the physics of the
crack is determined, lies at some nonzero distance from
the mathematical tip. Thus, we define a distance, r¢ as
the core size, and use that in the expressions above. (We
return later to an operational definition of what to choose
for r9.) With this definition of ro, we note that the phase
ne for the kinked crack does not depend on the length of
the kink, because the kink lies in homogeneous material,
and in this sense, the kink stress field is a “standard”
crack field, not an interface field with a singular phase
shift at its tip. We do have to determine what phase the
kink has to start with, because it is starting out of the
core of the main interface crack, but once started, the
kink no longer possesses the interfacial phase anomaly as
a function of its (kink) length.

According to Rice,” in terms of the kinking crack, the
emission criterion k. for the Mode I configuration is

kl 2

Gile = (2—1:52)— =1. (4)
Here, p) is the appropriate elastic modulus for the plane
stress crack extension force, and -y is a lattice resistance,
which will be determined from the lattice computations.
Since the dislocation is emitted into the “ductile” side
of the couple, u) must correspond to that bulk elas-
tic parameter. (In the Rice proposal, ¥ = ~4s.) The
plane stress elastic moduli are used because the two-
dimensional (2D) simulations correspond to that case.
Thus, ph = p2(l + v2), where pp and v, are the usual
plane strain elastic constants. Finally, with the previous
equations, the critical load modulus |K|. for emission is

given by |K|. = v/KZ + KZ_, and

_ K2
gIIe = 2#',2
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This last equation will be used to interpret the lattice
simulations. In the bulk simulations of ZCT, it was found
that v o< v¥sYus, and in the current work, we will again
explore the appropriate functionality for y. Notice that
in (5), ¥ and A, are fixed by the elastic mismatch, and
by the phase of the external load.

Cleavage on the interface is governed by the simple
mechanics crack extension force law,

KZ +K2
S
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where G, is the applied crack extension force, which has
been found to be independent of the interface phase
effects. In our atomic simulations it is always found
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that the cleavage criterion is quite strictly given by the
quadratic form given above. That is, the criterion is not
determined primarily by the local value of Kj.14

The crack extension force above is written in terms of
the effective force on the kinking crack. It is more natural
to express it in terms of the lab stress intensity factors
and lab crack forces, as

(glab)e= iK‘E = 7 ’
2uy  TZgsin’(P — 7 + Arg)
|K|§: Klze +KIZIe‘ (7)

In this equation, (Giab)e is expressed in terms of the mod-
ulus of the loading stress intensity factor, | K|, at the crit-
ical load when emission occurs. This form of the criterion
contains, explicitly, the various factors for converting to
the slip plane or kinked crack system.

A ductility parameter can be defined as the ratio of
the square of the critical load stress intensity factors for
cleavage and emission,
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where v is the effective surface energy defined by (5).
The factor Y contains the kinking and interface physics.
When the critical load for emission is equal to that
for cleavage, and D = 1, the material undergoes a
crossover from ductile behavior (D > 1) to brittle be-
havior (D < 1). For homogeneous material,® where
the misfit goes to zero, and the load is pure Mode I,
Y(me = 0, = 0,60 = 60°) = 64/9. Thus, the duc-
tility parameter summarizes the crucial and complicated
physics of the ductility question in a simple number. The
ductility for an interface, of course, depends on the force
laws to be used, as well as the load phase, elastic mis-
match, and the geometry of the cleavage plane and/or
slip plane.

III. LATTICE MODEL

The lattice modeling uses the same lattice Green’s-
function techniques we have used in the previous interface
work,'? and the general methodology is given by Thom-
son et al.l®> Also, we use the same 2D hexagonal lattice
used previously,'?® with the same set of nearest-neighbor
pair forces. It might be useful to note here that the use of
the 2D lattice is not a simplification of something more
general, but the 2D case is exactly the one pertaining to
the physics of the problem. The reason is that we are
exploring the lattice stability of the straight crack. It
is true that at finite temperatures, a dislocation can be
nucleated at a stable sharp crack by the generation of a
dislocation loop, locally in 3D. But in the present case, we
simply wish to explore the temperature-independent me-
chanical stability of the straight crack in the lattice, and
not the ease of generation of fluctuations from that state.
Thus, this is one of those rare cases in physics where the



52 INTRINSIC DUCTILITY CRITERION FOR INTERFACES IN SOLIDS

Fr

FIG. 2. The interfacial crack in a hexagonal lattice. Sub-
lattice 1 has spring constant c,, sublattice 2 has spring con-
stant c; = 1, and the interfacial bonds have a third spring con-
stant, c;2. Nonlinear bonds are formed at all atoms on the
slip plane or the cleavage plane in the cohesive zone of the
crack. Different nonlinear bonds can form on lower atoms,
upper atoms (including the slip plane), and between atoms
facing one another across the interface. The nonlinear bonds
are depicted by the zig-zag lines.

simple 2D problem is precisely the one of interest. As in
previous work, we also justify our use of the hexagonal
lattice because it is the lattice which is isotropic in the
continuum limit. Since the previous work by Rice” and
the bulk of the interfacial studies are performed in the
isotropic limit, we remain in that regime for the work
here.

Figure 2 shows the lattice with a crack on an inter-
face between atoms of one kind below and a second kind
above. In the lattice case, we are at liberty to make the
bonding between the layers different than that of either
bulk, as in the real physical situation. We will arbitrar-
ily set the elastic constant of material 2 to unity, since
all the physical results scale with the elastic constant.
(Of course, the ratio of the different elastic constants is
a physically important quantity.) Also, we will allow the
crack to emit a dislocation into only material 2, and as-
sume that material 1 is brittle, incapable of deforming.
We also make the assumption that dislocation emission
takes place on the “forward” slip plane, § = 60°, because
the shear stress is largest on this plane. Subsequent emis-
sion could conceivably take place on the second slip plane,
6 = 120°, but multiple emission of dislocations is not ex-
plored in this work. The crack is loaded at the center of
the crack with a concentrated load. This method of load-
ing means that the crack system is stable, because the K
at the crack tip decreases as the crack length increases
by the elastic equation

Fo
Jra’

where Fy is the point load on upper and lower crack
planes, and a is the crack half length.

K= (9)

The present paper differs in one important respect -

from our earlier simulations. In this work, it is assumed
that the atoms on either side of the cleavage plane and
those on either side of the slip plane are in the nonlinear
zone. That is, these atoms interact with all their neigh-
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bors with nonlinear bonds. In previous work, only the
bonds crossing the cleavage or slip plane were considered
to be nonlinear, but we recently discovered that there
were significant nonlinear forces acting through bonds
which were assumed to be linear, so we have extended
the nonlinear zone to include more bonds. Also, the
atoms on the open surface are subject to a particularly
subtle and important force when the surface atoms are
rotated, as they are near the crack tip. Thus, the crack
is always allowed to move well into the nonlinear zone
to make these contributions to the crack physics negli-
gible. When the criteria for cleavage and for emission
are compared between the current method and the older
one, we find that physical trends are preserved, but that
small changes in critical parameters of the order of 10%
are observed. These errors are not considered damaging
to previous conclusions, but they are sufficiently both-
ersome to make the effort to reduce them further, as we
have in the present paper. See the paper by Canel, Carls-
son, and Thomson'® for further discussion of this point.

Finally, we have adopted another convention in this
paper not used in the previous work. In the nonlinear
zone on the crack surface, we assume that the atoms are
defined to be broken up to some point about half way into
the cohesive zone, and begin the cracking at this point.
The physical idea is that in standard crack analysis, it
is assumed that the crack is made by slitting bonds on
the cleavage plane, so that a cracklike singularity can be
formed at the crack tip. One needs to do that here as well,
because the investigation is focused on growing cracks,
not their nucleation from the perfect lattice. But in the
case of the ductile lattice, there is a paradox, because no
brittle crack is presumably possible. We get around this
both physically and mathematically, by supposing that
the brittle crack has been created by some chemical agent
which acts at the growing crack tip till it reaches the size
from which the computer studies begin. After the brittle
crack has thus been “prepared,” then the assumed bonds
of the material come into play, and the crack may either
cleave, or emit a dislocation. The only concern is how the
core of the crack interacts with the plane on which it can
emit a dislocation. In our simulations, emission on only
one plane is allowed. This plane is assumed to intersect
the crack tip at the exact point where the nonlinear bonds
begin to act. We have also explored the effect of allowing
the core to build up at the crack tip before it encounters
the allowed slip plane, but this introduces only minor
effects. Thus the results are quoted for the physical case
shown in the figure.

As in previous work, our simulations are for a bima-
terial slab. The slab is 2 x 10® atoms thick, with the
interface running down the center. The slab has peri-
odic boundary conditions in the lateral direction, again
with repeat distance of 2 x 103 atom spacings. The crack
itself is 201 atom spacings in total length, the cohesive
zone is 12 atom spacings long on the cleavage plane to
the right, and the inclined slip plane is 16 atom spacings
long. Thus we have no worries about short crack effects,
or interactions with neighboring cracks in the repeating
cells, or with the free surfaces.

Once the Green’s function for the cracked lattice with



7128

interface is found,!® then the displacement field for the
cracked lattice in the linear approximation is given by
the “master” equation for the Green’s function,

u = Gf. (10)

If now one recognizes that there are given external forces
Fy as well as nonlinear forces acting at bonds stretched
into their nonlinear regimes, then these nonlinear forces
can be treated, mathematically, as external forces, so
long as the forces at these atoms are consistent with the
bond stretch (or in general, with the configuration of the
atom and its neighborhood). Thus one can write

u(l) = G[Fo + f{u(l)}], (11)

where f{u(l)} is the force on the atom at position 1
considered as a functional of that position. This is a
set of nonlinear equations to be solved for the set of
atoms having nonlinear bonds—what we term the co-
hesive zone of the crack, to be solved self-consistently
with the force laws assumed to be operating in the solid.
Use will be made here of the simplest form of these force
laws, nearest-neighbor central forces, but the formalism
is quite general. These equations may be solved either by
a simple relaxation program using (11) directly, or by use
of a more efficient energy technique.'® The methodology
is accurate, provided the linear part of the lattice outside
the cohesive zone is only subjected to small scale shear
or to small rotations. (See Ref. 16 for further discussion
of these restrictions.)

Two kinds of force law are used. The first is the
universal binding relation (UBER) of Rose, Smith, and
Ferrante!” derived from the energy expression,

E(u) = c(1 —u/a)e™*/*, (12)

c is the lattice spring constant, u is the displacement from
the equilibrium distance between two atoms, and « is the
range parameter. The second bonding law is a Gaussian
generalization of the UBER,

Bu) = Do, (13)

where 3 is the range parameter. (In actual practice, this
law is too soft in repulsion, and a Uber form of law is
welded smoothly onto it for repulsion displacements.)

IV. COMPUTER RESULTS

In the computer simulations, we search for stable con-
figurations of the crack just before it cleaves on the inter-
face, or just before it emits a dislocation on the inclined
slip plane. The loads are some combination of tension
(Mode I) and shear forces (Mode II) exerted to the crack
surfaces at the center of the actually open crack plane.
The effective load stress intensity factor K with its as-
sociated phase angle ¢ can be measured by using the
magnitudes of the applied forces at the critical equilib-
rium, and the length of the crack from (9). Figure 3
shows a typical result for the atoms of the cohesive zone
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FIG. 3. Computer solution for a crack which has just
emitted a dislocation on the inclined slip plane and become
blunted by one lattice spacing. The crack was loaded at the
center of the cleavage plane over which the bonds are com-
pletely broken. The degree of shade indicates the force on an
atom exerted across the cleavage plane.

of the crack plus its slip plane.

There are four different paths the crack process can
take. The crack can cleave on the original cleavage plane.
It can emit a dislocation on either the interface plane or
the inclined plane. And the crack can kink or branch
onto the inclined plane as a cleavage crack. Under cer-
tain conditions of loading, primarily for relatively large
amounts of shear, emission will take place ahead of the
crack on the cleavage plane. This case is not explored
here, and if the shear load is modest, then such emission
does not occur. (See the previous paper by Zhou and
Thomson.'?) For certain force laws and loading combi-
nations, the crack will form a kink, and cleave on the
inclined plane. Again, the branching case is not studied
here, but will be the subject of a later paper. The two
cases studied here are emission on the inclined plane and
cleavage on the initial plane, which address the issue of
cleavage vs shear break down of the tip of the crack with
blunting of the tip.

Simulations for three different values of the elastic mis-
match, ¢; = 10, ¢; = 2, and ¢; = 1, are carried out.
The first choice represents quite an extreme value of mis-
match, the second moderate mismatch, and the third
represents zero mismatch. In each case, different range
parameters for region 1, region 2, and for the interfa-
cial connecting bonds between crystal blocks 1 and 2 are
assumed. The range and spring constant parameters in
region 2 determine the unstable stacking fault, <y,, in
that region and the parameters for the connecting bonds
in the interface determine the interface energy ~,. The
range parameter for material 1 is less important, and was
chosen to be a nominal value. The spring constant in re-
gion 2 is normalized to be unity throughout. The reader
will note that for the case where c; = 1, the material is
not necessarily homogeneous, because the range parame-
ters of the atoms at the interface and those on either side
may be quite different. That is, such a case corresponds
to a kind of degenerate grain boundary with a different
chemical species segregated there. Although the spring



52 INTRINSIC DUCTILITY CRITERION FOR INTERFACES IN SOLIDS

constant of the interface connecting bonds is at our dis-
posal, we set this spring constant arbitrarily equal to
unity so that ¢z = ¢12 = 1. Physically, there is no reason
to do this, as ¢;2 will in general be different from either
bulk material, but we found that varying this parameter
did not have a strong effect on the results, independent
of ~,.

It is clear that in the interface modeling, a wide range
of parameter space is available for exploration. There is
the elastic mismatch, and the three bond range parame-
ters which can all be varied at will. In the context of the
earlier work, our focus is on the two parameters, v, and
“Yus. But clearly, in the modeling, we have five indepen-
dent material parameters at our disposal, as well as the
phase 9 of the load, so the problem is over determined
in this sense. Reversing the argument, the question is
whether the physical behavior is determined by only two
parameters, v, and 7v,s, and that is the question to which
we now turn.

First, however, we note that the natural units are to
take both the lattice parameter and a spring constant to
unity. As noted above, c; = 1. In these units, and this
lattice, v = 1/4 and p = /3c/4.

A. Core phase shift

It was explained in Sec. II that n was a core parame-
ter to be determined from the atomic simulations. There
are several ways to address this question. Rice, Suo, and
Wang!! simply assume a cutoff at the lattice parameter
in the elastic equations. However, with the results of the
simulations in hand, other options exist, because one can
actually try to measure the phase shift in the core, and
hence calculate the correct cutoff from (3). This is the ap-
proach taken in the earlier Mode II paper on interfaces.!?
In the present case, we can do this either on the inclined
plane or on the cleavage plane. Unfortunately, we found
that there was no clear way to infer the elastic core phase
from the actual configurations because of various nonlin-
ear interactions in the actual core, which go beyond the
elastic picture.

Our best explanation for this failure is to note that
the phase shift is an elastic concept. It will be affected
by the actual nonlinearities which the crack configura-
tion generates. If the crack opening behind the crack
is sufficiently large, then the core on the inclined plane
will reflect this opening, in a way not anticipated by the
elastic solution. For this reason, it would be wrong to
measure the core phase in the inclined plane, and infer
ro in (3) from it. In addition, when the core phase is
measured on the cleavage plane, there will be elastic dis-
location shielding effects from nonlinearities occurring in
the inclined plane, which will alter the observed shear in
the cleavage plane core. So there is little in the actual
core structures which accurately reflects the elastic pre-
diction for the phase. Nonetheless, the actual cores do
exhibit the predicted phase shifts in a qualitative way, in
the sense that shear loadings are certainly induced by the
elastic mismatch, especially when the lattice mismatch is
large enough not to be masked by core nonlinearities.
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In particular, when ¢;/c2 = 10, the phase in the cleav-
age plane core is not swamped by the shielding in the
inclined plane if the shear in that plane is not allowed
to grow too large by controlling the loads on the crack.
In this case, we could get quantitative measures of the
core shift, which will be used in the discussion of crack
length scaling effects. But for moderate values of elas-
tic mismatch, any attempt to measure the core phase is
doomed to failure, because of the interactions between
the different contributions to the nonlinear core configu-
ration.

What can one do? We remember that the purpose of
this work is to see to what extent one can understand the
actual crack in terms of elastic concepts, and the various
lattice breakdown energies. We have argued that the
phase shift which appears in the elastic analysis for the
emission criterion should be measured at the core radius,
as a cutoff for the elastic theory, suggesting that some
version of the Rice, Suo, and Wang!! approach might be
appropriate. In our simulations, we find that the actual
phase shifts in the cores, when they can be measured, are
force law dependent. So we have adopted an empirical
rule to set the core size in (3) equal to the range pa-
rameter, a, in the Uber force law. In the Gaussian force
law, we set 7o = /B, because /B has the dimensions
of length. The efficacy of this rule will be demonstrated
entirely on the basis of its utility in comparing elastic
predictions with simulation results.

B. Emission variation with interface bonding

The principle results are shown in the following figures.
Figure 4 shows the critical emission Gy for a fixed value
of the unstable stacking fault, «,, = 0.0116 in the nor-
malized units of the simulation. This choice represents a
relatively weak material above the interface, correspond-
ing to the ductile material above the interface, and brittle
material below. There are six series of plots, one for each
choice of elastic mismatch, and one for each type of force
law. For a given choice of force law type and elastic mis-
match, the range parameter in the interfacial connecting
bond was varied to get a range of values of v,. Figure 4
shows Gire plotted against -, for each case. At the lower
limiting value for ,, cleavage on the interface intervenes,
and emission does not occur for any combination of loads.
The upper limit is set by the fact that the range param-
eter becomes so short that the hexagonal lattice is no
longer stable under shear load.

The plot shows a fairly narrow band of points with a
linear slope. That is, all the various cases are represented
by a single linear functionality in v,, which must be con-
sidered remarkable in view of all the variables which con-
dense onto this one. But there is an interesting detail in
this plot which goes beyond the linearity in v,. That is,
there is a clear lower plateau in several of the plots. Fur-
ther, these plateaus are all at roughly the same limiting
value of 0.01, which is also roughly the value of the unsta-
ble stacking fault used in the simulations (v,, = 0.0116).

The first comment about these results is that our rule
to set the core radius ro to the range parameter in the
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FIG. 4. Results for a series of simulations with different force laws and different elastic mismatches, when the unstable
stacking fault in solid 2 is held constant at 0.0116 in the natural units of the simulation. Thus, the force law in solid 2 is
held constant, and the force law on the interface is varied. However, in all cases, the spring constants are determined by the
assumption made for the elastic mismatch given. We always assumed that the spring constants for the interface were the same
as in solid 2. Results are shown for the effective configuration force to form the dislocation, Giie, as defined in the text. Plots
are separately shown for three different elastic mismatch choices, and for two different forms for the force laws. The upper
limit in the plot is obtained when the force law is so long ranged that the lattice is unstable under shear, and the lower limit
occurs at values of v, where the lattice cannot emit a dislocation, but can only cleave on the original cleavage plane.

force law appears to be an excellent way to calculate core
phase shift effects.

Second, these results are consistent with the findings
of ZCT (Ref. 8) in the homogeneous case, and are also
consistent with the prediction of Thomson and Carlsson®
that the emission criterion for low values of <y, reverts
to the Rice form. However, the functionality observed
in Fig. 4 is not quantitatively that predicted by Thom-

son and Carlsson.® Those authors predict a linear law,
crossing the Gy axis at a finite intercept, ~,,, such that
Gite = Yus(1 + Avs), where A is a number which may
depend on the elastic constants. That is, the lower shelf
or plateau is not predicted by Thomson and Carlsson,®
even though a limiting value of Gy is. But the plateau
values of G,, fall in the range of v,, = 0.0116, which is
the intercept value from Thomson and Carlsson. Thus,

FIG. 5. Complementary results for the
case where the interface bonding and -+,
are held constant at the “low” value of
Ys = 0.0324 in the normalized units, and the
bonding along the slip plane and ., is var-
ied.
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FIG. 6. Another complementary plot for
. the case where 7., is varied, this time for a
value of <, in the region of Fig. 5 where the
. plot is linear. 7y, = 0.0593 in the normalized
units. The plot shows a “hysteretic” behavior
with a double valued functionality in the mid
range.
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Fig. 4 gives support to the general ideas expressed in
the work of ZCT (Ref. 8) and Thomson and Carlsson,®
even though their predictions are not borne out, quanti-
tatively.

C. Variation of emission with unstable stacking fault

The functionality for +,, can also be linked to the
Thomson-Carlsson form.® Two plots are displayed for
Gire as a function of «,, for fixed v,. In Fig. 5, results
are shown for v, in the range of the lower shelf of Fig. 4
for the case of UBER with an elastic mismatch of 2/1.
It shows a roughly linear dependence, although there is
an apparent nonzero intercept for «,, = 0, a nonphysical
result. But the rough dependence is linear, as proposed

0.014 0.016

by Rice” and by Thomson and Carlsson.? A more inter-
esting case is shown in Fig. 6, where Gy is plotted as
a function of «,, at a value of 4, in the middle of the
linear range of Fig. 4 for the elastic mismatch 2/1. For
“rising” values of 7,,, the plot is again nicely linear, in
accord with Thomson and Carlsson, however, for “de-
creasing” values of +,,, there is a kind of hysteresis, and
the emission function is not a unique single valued func-
tion of 7,,. The terms “rising” and “decreasing” relate to
the form of the unstable stacking fault function. Figure 7
shows the unstable stacking fault function for UBER as
a function of the range parameter .. This function rises
sharply for small values of o, goes through a maximum
and decays slowly back to zero for large values of a. The
“rising” points in Fig. 6 correspond to the values of a to
the left of the maximum, while the “decreasing” points

FIG. 7. Plot of the unstable stacking fault,
“Yus, as a function of the range, o in the
UBER force law. The unstable stacking fault
. is the maximum energy to shear two blocks
of material rigidly past one another. During
the shear, the two blocks are allowed to relax
in the direction normal to the slip plane. yus
rises quickly to a maximum value and then
h declines for longer ranges. The points to the
left of the maximum correspond to the “ris-
ing points” of the previous figure, and those
to the right correspond to the “decreasing
points.”
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correspond to the values of a to the right of the maxi-
mum. The hysteretic behavior occurs in the middle of
the plot, and shows a maximum deviation from a linear
law of about 1.4.

D. Crack length scaling

With the empirical rule adopted to determine the core
phase shift, it is important to check the extent to which
the core phase actually corresponds to physical reality.
We have commented on the fact that the cores do visually
exhibit mode shifts, even though we have not been able to
use a measured value of ¢ in our interpretations. There
is one important physical prediction which the elastic
theory makes regarding to the phase shifts which must
be valid for the actual simulated cracks, and that is the
scaling of the phase shift in the core with the crack length,
from (3). We have noted that the core phases can be
reasonably well measured for large elastic mismatch, and
for this case, we have investigated the scaling law.

For this excercise, we use ¢;/c2 = 10 in the Uber force
law, and measure the value for 7¢ in the cleavage plane

. core. We do this by finding the load which makes the
shear in the core zero as measured in the simulation, and
then set set kf; = 0in (3). For this case, § = A9 = 0, and
the condition we seek is for the sine to be zero, or n =
1. That is, the load phase is also the core phase. This
computation is performed for several crack lengths, and
if the core phase shift angle is a physically valid concept,
then 79 should be independent of the crack length.

Figure 8 is a plot of the measured core size for the
largest range of crack lengths which are possible in our
computer, remembering that very short cracks will not
be a fair test of the elastic theory. The simulation was
done with the UBER force law, with v, = 0.0291 on the
interface, and with the unstable stacking fault in material
2 44, = 0.0116. Certainly for this case, at least, crack
length scaling of the core phase is excellent until short
cracks are encountered.
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V. CONCLUSIONS AND INTERPRETATION

We believe the model of Thomson and Carlsson® pro-
vides a reasonable physical basis for the cleavage and/or
emission competition, when the model is extended to in-
corporate the observed “lower shelf” of Fig. 4. Of course,
the model is only an approximation (e.g., the hysteresis
of Fig. 6 is not explained), but we will show that it can
form the basis for a discussion of trends, and as a kind
of “rule of thumb” even for more realistic materials than
are covered here. Specifically, it is possible to incorpo-
rate the entire set of simulation results from Figs. 4-6
into a single emission criterion, which is an extension
of the form proposed by Thomson and Carlsson. This
equation, expressed for the two separate low and high v,
regimes, is

8
gIIe= Y = Yus (043 + 78) H e >3
ﬂZb Yus

<3, (14)

Vs

O11e= 7Y = Yus;
us
where +y is the generic lattice resistance defined in (5).
The first equation represents the main series of results
shown in Fig. 4 where the emission is linear in «,, while
the second represents the lower shelf regime. Note that
the second equation can be written as a pure Rice type of
criterion with no empirical factors, because all the lower
plateaus level off at the observed «,,. The first of these
equations has precisely the form proposed by Thomson
and Carlsson, except that the intercept is not at the ~,,
value. Instead, <y,s appears as the asymptotic position
for the shelf.
These equations can be expressed in terms of the
crossover parameter D of Eq. (8). For high values of
~s, the ductility parameter has the form

_ 1 pabpg e
4Y Yus My Yus

> 3. (15)
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FIG. 8. Crack length scaling. The fig-
ure shows how the calculated value of the
cutoff, ro in Eq. (3) varies with the crack
length. ro¢ should be a constant, independent
of the crack length, if the underlying physics
is followed. The result shows that only the
shortest crack deviates sensibly from the long
crack value of about 2.4.
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TABLE I. Comparison of the effective interfacial surface
energy, as calculated from the last points plotted (to the left)
in Fig. 4, where the emission terminates and cleavage takes
over, with the bond strength of the force law used.

ci1/cz Force law Ge 29s

1/1 UBER 0.065 0.05
2/1 UBER 0.054 0.039
10/1 UBER 0.052 0.039
1/1 Gauss 0.059 0.05
2/1 Gauss 0.051 0.05
10/1 Gauss 0.033 0.025

This equation predicts the anomalous result, observed by
ZCT,® that the ductility is independent of v,, and only
depends on «v,,. That is, the crossover, D = 1, occurs at a
critical value of «,,. Thus, high dislocation mobility and
crack ductility go hand in hand. This result is not due to
any mechanistic connection between dislocation mobility
and the intrinsic ductility of the material, but rather to
the fact that the same parameters of the force law control
both the ductility crossover and the dislocation mobility.
In the shelf regime of the criterion, where «;, is low, the
ductility parameter takes the more expected form,

1 2v, ! s
:__.’Y_”'Llff; 7_<3. (16)
Y Yus Mo Yus

Although these criteria are constructed directly from
the simulation results, a separate and partially indepen-
dent check can be performed by comparing the observed
left hand limiting points of the curves of Fig. 4, where
cleavage takes over from emission, with the computed
values of cleavage from the Griffith relation. This check
is displayed in Table I, where the results are deemed to be
satisfactory. Parenthetically, we note that the crossover
in the simulations also exhibit the shifts which the elas-
tic mismatch ratio in (15) and (16) predict. That is, in-
creasing the elastic mismatch at the interface drives the
material into the brittle direction.

The most important implication of Eq. (15) is that the
ductile and/or brittle crossover is independent of «, in
the high v, regime. This result has already been ob-
served in the earlier work of ZCT, for the completely
homogeneous case, and it is instructive to compare their
results with the current case. As noted earlier, the dif-
ference between the present work and ZCT is that when
c1/c2 = 1, and the elastic mismatch disappears in Fig.
4, there is still a bonding discontinuity at the “inter-
face,” because the bonds at the interface are stronger
than those of the matrix on either side. When there is
zero elastic mismatch, . = 0, and in pure Mode I load-
ing with ¢ = 0, then for § = 60°, Y = 64/9. Setting
D = 1 to find the condition for the brittle and/or duc-
tile crossover, yys/(p2b) ~ 0.035 from (15), whereas ZCT
obtained 0.012 for the crossover critical value.

This result shows that having a bonding inhomogeneity
in the lattice does change the ductility crossover criterion
significantly from the truly homogeneous case. The crite-
rion is shifted in the ductile direction by the presence of
the chemical inhomogeneity. That is, the chemically in-
homogeneous material is more ductile than predicted by
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ZCT in the homogeneous lattice. For the opposite case
where the bonds in the interface are weaker, we would
expect the shift to be opposite of that above so that the
material would be more brittle than the homogeneous
results predict.

The major consequence of the deviation from ZCT is
that chemical embrittlement is a subtle effect which goes
well beyond the ability of simple rules such as Egs. (15)
and (16) to describe completely. The physical reason is
that the emission criterion and ductility parameter must
be sensitive to the range (and form) of the bonding force
laws in the vicinity of the interface. This follows from
Thomson and Carlsson’s model of the ledge contribution
when the crack is blunted. In their model, the lattice re-
sistance is composed of a conventional unstable stacking
fault term of the Rice form, and a second term arising
from a correction due to the ledge energy. The ledge
correction term contains the ledge surface energy +,, av-
eraged over a suitable number of bonds as the ledge is
created, multiplied by a factor which arises from the lo-
calization of the emerging dislocation density in the core.
In their paper, Thomson and Carlsson calculate the lo-
calization from a Peierls dislocation model, which brings
in the shear bonding between lattice planes in the form
of v,s. Both of these factors in the ledge correction term
obviously depend on the range and form of the force laws.
In the nearest-neighbor forces used in the current work,
as well as by Thomson and Carlsson and ZCT, the ledge
energy is averaged over two bonds crossing the cleavage
plane. Thus, when a localized layer of strong bonds ex-
ists, as in the current work, both the averaging over the
ledge energy, and the localization of the emerging dislo-
cation core will depend on the type, form, and range of
the force law used, and, in general, will lead to results
different from the homogeneous solid.

Indeed, this argument shows that the criterion for duc-
tility involves a considerable subtlety when it comes to
judging how important the ledge term is in comparison
to the standard Rice 7,, term in the emission criterion.
When the force law has the pair form and is cut off at
the second neighbor distance, as in the current work and
that of ZCT, the ledge correction term is probably max-
imized. For example, in metals where the opening of
the ledge during cleavage involves a geometry where the
many-body character of the force law would lead to a
weak debonding during the formation of a single step
from a pure cleavage crack, the ledge term should be
smaller than we have estimated. Thus, the issue of how
important the ledge term is, will be one which should
only be answered in the context of a full simulation of
the physical geometry of the cracking lattice, with ap-
propriate force laws.

Nevertheless, keeping in mind these provisos and warn-
ings, the general picture we have developed on the basis
of the Thomson-Carlsson physical model should provide
one with considerable insight into the factors which con-
trol the intrinsic ductile and/or brittle criterion in a ma-
terial. There should always be a term associated with the
theoretical shear strength of the solid (vyus), and a term
associated with the ledge formation. Although Rice and
his co-workers have devoted considerable attention to the
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possible importance of the tension and/or shear coupling
in the ~v,, part of the criterion, we have found that the
simpler unvarnished (but relaxed) +,, describes the re-
sults for the set of force laws and lattices we have used.
On the basis of the Thomson-Carlsson model, and on the
basis of the simulations done here and by ZCT, the ledge
term appears to be composed of a product of both ~,
and v,s- But we believe that even if this functionality is
preserved for more realistic bonding and lattices, the rela-
tive magnitudes of the pure unstable stacking fault term
and the ledge correction term will depend on the type
of bonding. Thus, trends may be discernible from our
results, which are probably applicable to real materials,
but quantitative predictions are probably not justified,
at least for chemical embrittlement situations.

In spite of these provisos and warnings, it will always
be true that cleavage on the interface is governed by the
Griffith condition with the interface v,, so that weakening
the bonding at the interface will always enhance failure
on the interface. But it need not be a brittle failure,
unless D < 1. Likewise, a strong matrix will always
tend to suppress dislocation emission through the +,,
parameter.

To summarize our general conclusions with a “rule of
thumb” statement which we believe will survive more
extensive investigation: Egs. (15) and (16) predict two
regimes of behavior, and only in the case of low interfa-
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cial bonding, will embrittlement be induced by a simple
lowering of «v,. In general, the behavior will be more com-
plex (and interesting) than that. Exactly what “low” and
“high” mean quantitatively, must be left for more realis-
tic modeling.

We have learned that the purely interfacial effects from
the lattice mismatch can be incorporated into the stan-
dard elastic descriptions of interfacial cracks, provided
a core phase angle and core stress intensity factor are
defined using the range of the force law as the core size.

To return to the question asked at the beginning of
this paper, “Can ductility in a material be determined
in terms of bulk material parameters?,” the answer is
only provisionally “yes”—if trends and qualitative fea-
tures are desired. But localized chemical embrittlement,
such as occurs during segregation at an interface, appears
to require a full crack simulation for definitive answers.
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