Pressure effect on the T_c of HgBa₂CuO_{4+ δ} with 0.07 $\leq \delta \leq 0.39$

Y. Cao, Q. Xiong, Y. Y. Xue, and C. W. Chu

Department of Physics and the Texas Center for Superconductivity at the University of Houston, Houston, Texas 77204-5932

(Received 12 December 1994; revised manuscript received 20 April 1995)

The superconducting transition temperature (T_c) of HgBa₂CuO_{4+ δ} (Hg 1:2:0:1) has been determined under pressures up to 1.7 GPa over a wide δ range. We found that the linear pressure effect on T_c (dT_c/dP) is constant at +2.0±0.1 K/GPa for $\delta < 0.3$, but displays a drastic change around $\delta \sim 0.3$, coinciding with the onset of a quadratic pressure effect on T_c and the "boomerang path" previously reported. Comparison of the present observations for $\delta < 0.3$ with the inverse parabolic carrier density (n)dependence of T_c suggests that the inverse parabolic $T_c(n)$ relation is less universal than originally envisioned, and that the observed large dT_c/dP of optimally doped Hg 1:2:0:1 and other members of the homologous series is a result of the change of electron bands induced by pressure.

I. INTRODUCTION

In an attempt to understand the occurrence of superconductivity in high-temperature superconductors (HTSs), many experiments have been carried out to find possible correlations between the superconducting transition temperature (T_c) and some physical parameters. One of these correlations is the so-called universal inverse parabolic dependence of T_c on the number of carriers per $CuO_2(n)$ in HTS, i.e., $T_c(n) = T_c^{max}[1 - a(n - n_{op})^2]$ with a = 82.6 and $n_{op} = 0.16$, observed for a wide variety of HTS compounds.¹ According to this T_c -n correlation, superconductivity occurs mainly in the CuO₂ sheets over a limited region of *n* between $(0.16-1/\sqrt{a})$ and $(0.16+1/\sqrt{a})$. T_c peaks at T_c^{max} when the compound is optimally doped with $n = n_{op} = 0.16$. The HTS is known as underdoped when $n < n_{op}$, and overdoped when $n > n_{op}$. Several phenomenological models²⁻⁴ have subsequently been advanced to account for the observed pressure effect on $T_c(dT_c/dP)$ based on the above universal T_c -n rather successfully. dT_c/dP has therefore been attributed to two sources: the pressure-induced charge transfer (dn/dP) and the *n*-independent pressure-induced constant shift in $T_c^{\max} (dT_c^{\max}/dP)$. However, most of the reported high-pressure experiments have been restricted to the optimally doped samples. This is particularly true for HgBa₂Ca_{m-1}Cu_mO_{2m+2+ δ} with m = 1, 2, and 3.^{5,6} Unusually high T_c has been achieved under pressure^{6,7} and universal $T_c(P)$ -behavior was observed for the compounds with different m's.^{5,6} Although several studies were made on $La_{2-x} A_x CuO_4$ (La 2:1:4) with A = Sr and Ba,⁶ Tl₂Ba₂CuO_{6+ δ} (Tl 2:2:0:1),^{2,9} and Ca/La doped YBa₂Cu₃O_{7- δ} (Y 1:2:3)^{3,4} over a relatively wide T_c variation, the T_c range was achieved either through combined anion- and cation doping for La 2:1:4 and Y 1:2:3 or only in the overdoped region for Tl 2:2:0:1. Cation doping is known to induce local strain¹⁰ that may complicate the interpretation of the results. Adding to the complication are the structural instabilities at temperatures above T_c associated with the La 2:1:4 compound system⁸ and the effect associated with the linear CuO chain in the Y 1:2:3

compounds.³ The newly discovered HTS compound $HgBa_2CuO_{4+\delta}$ (Hg 1:2:0:1) has been found¹¹ to display a wide cation-doping range by varying δ , covering almost the whole superconducting region. Its T_c can be varied from below 1 K through a $T_c^{max} = 97$ K and finally $T \sim 20$ K as δ increases continuously, representing the largest T_c variation ever achieved by only a single ion doping. We have therefore systematically investigated the dT_c/dP of Hg 1:2:0:1 with different doping to test the universality of the $T_c(n)$ -correlation proposed. In this paper, we report results of the dT_c/dP of the T_c of single-phase samples of Hg 1:2:0:1 with 0.07 $\leq \delta \leq 0.39$ under hydrostatic pressures up to 1.7 GPa.

II. EXPERIMENTAL

The Hg 1:2:0:1 samples investigated here were prepared by the controlled solid-vapor reaction techniques.¹² In short, Hg 1:2:0:1 was synthesized by reacting a precursor of Ba₂CuO_x and a composite Hg source together. The precursor pellet was obtained by repeatedly heating and pulverizing a mixture of approximate amounts of BaO and CuO in an alumina crucible under flowing mixed gas of Ar:O at a ratio of 4:1 at 930 °C for a total of 24 h. The composite Hg source used in this study was a prereacted Hg 1:2:0:1 pellet made by compacting the thoroughly mixed HgO and pulverized precursor powder. A small precursor pellet and a large composite Hg source in a ratio of $\sim 1:3$ are sealed inside an evacuated quartz tube, heated to 810 °C and kept at this temperature for 8 h before being cooled to room temperature. Samples with different δ 's were prepared by heating the as-synthesized samples at different temperatures and O pressures for appropriate periods of time.¹³ To reach the underdoped region, the sample was heated in a vacuum of 2×10^{-6} Torr at a temperature between 250 and 500 °C for 20-80 h. For the overdoped samples, the assynthesized sample was heated in an atmosphere of 1-500 bar between 240 and 400 °C for 10-240 h. The best homogeneous heavily doped samples were usually obtained at low temperatures which facilitate oxygenation and avoid Hg loss. Heat treatment at temperatures

0163-1829/95/52(9)/6854(4)/\$06.00

6854

©1995 The American Physical Society

above 500 °C in vacuum resulted in a partial decomposition of the compound. In this work, δ was determined based on the $T_c(\delta)$ -curve recently reported¹¹ after the T_c was measured.

The structure and the phase purity were characterized by powder x-ray diffraction (XRD). The T_c at ambient was measured both resistively by the four-lead method using a Linear Research LR-400 bridge and magnetically using a Quantum Design SQUID magnetometer. Under pressure, the T_c was determined resistively and, for a few samples, by the ac magnetic susceptibility technique. The high-pressure environment was generated inside a Teflon cup in a Be-Cu high-pressure clamp,¹⁴ using 3M fluorinert as the pressure medium. The pressure was measured with a superconducting Pb manometer which was situated next to the sample inside the Teflon cup and the temperature by a chromel-alumel thermocouple above 30 K and a Ge-thermometer below 30 K.

III. RESULTS AND DISCUSSION

The 11 samples studied here are single-phase Hg 1:2:0:1 without any impurities within the resolution of our XRD analysis of $\sim \pm 4\%$. The superconducting transition width (ΔT_c) of these samples ranges from ~1 to 6 K (the narrowest for the optimally doped sample), and the resistively and magnetically determined mid-point T_c 's of the samples (to be defined below) differ not more than 2 K, suggesting a relatively high quality for these samples. The doping level deduced from T_c is shown in Fig. 1 for the used samples. The value of δ was estimated based on the published $T_c(\delta)$ relation,¹¹ which shows that T_c varies with δ parabolically and exhibits a T_c^{\max} of 97 K at the optimal $\delta_{op} = 0.22$. Among the 11 samples examined, three were underdoped with a minimum $T_c = 45$ K and seven were overdoped with a minimum $T_c = 26$ K, in addition to the optimally doped one.

Two typical sets of resistivity curves $\rho(T)$ are presented in Figs. 2 and 3 representing two samples under different pressures: one optimally doped and the other extremely overdoped, where the onset (T_{C0}) , mid-point (T_c) , and

FIG. 1. The T_c vs δ (as deduced from the measured T_c) for all samples used here, compared with the previously measured (Ref. 11) T_c vs δ in Hg-1201 (solid line).

FIG. 2. $\rho(T)$ for the optimally doped Hg 1:2:0:1 at various pressures.

offset (T_{cf}) of the T_c 's are defined. For the optimally doped (and also the underdoped) sample, the T_c is shifted upward linearly by pressure, and ΔT_c is also increased from ~ 1 to 3 K as the pressure increases from 0 to 1.5 GPa. However, for the extremely overdoped sample with $\delta \ge 0.3$, the T_c is shifted nonmonotonically by pressure, but the transition width remains the same (Fig. 3). The T_c of three samples under pressure, two of them underdoped and one extremely overdoped, was measured magnetically. The dT_c/dP in one of the samples with $\delta = 0.12$ was verified by simultaneously measuring the T_c magnetically and resistively. No difference in the $T_c(P)$ - $T_{c}(0)$ was noted within our experimental resolution. The T_c of the 11 samples under various pressures are summarized in Figs. 4(a) and 4(b), where Fig. 4(a) shows the underdoped (Nos. 1-3) and the optimally doped (No. 4) samples and Fig. 4(b) shows the overdoped ones (Nos. 5-11). The numbers in the figures represent the sequential order of increasing O content (δ) in the samples.

FIG. 3. $\rho(T)$ for heavy overdoped Hg 1:2:0:1 with $\delta \sim 0.37$ at various pressures.

FIG. 4. Mid-point $T_c(P)$ of samples with different δ 's: (a) underdoped and optimally doped, with $\delta = 0.22$, 0.19, 0.12, and 0.07 from top to bottom; (b)—overdoped with $\delta = 0.27$, 0.30, 0.31, 0.34, 0.36, 0.37, and 0.39 from top to bottom.

They are, respectively, 0.07, 0.12, 0.19, 0.22, 0.27, 0.30, 0.31, 0.34, 0.36, 0.37, and 0.39.

According to the universal inverse quadratic relation $T_c(n) = T_c^{\max}[1-a(n-n_{op})^2]$, one obtains

$$dT_{c}/dP = [1 - a (n - n_{op})^{2}](dT_{c}^{max}/dP) - T_{c}^{max}(n - n_{op})^{2}(da/dP) - 2aT_{c}^{max}(n - n_{op})(dn/dP) + 2aT_{c}^{max}(n - n_{op})(dn_{op}/dP) .$$
(1)

Therefore, $dT_c/dP = dT_c^{\text{max}}/dP$ for $n = n_{\text{op}}$, which can be nonzero for reasons unknown. The pressure effects for samples with $n \neq n_{\text{op}}$ enable us to examine the relationship between some parameters in Eq. (1). Especially,

$$d(dT_{c}/dP)/dn = 2(n - n_{op})[-a(dT_{c}^{max}/dP) - T_{c}^{max}(da/dP)] - 2aT_{c}^{max}[(dn/dP) - (dn_{op}/dP)].$$
(2)

 (dT_c^{\max}/dP) represents the change in $T_c^{\max}, (da/dP)$ the change in the range for HTS to occur, (dn/dP) the charge transfer, and (dn_{op}/dP) the change in the optimal doping, all induced by pressure. The original phenomenological model² follows by retaining only the pressure-induced charge-transfer term on the basis of a rigid band model, i.e., $dT_c/dP = -2aT_c^{\max}(n-n_{op})(dn/dP)$. This model predicts a linear *n*-dependent (dT_c/dP) , which is positive for samples in the underdoped region (i.e., $n < n_{op}$), and zero for the optimally doped sample (i.e., $n = n_{op}$). A modified model⁴ was advanced by retaining the (dn/dP) and part of the (dT_c^{\max}/dP) terms, i.e., $dT_c/dP = (dT_c^{\max}/dP) - 2aT_c^{\max}(n-n_{op})(dn/dP)$.

This model accounts for the nonzero dT_c/dP for the optimally doped Y 1:2:3 in addition to the linear *n*dependent dT_c/dP in the original phenomenological model.² Unfortunately, neither of the above models can explain the δ or *n* dependence of dT_c/dP of Hg 1:2:0:1 observed here.

For the Hg 1:2:0:1 compound system, T_c depends on δ inverse parabolically as $T_c = 97[1-26(\delta-\delta_{op})^2]$ with $\delta_{op} = 0.22$ over the whole δ range investigated.^{T1} However, T_c was found¹¹ to vary with *n* inverse parabolically as $T_c = 97[1-50(n-n_{op})^2]$ only for n < 0.2 which corresponds to $\delta < 0.3$, where *n* was determined by thermopower measurements. For $\delta < 0.3$, *n* is proportional to δ but each O atom contributes only 0.72 holes to each Cu instead of 2, as predicted by the ionic model, due to strong covalent bonding between O and Hg in the HgO_{δ} layer of the compound.^{11,15} A "boomerang path" appears in $T_c(n)$ together with a violation of the scaling between δ and *n* for n > 0.2 ($\delta > 0.3$). The drastic change in the scaling and the deviation of the inverse parabolic $T_c(n)$ relation near $\delta \sim 0.3$ have been ascribed to the possible change in the O sites for $\delta > 0.3$, the defect scattering or the contribution of HgO layer to S(290 K).¹¹ Therefore, the n deduced form of the thermopower should be taken with caution for $\delta > 0.3$, and we will use δ to represent the doping level in the following discussion.

The dT_c/dP of Hg 1:2:0:1 is analyzed in terms of a fit of $T_c(P) = T_c(0) + \alpha P + \beta P^2$. The δ dependences of the linear pressure term α and the quadratic pressure term β are shown in Figs. 5 and 6. A drastic change in both α and β near $\delta \sim 0.3$ is evident, i.e., α is a constant of 2.0 ± 0.2 K/GPa for $\delta \le 0.25$, decreases rapidly to 0 near $\delta = 0.3$, and returns to 1.0 ± 0.2 K/GPa at $\delta \sim 0.33$ before it falls off again for $\delta > 0.33$ and β is 0 ± 0.02 K/GPa² for $\delta \le 0.30$, starts to drop rapidly near 0.31, and decreases to $\sim -1.7\pm 0.5$ K/GPa² at $\delta = 0.33$ before it rises again for greater δ .

In the discussion that follows, we shall first discuss the dT_c/dP of Hg 1:2:0:1 samples with $\delta < 0.3$ assuming that the inverse parabolic $T_c(n)$ relation is valid at both ambient and high pressure. As shown in Figs. 5 and 6, dT_c/dP is independent of both n and δ for Hg 1:2:0:1

FIG. 5. δ dependence of linear pressure effect $\alpha = dT_c/dP|_{P=0}$ on T_c .

FIG. 6. δ dependence of quadratic pressure effect $\beta = (d^2T_c/dP^2)|_{P=0}$ on T_c .

with $\delta \leq 0.25$ which spans the underdoped and slightly overdoped regions. For $n = n_{op}$ and $d(dT_c/dP)/dn = 0$, Eq. (2) gives $(dn/dP) = (dn_{op}/dP)$. This shows that the optimal concentration n_{op} should shift with pressure if the pressure induces a non-negligible charge transfer. Similar result has been suggested before.¹⁶ In such a case, the observed large T_c enhancement for the optimally doped Hg 1:2:0:1⁴ is a very natural result. The pressure-induced shift in n_{op} implies that the electronic bands of Hg 1:2:0:1 and other members of the Hg-12(m-1)m (and possibly other cuprate HTS's) are not rigid, so the inverse parabolic T_c -n or $-\delta$ relation would vary accordingly. Even the inverse parabolic relation itself may only be valid under a set of more restrictive conditions than were originally envisioned.

The sudden appearance of nonzero β values for Hg 1:2:0:1 with $\delta \ge 0.3$ (or n > 0.22) under pressure below 1.5 GPa as shown in Fig. 6 coincides with the onset of the "boomerang path" in $T_c(n)$ previously observed¹¹ Tl₂Ba₂CuO_{6+ δ} is a similarly overdoped compound. However, its T_c varies parabolically with *n* determined from

the thermopower measurements without the boomerang behavior and displays only the linear pressure effect. We therefore propose that the drastic change of dT_c/dP near $\delta \sim 0.3$ as shown in Figs. 5 and 6 may be associated with the scattering effect due to the presence of extra O sites in heavily overdoped Hg 1:2:0:1 as previously suggested.¹¹ Details of the process are currently under study.

IV. CONCLUSION

We have determined systematically the dT_c/dP for Hg 1:2:0:1 with $0.07 \le \delta \le 0.39$. Both the linear and quadraeffects on T_c , i.e., α and β in $T_c(P)$ tic $=T_c(0)+\alpha P+\beta P^2$, were observed. α was found to be positive and almost constant at $+2.0\pm0.2$ K/GPa for δ up to 0.24 and drops drastically to $\sim 0 \text{ K/GPa}$ at $\delta = 0.3$ and returns to 1.0 ± 0.2 K/GPa before it falls off slowly, while β is 0 for $\delta < 0.3$, and drops to -1.5 K/GPa^2 at ~0.34 before it increases again. The results for $\delta < 0.3$ were compared with predictions of the inverse parabolic $T_c(n)$ relation and previous phenomenological models on $T_c(P)$. We conclude that the inverse parabolic $T_c(n)$ relation and its universal parameters are valid only under conditions more restrictive than originally envisioned and that the unusually large dT_c/dP observed in optimally doped Hg 1:2:0:1 and other homologous members of the series Hg-12(m-1)m can be understood in terms of a pressure-induced shift in n_{op} , the doping level for maximum T_c . The drastic change in dT_c/dP with $\delta > 0.3$ is attributed to the possible scattering effect associated with the oxygen in the heavily overdoped samples, where the boomerang path occurs in $T_c(n)$. Detailed process responsible for the observation remains unknown.

ACKNOWLEDGMENTS

This work is supported in part by NSF Grant No. DMR 91-22043, USAFOSR Grant No. F49620-93-1-0310 by BMDO, EPRI, the State of Texas through the Texas Center for Superconductivity at the University of Houston, and the T.L.L. Temple Foundation.

- ¹See, for example, M. R. Presland *et al.*, Physica C **176**, 95 (1991).
- ²N. Mori *et al.*, J. Phys. Soc. Jpn. **59**, 3839 (1990); J. G. Lin *et al.*, Physica C **175**, 627 (1991).
- ³C. C. Almasan *et al.*, Phys. Rev. Lett. **69**, 680 (1992).
- ⁴J. J. Neumeier and H. A. Zimmerman, Phys. Rev. B **47**, 8385 (1993).
- ⁵A. K. Klehe *et al.*, Physica C **213**, 266 (1993); F. Chen *et al.*, Phys. Rev. B **48**, 16 047 (1993); A. K. Klehe *et al.*, Physica C **223**, 313 (1994).
- ⁶C. W. Chu *et al.*, Nature **365**, 323 (1993); L. Gao *et al.*, Phys. Rev. B **50**, 4260 (1994); L. Gao *et al.*, Philos. Mag. Lett. **68**, 345 (1993).

- ⁷M. Nuñez-Requeiro *et al.*, Science **262**, 97 (1993); H. Takahashi *et al.*, Physica C **218**, 122 (1993).
- ⁸See, for example, Q. Xiong et al., Phys. Rev. B 46, 581 (1992).
- ⁹See, for example, R. Sieburger and J. S. Schilling, Physica C 173, 403 (1991).
- ¹⁰T. Egami, Solid State Commun. **63**, 1019 (1987).
- ¹¹Q. Xiong et al., Phys. Rev. B 50, 10346 (1994).
- ¹²**R**. L. Meng *et al.*, Physica C **216**, 21 (1993).
- ¹³Q. Xiong et al., Physica C 231, 233 (1994).
- ¹⁴C. W. Chu, Phys. Rev. Lett. 33, 1283 (1974).
- ¹⁵D. J. Singh and W. E. Pickett, Phys. Rev. Lett. 73, 476 (1994).
- ¹⁶R. J. Wijngaarden et al., Physica C 185-189, 787 (1991).