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We study two-dimensional Josephson arrays driven by a combined dc plus ac current, and with an ap-
plied transverse magnetic field off fiux quanta per plaquette. We present ansatz solutions for sufficiently
large frequencies, which are a generalization of the traveling wave solutions found by Marino and Halsey
for the case of dc current driving. For f= —' and —', we compute the widths of the first few Shapiro steps
for both integer and fractional winding numbers. These expressions consist of products of Bessel func-
tions of (i„/co„), where i„and co„are the amplitude and the frequency of the driving ac current, re-
spectively, times a frequency-dependent factor for fractional steps. In the limit of large frequencies, we
find that the fractional steps are suppressed, whereas the maximum integer step widths saturate to a
frequency-independent value. We show that the suppression of the fractional steps is due to decrease of
the vertical (i.e., perpendicular to the direction of Aow of the injected current) supercurrent relative to
the normal current, whereas the persistence of the integer steps is due to the existence of zero-frequency
(though spatially varying) terms in the expansion for the gauge-invariant phase di6'erences, for which the
normal current vanishes. These results are in reasonable agreement with the numerical computations
carried out by other groups.

I. INTRODUCTION

When a resistively shunted Josephson junction is
driven by a combined dc and ac current
I (t) =Id, +I„sin(Q„t), the current-voltage characteris-
tic exhibits plateaus in which the time-averaged voltage is
equal to an integer multiple of A'0„/2e for a finite inter-
val of dc current. These plateaus are called Shapiro
steps. ' An analogous effect is observed when the current
is applied to an N XX square array of Josephson junc-
tions with transverse magnetic Aux per plaquette
N=f@o, where No=Ac/2e is the quantum flux, and

f =p/q is the frustration, p and q being relatively prime
integers. The total voltage across the array is locked at
values given by

~ 1VfiO„
V

q 2e

In this case, the steps are called fractional giant Shapiro
steps. The accepted explanation of this effect is that the
q Xq periodic vortex superlattice moves coherently in
response to the external ac field. '

If the parallel shunt resistance is R, and the critical
current per junction is io, we can then define a dimension-
less time r=(2eioR/A)t. Measured in these time units,
the external ac frequency is co„=A0„/2—ei o'R The.
Josephson frequency is defined by Qz= 2eV&/NA, w—ith
its normalized version given by co& ——V&/ioRN. In terms
of them, the above relation can simply be expressed as
coJ=vm„, where v=n/q is the winding number.

These steps display a variety of characteristics. It has
been observed that there exists a qualitative difference be-
tween the cases where v is an integer (integer steps), and
when it is a fraction (fractional steps). This difference
becomes manifest when going from low to high frequen-

cies. At low frequencies, both fractional and integer
steps behave qualitatively as in the single-junction case.
In the high-frequency limit, on the other hand, fractional
steps are suppressed, whereas the maximum integer step
widths saturate to a frequency-independent value.

This phenomenon has been widely studied by several
authors. Analytical treatments have been provided
by Halsey, Lee and Halsey, and by Rzchowski, Sohn,
and Tinkham. Nevertheless, a theoretical derivation
based on first principles is still lacking. The missing link
in the understanding of this problem has been the
knowledge of the solutions for dc plus ac current driving.
Progress in this direction has already been made. The ex-
istence of a family of traveling-wave solutions for dc
current-driven arrays has been reported by Marino and
Halsey in the limit of high Josephson frequencies. In
this paper we present a generalization of these traveling-
wave states to the case where the array is driven by an
additional ac current. For f =

—,', these are also solutions
to the model equations used by Rzchowski, Sohn, and
Tinkham. In addition to the modes corresponding to
the Josephson frequency coJ and its harmonics, these
solutions contain terms oscillating with frequencies given
by linear combinations of coJ and co„. If one then com-
putes the current Aowing across the entire array, one
finds that only the terms with frequencies given by
(k&qcoz+mco„) survive, where k, and m are integers.
This is due to the fact that these terms are exactly on
phase everywhere on the array, whereas the other terms
have phases such that their sums vanish. Shapiro steps
result when the linear combination of frequencies is zero.
We then derive expressions for the step widths as a func-
tion of i„and co„ for f =

—,
' and f =

—,', by computing the.

ensuing dc supercurrent corresponding to these modes
across the array for the first few steps. These expressions
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consist of products of q Bessel functions of (i„/co„), and
other factors that depend solely on the frequency and an
arbitrary constant phase $0.

The main idea ensuing from this analysis is that the
difference between the behaviors of the fractional and in-
teger steps at low and high frequencies is determined by
the relative size of the vertical (perpendicular to the
direction of fiow of the injected current) supercurrent rel-
ative to the normal current for the different frequency
modes contributing to a given step width. At low fre-
quencies the vertical supercurrent is dominant for all
modes, and hence both integer and fractional steps
behave in the same manner. When the frequency is in-
creased, all the modes with nonvanishing normal currents
decrease. The suppression of the fractional steps at high
frequencies appears as a consequence of their dependence
on these modes, whereas the persistence of the integer
steps is due to the existence of zero-frequency modes (and
therefore with vanishing normal currents) whose ampli-
tudes are determined by the vertical supercurrent. Con-
sequently, integer steps behave in the same fashion in
both the low- and high-frequency regimes. This is the
same mechanism that yields the Shapiro steps for a single
Josephson junction.

Our solutions for the gauge-invariant phase differences
contain the arbitrary phase $0. On a given step, this
phase varies over an interval that we hypothesize to be
frequency dependent. At high frequencies we shall as-
sume that this interval attains a constant size, which in
principle can only be determined by fitting the numerical
results to the theoretical predictions. Our ignorance
about the details of the nature of the solutions at low fre-
quencies does not allow us to provide expressions for the
step widths in this regime. Our study, thus, does not ad-
dress the problem of trying to find the true variation of
this interval with the frequency.

In Sec. II we review the solutions for the dc case and
present their generalization to the case of dc plus ac
current driving. In Sec. III we use these solutions as the
starting point to compute the widths of the first few
Shapiro steps for f =

—,
' and —,'. Finally, in Sec. IV we pro-

vide results from numerical computations.

II. SOLUTIONS FOR dc PLUS ac CURRENT DRIVING

We consider a square array of N XN overdamped resis-
tively shunted Josephson junctions in a uniform trans-
verse magnetic field with f fiux quanta piercing each pla-
quette, parallel shunt resistance R, and critical current
per junction ia. We define the gauge-invariant phase
differences by 0; =0;—0 —A;, where 0; is the super-
conducting phase on the ith site on the array, 3;~ is the
line integral of the magnetic vector potential,
2; =(2m/@0) f ~ A. .d x, such that g~ A;J = 2' f, where
the sum is around a plaquette, and j denotes a site that is
nearest neighbor with i. Then the current Bowing from
the ith to the jth site is

where I; =—I;./io. The first term is the normal current,

ci)Jt +2nfn—r +5n~+$.0, (4)

where nx and nr are integers and $0 is a constant phase.
Then the gauge-invariant phase differences on horizontal
and vertical bonds for these solutions are given by

~H(4) =0+fH(0»
()v(q) =fv(y»

where fH and fv are periodic functions with period 2m

and zero average. The authors of Ref. 8 worked out the
analytical form of these functions in the limit of high
voltages, by retaining only the first harmonic in their
Fourier expansion.

The generalization of these solutions to the case of
combined dc and ac current driving is straightforward.
The main modification is that now, in addition to the
mode with Josephson frequency coJ, a mode with frequen-
cy co„should also be present, due to the external ac
current. The presence of this second time scale ruins the
spatiotemporal translational symmetry in the cases in
which coJ and co„are incommensurate. This entails no
problem, as we shall see. The beating of these two modes
due to the horizontal supercurrent requires the additional
presence of terms with frequencies given by linear corn-
binations of co+ and co„ in the expansion for the gauge-
invariant phase difFerences. These solutions must further

while the second one represents the supercurrent. The
equations of motion simply express the fact that the total
current arriving at each site on the array should equal the
current externally injected there

P Iij ii;ext &

J

where the external current i;.,„, vanishes everywhere on
the array, save for at the boundaries. Henceforth, we
shall take the convention that when computing the
gauge-invariant phase differences on horizontal bonds j is
to be taken to the right of i, and above it on vertical
bonds.

For the case in which the system is driven by a uniform
dc current injected parallel to one of the axes of the array
(which we take to be the horizontal axis with the current
fiowing from right to left), and with periodic boundary
conditions along the vertical direction, Marino and Hal-
sey reported the existence of a family of traveling-wave
solutions. These solutions are characterized by a parame-
ter 5 that measures the phase shift of the phase oscilla-
tions along the horizontal direction. Along the vertical
direction the phase shift is simply equal to 2n f, which is
consistent with the condition of transverse periodic
boundary conditions with period q. These solutions pos-
sess a combined spatiotemporal translational symmetry,
in the sense that a translational of the solution by one 1at-
tice spacing along the horizontal direction is equivalent
to the translation of the solution by a time ~=5/~J, and
a translation of the solution by one lattice spacing along
the vertical direction is equivalent to a translation of the
solution by a time r =2~f /co&.

Let us define
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satisfy several conditions. First, they should reduce to
their dc counterparts when i„and co„are set equal to
zero; secondly, in order to (indirectly) enforce the bound-
ary conditions, the dc and ac currents (at co„and its har-
monics) fiowing on each horizontal bond should be in-
dependent of position, and equal to the values given by
the currents injected at the boundaries, whereas on verti-
cal bonds they should vanish, allowing for the possible
existence of zero-frequency modes (that occur only on in-
teger Shapiro steps), which should not be regarded strict-
ly as dc currents; and finally the linear term should
remain unchanged, because it is still true that the slope
should yield the average voltage per junction. Our ansatz
for the gauge-invariant phase differences on horizontal
bonds then takes the form

&H (nz, n ~, ~)=P+ g a„cos(n g+ m co„~+gH ),
n, m

where n ( ~ 0) and m are integers, while on vertical bonds
we have

Oi,(nx, n„,~) = g a„cos(n /+mes„~+/„),
n&o, m

where f is given by Eq. (4), and g„' are constant phases.
The phase differences are taken according to our conven-
tion. The different terms in this expansion are labeled by
the two integers n and m. We shall refer to this com-
ponent of the phases and currents as the (n, m) mode.
Notice that the modes with n =0 have no spatial depen-
dence, in agreement with our assumption. This form of
solution is good enough to describe the system even at
low frequencies.

The gauge-invariant phase differences are not indepen-
dent. The sum of their oscillating parts around a pla-
quette has to vanish. We impose this condition to each
frequency mode and obtain

V Ha„=pa„
+n (nf —5/2), (10)

The different components of the supercurrent can be
computed in a straightforward manner by performing a
Fourier-Bessel expansion of the left-hand side of Eq. (11).
A generic term in this expansion is of the form

where p=sinnnf/sin(n5/2) if nWq (n =q is a short-
hand for n =q mod0) and 0 otherwise. Thus the modes
with n =j are absent on vertical bonds. This result is the
same one that was obtained in the dc case. The reader is
referred to Ref. 8 for the details of the derivation.

On the Shapiro steps we will assume that 5=2m f, due
to our requirement of ac translational invariance [see the
discussion preceding Eq. (7)]. This implies P= 1 for nWq,
in which case a and g are the same on both horizontal
and vertical bonds, which considerably simplifies matters.
Consequently, we shall hereafter drop the superscripts H
and V in our expressions.

We shall perform a mode expansion of the horizontal
supercurrent sinHH in the following manner:

sin g+ g a„cos(n P+ m co„r+g„)
n, m

= g S„cos(ng+mco„~+:-„) .
n, m

.k.S„cos(ng+mco„~+:-„)= Q Im. g Jk (a„)i ' exp i/+i g k (n P+m a)„r+g„)
I(n. , m. )I J

(12)

The sum is over the set of sets of pairs [ [(n, m ) j j
such that there exists a set of coefficients I kj j for which
the following relationship (understood as a vector identi-
ty) holds:

(n, m)=(1, 0)L+ gk (n, m ),
J

where (1,0)L denotes the contribution due to the linear
term, which is absent on vertical bonds. These expres-
sions are in general quite complicated. We shall assume
that they can approximately be computed starting from
the lowest-order (in n and m) modes, since the magnitude
of the different Bessel functions decays quickly with in-
creasing order. This approximation should be good
enough at high frequencies, but we do not expect it to
remain accurate for lower frequencies. The feedback of
the higher-order modes on the lower ones should become
more important as one approaches the critical current.
On vertical bonds the ( n, m ) component of the super-
current is (neglecting higher-order corrections) equal to
2J,(a„). It can be shown for simple cases that other

contributions vanish.
We now turn to the equations of current conservation

[Eq. (3)). Once again, we have to distinguish between the
cases nAq and n =q. In the former case, the equation
for current conservation for our ansatz solution is

—2'„a„~sin( n g+ m co„r+g„)
+2Ji(a„)cos(nf+mco„r+g„)

+S„~cos(n /+ md„7.+:"„~)=0,

where co„=ncoJ+mco„. There is an overall factor of
2 sinn f that goes away. The first term in the above equa-
tion represents the combined effect of both the horizontal
and vertical normal currents, each of them contributing
the same amount; the second one is due to the vertical su-

percurrent, and the last one comes from the horizontal
supercurrent, which has to be computed for each mode.
For n =j the current is trivially conserved at each site.
Furthermore, the current corresponding to the (0,1)
mode should equal the external ac current:
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a„-h (co~)
k,.II Jn, '(ap. , i)

n,.k,. =m
(16)

for nAq, where h (x)-c (c =const &1), as x~O, and
h(x)-x " as x~~. This will be made clear below.
Consequently, it is safe to assume (save for ap &) that
J&(a„)=a„~/2. Equation (14) can then be solved in
terms of the expression for the horizontal supercurrent:

~n, m

+4'„+1

=n+:-„—arctan(2'„~ ) .

(17)

For m &)1 the effect of the vertical supercurrent
can be neglected and a„-S„ /(2'„), whereas for
co„((1 the vertical supercurrent dominates anda„-S„.Equation (16) can then be proven in the fol-
lowing manner. Since (O, m)=(1,0)L+m(0, 1) then to
leading order Sp =J (i„/co„). From Eq. (17) it fol-
lows that ao has the asymptotic behavior given by Eq.
(16). The proof for a„can be made by induction.

In the present calculation we will neglect the super-
current in Eq. (15). This is a good approximation for
co„))1. Thence, ap &

=i„/co„adn$p, =0. Using this,
(1,0)=(1,0)L +0(0, 1), and Jp(a„)=1 for all the other
modes, we find

Jp(i „/co„)
1, 0

+4coq+ 1

g, p
=——arctan(2' J ) .

This solution also holds in the dc case (i„=O), and
represents a generalization of the solutions presented in
Ref. 8. Unlike them, this solution remains regular as
co&~0, owing to the vertical supercurrent. Similarly,
(1,+1)=(1,0)L +(0, 1). Then,

J)(i„/co„)
+4(coJ+co„) +1

g& +, =sr —arctan[2(co++co„)] .

Other modes can be computed in a similar fashion.

(21)

(22)

III. THE SHAPIRO STEPS

It is clear that both the normal current and the super-
current have the same harmonic dependence as the

—co„ap,sin(co„r+gp &)+Sp ] cos(ct) cr+ p &)

= —i„sin(co„r) . (15)

For convenience, and without loss of generality, we have
introduced a minus sign at the right-hand side of this
equation. If we neglect the vertical supercurrent and re-
place the factor of 2 multiplying the first term in Eq. (14)
by 1, then these two last equations describe an over-
damped single junction.

In general, we expect ap &
i„-/co„, and the asymptotic

behavior of the different amplitudes at high and low fre-
quencies to be of the form

gauge-invariant phase differences. In particular, this im-
plies that when computing the total voltage and super-
current across the array only the modes with n =k, q sur-
vive. It can immediately be checked that all the other
terms cancel out. This can be interpreted in terms of the
vortex configuration by saying that a vortex moves q
times during a period of 2n. /co&. This is key in order to
understand the phenomenon of the Shapiro steps.

Looking back at Eq. (11), in the presence of an external
ac current, an additional dc supercurrent will appear
across the array for frequencies satisfying
k&qco&+mes„=0, with k& and m relative primes. The
Shapiro steps ensue. We see that the proposed rigid
motion of the q X q vortex superlattice in response to the
external ac field has a very natural explanation within our
theory. For k& ) 1 we have subharmonic steps. We will
not consider this possibility here, because these steps are
in general too small to be observed.

The first step in our calculation is to identify the modes
that yield the largest contribution to the dc supercurrent
corresponding to the different Shapiro steps. For integer
steps (v=n) the choice is unambiguous: it is the set of
zero-frequency modes (k', k'n—), where 1 & k' & q.
These modes have the virtue that their associated normal
currents vanish, and thus they are determined by the
vertical supercurrent. The Shapiro step widths in this
case depend only on (i„/co„) The . case of fractional
steps (v= n /q) can be analyzed in a similar manner. The
most important contributions are due to the modes
(n', n"), with n'&n and n" &q. The amplitudes of these
modes decrease with the frequency because they are
mainly determined by the normal current.

The distinction between the low- and high-frequency
behaviors just amounts to saying that at low frequencies
both fractional and integer steps are in a supercurrent-
dominated regime, whereas at high frequencies only the
integer steps are, thanks to the zero-frequency modes.
Saying that the steps display single-junction behavior is
just another way of rephrasing this fact.

All of our expressions depend on the arbitrary phase
gp. In particular, the dc supercurrent on a given step de-
pends on this phase, and thus the width of the step will
depend on the range of variation of it. The interval of
variation of this phase should depend on the dynamic sta-
bility of these solutions and also on the nature of the solu-
tion for the (0,1) mode at low frequencies [recall that we
neglected the supercurrent term in Eq. (15)]. We conjec-
ture that the size of this interval varies with the frequen-
cy, growing from zero to an interval of constant size at
high frequencies, and that this is the mechanism underly-
ing the growth and saturation of the steps. This assump-
tion seems to be good enough to reproduce all the ob-
served qualitative features of the steps. According to
this, our results for a given frequency should differ at
most by a constant factor (for all values of the i„) from
the results obtained from simulations or experiments.
We shall not attempt to resolve this issue here; rather, we
shall assume that the range of this phase is an adjustable
parameter that is to be determined by fitting the observed
data to the theoretical prediction. Nevertheless, a rough
estimate can be made by using a generalization of an an-
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satz used by Halsey. Our results have a factor of the
form cos(qg0+p~, ). We shall assume that at high fre-
quencies (qf0+p~ ) is centered at ~/2 for q even, and at
0 for q odd. Furthermore, for both q even and odd, we
shall assume that this phase varies over the interval
[ —m. /2, n./2] for fractional steps, and over
[ —n. /2q, m. /2q] for integer steps. We shall thus restrict
ourselves to making estimates of values of the step widths
only for large enough frequencies.

We now turn to specific examples. We shall only con-
sider the cases f =

—,
' and —,', because the number of modes

that have to be included in a given calculation increases
quickly with q.

A. Integer steps: v=n

B. Fractional steps: v=n/q

We need to compute the (q, —n) component of the hor-
izontal supercurrent. As mentioned above, the most im-
portant contributions come from the modes (n', n") such
that n'&q and n" ~n. The number of modes that are
relevant for the determination of the steps grows quickly
with n though, so we will only work out explicitly a few
simple cases.

J =—V= —01'—1 —1 3
2' 2 2

a. v= —,'. We can write either

(2, —1)=(1,0)L +( I, —1)+0(0,1)

or

1/2, n Jl(~l, — )Jn(120, 1)sin[240+(2n + 1)~/2]
=

—,'[J„(i„/co„)]sin[2/0+(2n +1)m./2], (23)

where i,&2 „denotes the ensuing dc supercurrent. This is
not yet the expression for the step width. The final
answer depends on the range of variation of f0. Using
our ansatz for this variation at high frequencies we find

A dc supercurrent occurs at the mode

(2, —2n) =(1,0)L +(1,—n) n(0, 1) . —

In this case a, „=J„(i„/co„),and g1 „=(n +1)m/2.
%'e thus obtain the expression

(2, —1)=(1,0)L, +(1,0) —(0, 1) .

Omitting some details we get

1/2, 1/2 JO(120, 1)J1(o'1 1) cos(2/0+ arctanco„)

—J1(a, 0)J, (a0 1) cos(2/0 —arctanco„) . (27)

J0(i„/Co„)J, (i „/CO„)
11/2, 1/2 (co„+1)

(28)

and at high frequencies

2J0(i„/ro„)J,(i„/~„)
Ai 1/2, 1/2

(
2 +1) (29)

Using the expressions for a, o, ao &, and a», this turns
into

Al 1/2, n [J„(i„/co„)]

Here we have two contributions, namely,

(3, —3n)=(1,0)L +(2, —2n) —n(0, 1),

(24) We find that the step width decays like I/co„at high
frequencies, in disagreement with what has been assumed
by other authors. ' At low frequencies, this result
reduces to a frequency-independent expression, which is
characteristic of single-junction behavior. It is also possi-
ble to compute higher-order corrections [in Bessel func-
tions of (i„/co„)] by considering the combinations of
modes

(3, —3n) =(1,0)L +2(1, n) n—(0, 1) .—

Now, a2 2„=[J„(i„/co„)]l2 and g2 2„=(n +3/2)n. .
The total dc supercurrent corresponding to this step is

l 1 /3 n J„(i„/co„)J2 ( a, „)sin( 3/0+ 3n m /2 )

+J, (a2 2„) J(i„ c/o„)si (n3$ 0+3n n. 2/)

(2, —1)=(1,0)L +(1,1)—2(0, 1)

=(1,0)L+(I, —2)+(0, 1) .

It is not hard to see that these corrections vary as

J,(i„/co„)J2(i„/co„)/(9'„+I) .

', [J„(i„/co„)]sin(3/0+—3nm/2) .

At high frequencies this becomes

b,i1/3 16 [J (i /Cg )]

(25)

(26)

This is negligible compared to the expression given in Eq.
(29) for most cases of interest.

b. v= —,'. In this case we have

(2, —3)=(1,0)L + ( I, —1)—2(0, 1)

In conclusion, we find that the integer step widths are in-
dependent of the frequency. It should be clear that in
general i / „—[ J(i„ co/„)]1For q =1, this reduces to
the single-junction result, or equivalently to the result for
the unfrustrated case f =0.

and

(2, —3)=(1,0)r +(1,—2)+(1,—1)+0(0,1) .

We will neglect other contributions. The calculation is
identical to the previous one and yields
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J,(i., /co„)J2(i„/co„)
I I/2 3/2 2

os( Wo)
(co«+ 1)

In the limit of high frequencies

2J, (i„/~., )J2(i., /~. , )
hi 1/2, 3/2 (~2 + 1)

(30)

(31}

possible combinations

(3, —1)= ( 1,0}L+ (1,—1)+(1,0)+0(0,1),
(3, —1)=(1,0}1+2(1,0)—(0, 1),
(3, —1)=(1,0)L+(2,0)—(0, 1),

and
The next-order correction varies like Jo(i„/co„)J3(i„/
co„),which can be neglected. We see that this step width

has the same dependence on co„as for v= 1/2.

2. f =— v= —or—2
3P 3 3

a. v= —,'. This calculation involves higher-order modes

than the ones hitherto used. The number of terms, there-
fore, considerably increases. In fact, we now have the

I

(3, —1)=(1,0)r +(2, —1}+0(0,1) .

There are two contributions to the (2, —1) mode, which

will be considered separately. These are

(2, —1)=(1,0)L +(1,—1}+0(0,1)

=(1,0)l +(1,0)—(0, 1) .

Putting everything together we obtain

Jo(i„/co„)J, (i „/co„)
1/3 1/3 4+4co„/9+ 1

cos[ 3go —2 arctan(2co„/3 ) ] cos[ 3go+ arctan(2co„/3 ) +arctan(4co„/3 ) ]+
2+4co„/9+ 1 Q 16co„/9+ 1

cos[3$o+arctan(4co„l3) —arctan(2co„/3 ) ]+
Q 16co„/9+ 1

cos[3$o—arctan(4co„/3) —arctan(2co„/3)] cos(3$o)
+ +

Q 16co„/9+ 1 +4co„/9+ 1

After some algebraic manipulations this becomes

(32)

Jo(i„/co„)J,(i„/co„)
4(4co„/9+ 1 )

3 —Sco2, /9 2co',,/9+ —,'+ cos(3$o)
(16co„/9+ 1) (4co„/9+ 1)

2co« /3

(4co„/9+ 1)

2co«/3
sin(3 o)

(16co„/9+ 1)
(33)

In the limit of high frequencies this is

81
l f /3 ] /3 3 Jo (i„/co«) J 'I ( i„/co„)sin( 3go )

128co„

and with our ansatz for go

81
Ail/3 )/3

=
3

Jo(i„lco„)J)(i„lco„),
12 8'„

(34)

(35)

and

(3, —2) =(1,0)i+(2,0)—2(0, 1),
(3, —2)=(1,0)1+(2,—2)+0(0, 1),
(3, —2)=(1,0)L+(1,—1)+(1,0)—(0, 1),

(3, —2) =(1,0)r +(1,—2)+(1,0)+0(0, 1) .

whereas in the low-frequency limit we find

1/3 1/3 —Jo(i„/co„)J,(i„/co„)cos(3go) . (36)
In order to carry out the calculation we need
(1,—2)=(1,0)L —2(0, 1) and

6 v
3

~ The number of modes to be included in the
calculation keeps growing, as promised:

(3, —2}=(1,0)L +2(1,—1)+0(0,1),
(3, —2)=(1,0)L+2(1,0)—2(0, 1),
(3, —2)=(1,0)1+(2,—1)—(0, 1),

(2, —2) =(1,0)L + (1,—1)—(0, 1)

=(1,0)L +(1,0)—2(0, 1)

=(1,0)L+(1,—2)+0(0, 1) .

The calculation is analogous to the one done in the previ-
ous section. In the high-frequency limit we obtain



52 S FOR GIANT SHAPIRO SANALYTICAL RESULTS

9Jo(ta, /roac

67S1

Jo( & „/roact ]/3, 2/3 lp8r03

)J2( /~ )+Jp(i c/~brac 3 acJ (i /roac)/8]

X cos(30o)

tion for oand after the usual assumptio

O( 'ac /~ac 2 ac ac)J (i, /rp„)/8] .

(37)

& ] /3, 2/3 8

[J2( /ro )+Jp(lac ~ac 2 acJ (i /co )1X ) ~ac ac

X sin(3') . (39)
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current plays the role of an effective additional degree of
freedom, analogous to the role played by the capacitive
term for a single junction, in which case subharmonic
steps do appear. At high frequencies the vertical super-
current becomes negligible, and then the equation for
current conservation effectively becomes the equation for
an overdamped single junction, for which the subhar-
monic steps are absent.

Another observation that can be made at this point is
that in all the cases that have been studied the expression
of the step widths for f =p/q and v=n/q involve the
products of q Bessel functions of (i„/co„) such that the
sum or the difference of their orders is equal to n. This is
in accord with Eq. (16). The prefactor has a diff'erent
dependence on the frequency due to cancellations occur-
ring among the different modes.

IV. NUMERICAL RESULTS

We use the same method of numerical integration used
in Ref. 8. We brieAy review it here, for convenience.

03: (a)

The equations for current conservation can be written as
a matrix equation

do.
M; =F( I 0; o—i I ),dt

(40)

where i' denotes a nearest neighbor to i. The matrix M is
then inverted yielding a set of coupled first-order
differential equations which we integrate using the
fourth-order Runge-Kutta method. The current was
uniformly injected at the left boundary of an X XN array.
Furthermore, we used periodic (with period q) boundary
conditions in the direction perpendicular to that of the
injected current. We normally used arrays of size
N = 3q —Sq, in order to avoid effects due to the boundary
conditions. We used staircase configurations as initial
states in all of our simulations. We restricted our obser-
vations to the cases f =

—,
' and 3, for the reasons already

mentioned.
Figure 1 shows the power spectra of the oscillating

pieces corresponding to the gauge-invariant phase
diff'erences on horizontal and vertical bonds for f =

—,',
away from any step. The slope of the linear term on hor-
izontal bonds agrees with the value of the Josephson fre-

0.2
0.04 v=-1

O. l
Fv

0.02

0.0

EAC I Lo

0.00

v=1

&~c «o

0.2
0.04

(b)
v=1

0.1

0.0 '

12 16 20

0.02

FI(s. 3. Step widths for f =
2 and v= —', 1, 2, and 2 for (a)

co„=2.0 and (b) co„=3.0. Fractional steps are suppressed rela-
tive to the integer steps. In (b} we compare our predictions to
the numerical results obtained by Octavio et al. (Ref. 5) for
v=

2 and 1. These are represented by the symbols. We per-
formed a least-squares fit to determine the range of variation of
1(o. The value of y2 in both cases was of the order of 10

0.00
10

~c I ~o

FICx. 4. Step widths for f =
—,', v= —,', —,, and 1, and co„= (a)

2.0; (b) 3.0. The steps are considerably smaller than those for
1
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quency observed in the power spectrum. Peaks 1, 4, 5,
and 6 are absent on vertical bonds; in particular, notice
the absence of the (0, 1) mode. This is in accord with our
assumptions. This same behavior has been observed for
f =—', . Peak 1 in Fig. 1(a) corresponds to &he (2, —1)
mode. On the first fractional step the frequency corre-
sponding to this mode is zero, and the corresponding su-
percurrent yields the additional dc current on the step;
the same is true for peak 4 on the first integer step. Also,
in the latter case, the mode corresponding to peak 2 be-
comes the zero-frequency mode. On the diferent steps
we get the same pictures for the power spectra, with the
difference that in these cases the motion is periodic.

Figure 2 displays the behavior of the gauge-invariant
phase differences on horizontal and vertical bonds for
f =

—,
' and v= l. The presence of a zero-frequency (spa-

tially varying dc component of the phase) component is
clear. This is also in agreement with our results.

In Fig. 3 we show the different step widths for f =
—,
' as

a function of i„ for co„=2 and 3. At higher frequencies
the fractional steps become suppressed. In (b) we com-

pare our predictions to the numerical results obtained by
Octavio et al. The agreement is quite good. The half-
lengths of the intervals of variation of $0 determined by
fitting these data to our expressions are 1.214 and 0.888
for v= —,

' and 1, respectively, which di8er from the values
assumed in our rough estimates of m/2 and m/4.

In Fig. 4 we show the variation of the step widths for
f =

—,
' with i„ for co„=2.0 and 3.0. The qualitative

behavior of the step widths is the same that is observed
for f =

—,'.
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