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Extraordinary sensitivity of the internal Doppler effect in a superSuid He- He admixture
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Recently, a nontrivial T (temperature) behavior was found for the Doppler shift of the fourth and first

sounds in superfluid He with internal motion: a plateau in the phonon region and a sharp peak in the

beginning of the roton region of the Doppler parameters I 4 & ( T}=(hu4
& /v, ),=0. The situation is simi-

lar to the case of second sound investigated long ago for I &(T)=(hu2/U„), =0, but the signs and values

of plateaus and peaks indicated some kinds of Doppler anomalies: the "outstripping effect" (OEF), in

addition to the "back-entrainment effect" (BEF) described by Khalatnikov (Au; is the Doppler shift of
ith sound; v„U„, U are the velocities of superAuid and normal components and of the liquid as a whole,

respectively). The Doppler anomalies mean the breaking of some "natural" suppositions: that hu; is in-

termediate between U„and v„and that the sign of (Au; —v ) is determined by the velocity of the "dom-
inant" component (at low T this is the superAuid component for first and fourth sounds, vd =u„and the
normal one for second sound, vd =v„). The direction of (du; —v) can be opposite to the direction of
(Ud

—
U ) (BEF) and the center of spreading sound can move faster than the Aowing dominant component

when the other component is stationary: hu; )Ud (OEF). The Doppler anomalies as well as the very ex-

istence of the nonkinematic (internal) Doppler shift b u; —uXO, and its nontrivial T behavior are special
manifestations of the superAuidity. Here we investigate the Doppler phenomenon in the He- He mix-

ture. We find strong sensitivity of the T behavior of the Doppler shift and of the Doppler anomalies to
the 'He admixture. At low T this is associated with a general peculiarity of the He- He mixture: the

nonanalyticity of its characteristics, i.e., the inequivalence of T—+0, X—+0 to X~O, T~O (X is the con-

centration of 'He). We find some "key derivatives:" Bp/Bw, Bo./Bm, crucial for the T behavior of I;
whose role changes at XWO (p and po. are the mass and entropy densities, respectively). The detailed ex-

planation of the strong sensitivity (including finite T, X) is found by means of an analysis of peculiarities

of the quasiparticles. We find (i) a jump of the low-T plateau of the Doppler parameters are D; (modified

version of I; ) for all the sounds at infinitesimal X (5X};the T range of the new plateau increases with X;
the jump is greater than the variation of the plateau level with X for all X & 0.06=X,„;(ii) a sharp de-

crease of the peak of D;(T) with increasing X up to its disappearance already at X«X,„; (iii) strong

amplification at XXO of some Doppler anomalies.

I. INTRODUCTION

A. Internal Doppler efFect and Doppler anomalies

Internal macroscopic motion which is the main pecu-
liarity of superAuids, and several types of sound, imply
some unusual manifestations of the Doppler effect. The
relative motion between the normal and superAuid com-
ponents creates in the rest frame of the liquid an anisot-
ropy of the state of a special type. First of all, the purely
kinematic coincidence of the velocities of the center of
spreading sound, hu;, and of the Quid as a whole, u, is
broken, b, u; —vAO: although both components take part
in the sound oscillation (even in the case of fourth sound),
the participation of the components is not on an equal
footing. [In the case of fourth sound the velocity of the
normal component does not oscillate (v„=O, v'„=0) but
there exists the possibility of conversion between the
components, so that p„oscillates, p'„%0.] Thus the
different "weights" of the components in the structure of
sounds imply a deviation of the velocity of the center of
spreading sound b,u; from the center-of-mass (c.m. ) ve-

locity, v= j/p=(p, v, +p„v„)/p.
In the first approximation (w /u (( l ) the nonkinemat-

or

pshu;=
p

pn
us+ +XI un .

p

At u =0 one can represent

Au, ——r2u„, 2 u, 4
——r„u, ,

ps pn
4

p

The Doppler parameters I; have a simple and universal
(qualitatively) T (temperature) behavior: a plateau in the
phonon region, T(T, and a sharp peak at the beginning
of the roton region, T—T [ T=0.57 K is defined by
p~h(T) =p„(T);p~h and p„are the phonon and roton con-
tributions to the normal density p„, respectively].

ic part of the Doppler shift, Au; —u, is proportional to
the velocity of the relative motion, w=v„—v, . In the
case u~~v~~w (where u is the sound velocity) we get for the
ith sound

u;=u+bu;, bu; —v=f ( )=wy; ,w
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However, the existence of the internal Doppler shift
(b,u; —u)%0 is not the only peculiarity of the
phenomenon. It seems natural to suppose that the com-
bined oscillation of the two moving components has an
intermediate rest frame, i.e., u„&b,u, &u, (if u„&u, ), and
that the sign of (b,u; —v ) is determined by the velocity of
the dominant component. [At low T, i.e., far enough
from Ti, where p„/p, =P &(1, the normal and superfluid
components are dominant in the structure of
second(v„'/u, '=p ') and first (j,'/j„'=p ') {or fourth)
sounds, respectively. ] This means that the velocity of the
center of spreading sound would be intermediate between
the c.m. velocity v and the velocity of the dominant
component, v„or v, :

c e ps
o&y2&y2

p

y1, 4 y1,4
pn

y1,4
p

or

0 ( I z & 1 (i.e. , for v„)u, v & b.uz & u„},

0&I', ~&1 (i.e. , for u, &u, u &hu, „&v, ) . (3)

Equation (5) means that the center of the spreading sound
moves faster than the Bowing super6uid part of the liquid
when the normal component is stationary. This
"outstripping" eQect (OEF) was described in Refs. 2 and
3. A similar effect is absent for second sound, i.e., the
condition y2) p, /p =yz or I 3 & 1 is not fulfilled:
maxy, =0.9y', .

The scale of the Doppler anomalies, i.e., of the break-
ing of the "natural" conditions [Eq. (3)] is shown by the
following list of plateaus and peaks of hu41=I 41v„
Au2 =I 2V„:

The case y =0 (I =0) corresponds to the participation of
both components on equal footing, y =y' (I =1)—to the
total disappearance of the inhuence of the "auxiliary"
(i.e., nondominant) component. But these restrictions
turn out to be broken [very strongly; see Eq. (6)].

There emerge two effects —the anomalies of the inter-
nal Doppler shift.

(i) The direction of the internal Doppler shift (hu; —u )

can be opposite to the direction of motion of the dom-
inant component (in the c.m. frame):

y2&G, y14&0, or I; &0 .

This "back entrainment" -effect (BEF) was described in
Ref. 1 for second sound, y2&0, i.e., for v„&v, hu& &v,
and in Refs. 2 and 3 for fourth and first sounds, y14&0,
i.e., for v, & v, hu, 4 & v.

(ii) In the cases of first and fourth sounds the Doppler
shift can exceed the velocity of the dominant component
vs:

Pn
14& — = —y14 or I 14& 1

hu&=3. 79v, ( & u„OEF),
minbu~= —25.6u, ( &0, BEF),
&u i = —35.5u, ( & 0, BEF ),
max', u, =43.7v, ( & u„OEF),
bu3= —', v, ( &v„, OEF is absent},

mind, u 3 = —l. 18u„( & 0, BEF) .

(6)

B. Subject of the payer

In this paper we investigate the inhuence of a He ad-
mixture on the internal Doppler efFect. First of all we an-
alyze in detail the physical origin of the Doppler
anomalies and of the peculiarities of the Tbehavior of the
Doppler shift in pure He. We explain the common
features of the behavior of the Doppler parameters I; (or
D;, see below) for different sounds (a sharp peak in the
beginning of the roton region and a "plateau" in the pho-
non region) and the difFerences [e.g., the opposite sign of
peaks and low-T constants of I, (D, ) and I 4 (D4 } which
appear in spite of the similarity of the structure of first
and fourth sounds at low T]. Then we compare the role
of the thermal and He quasiparticles in the Doppler

henomenon. It appears that, unlike the case of pure
He, the important aspects of the problem at XAO re-

quire an exact approach. Here we investigate the prob-
lem for all the sounds using exact considerations. In the
former investigations of the Doppler eFect in mixtures
the anomalies and the peculiarities of T behavior either
were not discussed at all (Ref. 4) or were considered only
for fourth sound in the first approximation (X«1) (Ref.
5}.

The results are the following. (i) There are jumps of
low-T asymptotic values of the Doppler parameters D;:

bD;=D;"i—D '=D;(T~0, 5X) D;(T~O,X=O—),
and of the second sound velocity u2. (ii) The values of
the jumps, ~

b,D; ~, are much greater than the variation of
D, (T~O) with X (0.06=X,„. Thus at small X we get
an approximately constant step of D,.( T ):

D,.( T «T(X) )—D( T» T( X))=6 D, ( T & T ) .

Here T(X) describes the T range of the new level of the
plateau. T(X) quickly increases with X so that already at
small X ( «X,„) it spans the whole phonon region,
T & T. The other consequence of increase of X is a sharp
decrease of the peaks of D; at T-T up to its disappear-
ance (already at X« 0.06).

T(X) separates two types of T behavior of thermo-
dynamic or hydrodynamic quantities Q, i.e., the regions
of predominance of thermal and He quasiparticles:
T &)T(X} (almost pure "He) and T « T(X) ("pro-
nounced mixture"). Actually there exist two characteris-
tic temperatures, "thermodynamic" [Ti (X)] and "hydro-
dynamic" [T3(X)];those are defined by o h(T, )=o3(Ti)
and pzh(T3)=p„3(T3) [crvh, o3 ph and p„3 are the con-
tributions of the phonons and He quasiparticles to the
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entropy (per unit mass) o and p„, respectively]:

Ac
1/3

X'i =7.4X'i (K),
27K m3

1/4 'm
3 X' = 12.0X' (K)

2~'A m3

(7)

(c is the sound velocity of phonons, m3 =2.46m3 is the
effective mass of the He atom, and p is the density of the
mixture). At low X we get Tz » T, » Td, where
Td-X is the Fermi degeneracy temperature of He.
Both T& and T2 appear for Q=D;. There appears an
unexpected amplification of the Doppler anomalies: We
find two "key" derivatives, Bp/B(w /2)=p B(p„/p)/BP
and Bo /B(w /2) =B(p„/p)/dT, which determine the
peculiarities of the T behavior of all D; (w =v„—v, is the
relative velocity of the components). We prove that they
are independent of X. This points out the thermal-
excitation origin of the Doppler anomalies. Nevertheless,
it appears that some anomalies substantially increase in
the case of predominance of He quasiparticles.

y2( T~0,XAO) = — —y i( T~0,XAO),Ps Pn

p 2p

yi(T~O, X&0)=O &0
P

(9)

prove the absence of the OEF, y2 &p, /p.
According to Eqs. (8) and (9) the following parameters

are convenient for consideration of the influence of XAO
at small T.

+ Pn Pn4
f4

P P

Ps Pn
y2

P

Pnyi=O
P

(10)

Pn
AQ4 V = g4+ v, (v„=O),

Equations (10) reflect the low Tscale-and the "natural
reference points" of the Doppler shift at XAO: v„v, and
vn for fourth, first, and second sound, respectively. In
fact, we get

C. The main peculiarities of the internal
Doppler e8'ect in a He- He mixture

AQi v =giw

Ps
~&Z Vn 'VZ v„(v, =0) .

Unlike the case of pure He where all the peculiarities
of the phenomenon can be described in the simplest ap-
proximation' p„ /p « 1, the important questions in the
case of mixtures require exact considerations. (i) There is
exact cancellation at small T of all the terms of type
0{(p„/p)"}=O(X")in the expression for the OEF pa-
rameter of fourth sound:

In terms of the parameters D;,

Pn = —r, ,
P

Ps =1 q=yq (at T«T~), (12)

Pn Pn4
(b, u~ —v, )/v, = — y4+ =0

P
=O(T ) .

This result has a clear physical meaning: the natural
"reference point" of the Doppler shift Au 4 is not v but v,
[cf. Eq. (1)], and the natural scale is not p„/p but p„4/p.
In fact, in the case of fourth sound the oscillations of nor-
mal velocity are excluded (v„'=0), so that the participa-
tion of the normal component which creates b.u4 —v, AO
is connected only with intertransformations of the nor-
mal and superfiuid components (p'„= —p,'). But this is
possible only for pn4, the thermal-excitation part of pn.
(ii) There is exact separation in the fifth-order equation
for first and second sounds of the special solution u 5 [ad-
ditional to (+u, z+y, zw)] —the velocity of the "con-
centration waves. " We prove its coincidence with the ve-
locity of the normal component [u~ =(p, /p)w at v =0].
(iii) The simplest approximation for yz,

y2{T~O, XAO) =1+0(p„/p),
does not solve the question of the existence of the OEF,
y2&p, /p [unlike the case yz(T~O, X=O)=—', ]. The ex-

act results

Pn4

D„=—a = —2.79 (T»T, ),
—Sa = —13.95 (T« T& ) (OEF),

D, =(3a+1}(a+1)=35.5 (T »T2),
T

m3 m3
20 +0

m 3 m 3

=0.66 ( T «T, ) (BEF),

D, = ', (T»T, ), —

(13)

m3 m3P 1 + 2g
3 +g2

Ps m3 m3

2

1 —1.16
Pn

Ps

=(1—2. 85X) (T«T, )

pn Pn4
4 V4

P P

the influence of the admixture ( He) acquires a simple
and universal (qualitatively) character: jumps of the pla-
teau (which are substantially larger than the variation of
D; with X & 0.6) and disappearance of the peaks. For the
plateau we obtain
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(the condition of the OEF, Dz & 1, is not fulfilled for
the mixture either). Here a = (p/c )(dc /d p),
8= —(1/p)(Bp/BX) =0.71, p„/p, =(p„3/p) =m 3 /m3X;
T»Td, T, and T2 are defined in Eq. (7).

Both jumps of the plateau, for D4 and D &,
—a ~—5a,

35.5~0.66 [Eq. (13)], correspond to a substantial
amplification of the anomalies,

pn
max — y4+

p
=0.6X10-' (X=o),

0.9X10 ' (X»10 '),
maxy i =0.8 X 10 (X=0), (14)

0.66 =1.62X (X»10 ),
p

i.e., up to 0.1 (at X=0.06).
In conclusion we give one more example of the

nonanalyticity (in addition to D;)—the second-sound ve-
locity,

2

u2(X, T) = ps

pn

Bo
Xax

a~ +X2a Z
BT p

aX

(15)

[Z/p=p4 —p3; m;p; (i =4, 3) are the chemical potentials
of He and He, respectively]. We obtain

u, = (T»T, ),2

1/2
5 kT

Q
3 m3

(T, »T»Td), (16)

pn pn4
max —y4+:——D4p. "p

(OEF parameter) by a factor 15, max(y, =D,p„/—p) (BEF
parameter) by 10 at X=0.06:

D. Two-Auid hydrodynamics of pure
He and He- He mixtures

= —0.59, fz =—1+3a =1+3+ =9.37,Bc
c Bp

~BE
2 Bp

p Po 1

Jo ~P
p Bp

p Bp
(18)

The thermodynamics of the He- He mixture and of
the He component is taken from Ref. 9. The thermo-
dynamic functions are computed numerically using a
series representation which is easy to integrate and calcu-
late. The series have been fitted to experimental results in
the range T+0.25 K and X~8%, where X is the molar
concentration of He in the mixture [X=(M3/M)X,
M =XM3+(1—X)M~].

We checked the validity of the description by compar-
ison with experimental measurements of the specific heat

For the numerical calculation of the internal Doppler
shift in He we use the well-known two-Quid description
of the thermodynamics and hydrodynamics of pure He.
This theory has been verified experimentally as long as
the temperature is not close to the transition temperature
T& and the relative internal motion is not large enough to
create turbulence (iv +60 cm sec ). The maximum er-
ror in the thermodynamic functions as given by the
theory is -3%%uo for T ~ 1.2 K and the description is ex-
pected to be exact at T~0 K.

The hydrodynamic description of the liquid assumes
that it contains two components, the normal viscous
component that contains all the entropy, and a superAuid
component that has no viscosity and has nonrotational
Bow. The normal component is regarded as an ideal gas
of excitations —phonons (e=cp, c =2.4X10 cm/sec)
and rotons [c(p)=b, +(p —po) /2p, b, /kz —-8.65 K,
po/bi=1. 91 A ', p=0. 16m4 ]. The ideal-gas approxi-
mation includes the neglect of the derivatives (Bb,/BT),
(Bp/BT)z, and (Bpo/BT)~, which is correct for T ~ 1.2
K. ' Other approximations used in the thermodynamic
description are ' '

VF
u, = (T «0.05XTd );

3

see Eq. (7); VF =(3m pX/m3)'~ /m 3 is the Fermi veloci-
ty and

fi ( X/m ) (3m. )
Td= =1.42X i (K) . (17)

2k~m 3

It is interesting to note that in all cases the results coin-
cide with the velocity of collisional elastic sound of an
ideal gas with the spectrum of the corresponding quasi-
particles. This is noteworthy since the second sound is
the oscillation of the relative velocity of the components
but not of the normal component only. Neither the elas-
ticity of phonons, BP~h/Bp~h (Ac /&3), nor the Doppler
shift, b,u2%v„, corresponds to the elastic sound in a gas
of partic1es with the spectrum a=cd.

10

«) )0
E

E
1Q

10

t0
10 10

FIG. 1. Verification of the thermodynamics. Comparison of
our calculation of the specific heat of 'He- He mixture (solid
lines) and experiment (Ref. 10) (data points and dashed lines).
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U2 (m/s)

Arr '

(20)

the He excitations, M3 =2.46M3 is the effective molar
mass of He in the mixture, and V is the molar volume
of the mixture. The He component also changes the to-
tal density of the mixture:

XM3+ (1—X)M4
p V

A A

0--
0 1.0

FIG. 2. Velocity of second sound (u2) for 'He- He mixtures.
Solid lines, results of our calculation; symbols, the experimental
results (Ref. 11). Molar concentrations are (a) 10 % and (b)
0.173%.

V = V4(1+aX), (21)

where V4 is the molar volume of He and a=0.286 (see
Ref. 9). For the exact numerical calculations we used
MACS YMA.

II. DOPPLER SHIFT IN PURE He:
ORIGIN OF THE ANOMALIES AND OF THE

PECULIARITIES OF THE TEMPERATURE BEHAVIOR

where M4 is the molar mass of He. The molar mass of
He is roughly —' that of He and its molar volume is4

larger so that the molar volume of the mixture is

of the mixture ' as shown in Fig. 1. The excellent agree-
ment with the experiment means that the thermodynamic
description we use is good for T 1.2T( 1.2 K. Further
verification of the thermodynamic description is shown in
Figs. 2 and 3 where we compare the calculated velocity o
second and fourth sound at different temperatures wit
experimental results. "' For second sound (Fig. 2, the
agreement is good but for fourth sound (Fig. 3) it is only
fair. In this second case we see that the experiment and

(T(1.0 K)calculation tend to agree at low temperatures i

and diverge as the temperature approaches the phase
transitron. e see't' . W see that below -1 K our description
gives a maximum relative error of —10%.

The He component contributes a practically constant
amount to the normal density:

XM3 M3
p„=p„4(T)+ =p„4+Xp

m
(19)

where p„4( T) is the contribution to the normal density of

A. Doppler parameters and initial sound velocities

Y4 V4
P„BP„/BP+
p Bp/BP

a(1/p)(ap„/aT )

(BpldP)(do IBT)

o.Bp„ /BT
pBcr IBT

(22)

1 Bp

p BT

(u4) =u4+(u4 ')

~ ~

Let us consider the expressions for the sound velocities
in the absence of internal motion ( u =0), u; (with correc-
tions ~ p„/p), and for the Doppler parameters y;, which
were obtained in Refs. 2 and 3 on the basis of the solution
of the two-Quid hydrodynamic equations for oscillating
perturbations.

For fourth sound we get (in the first approximation in

p. /p)

250 BP Pn 2ao.1—
Bp p Bo /BT

(23)
200

150-
E

&00-

5Q

0-'
'1.00 &.20

1.2%

&.40 & -60

T (K)

&.80 2.00

O
0

(b)

2,20

2 2a ++
(ap/aP)(a IaT) aa/aT '

Pn 2 BP(u4" ) /u4=0, u4=
p

[see Eqs. (32) and (44) in Ref. 3]. Here and below all the
partial derivatives are taken with all other independent
variables held constant.

For first and second sounds let us begin from the exact
expressions

FICi. 3. Velocity of fourth sound (u&) for He- He mixtures:
Solid lines, results of our calculation; symbols, the experimental
results (Ref. 12). The molar concentrations are (a) 0% (b) 5.2%
and (c) 11.2%%uo. Our calculations are accurate only for T(1.3
K.

R(u, 2) +S
2[2A (u i 2) +B ]

0 2 B++B 4A C——

(24)71,2

(25)

R(u, 2) +S=+
2+B 4AC—
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A = Ao+ A', Ao=p Bp ao'

Bp ao
pa&. ap

=

8 P~ Bp p po
BT p BP '

p
(26)

[see Eqs. (57) in Ref. 3].
Substituting in Eqs. (24) and (25) the expansions of the

coefficients (26)—(28) we obtain

y1,2 y(, 2+3 1,2 y1, 2

M[ —(ap/BP)u', , +1]
2+B 4A ()

—C
[see Eqs. (52)—(56) in Ref. 3; the correct sign before B in
Eq. (55) and in the expression for B (56b) is plus]. "i 2=" i,2+("(i,2) ("i,2) /" 1,2

R '= (p+ 3p, )
ap

p

S' =4o. p. a

p a(P /P) ap
8P BT '

M+R', S=M+S',

ao p' a(P. Ip»)
M=(p+3p, ) —2o

Pn

(27a)

(27b)
s.e.,

( (1) )2Q)2
0

C

QB2 —4A, C

BP 2 p
ap

' p„ao IBT '

—2
BkQ—B 4A()—C

Q)2—
2A 0

(29)

(30)

In the exact expressions for A, R, and S we pick out the
terms A', R', and S' which contain the small factor
a-(1/T)(p„ lp). [The definitions (27b) are somewhat
simpler than in Ref. 3.] The terms M, R', and S' can be
represented as power series in p„/p with finite number of
terms:

(u(1) )2
ao IBT 1 —u22/u21

-4
(u(1) )2

ao/BT 1 —u2/ui

(31)

M=Mo+M),
ao' p apn acT

BT
' BT' ' 'P" BT '

Pn

R'=Ro+R i,

(28a) M
2pao IBT

=~' '+&r

M() o ap„ /a T
2pao/BT p„ao/BT '

(32a)

(32b)

Ro =4pa
Pn

ao., R
&

= —3p„a —2ap„u2 ~P

(28b)

(28c)S =So +Si So =4apo S i
= 4apn o

3 P.
2pBo IBT 2 p

(32c)

The expression for yi ( =y', ) to first order in p„ /p can be
represented in a form which contains yz '.

M(apIBP)(u ) —R '(u ) —S'

2&B2—4AC

M, ap/BP(u', ")'—R,'u', —S,'

2+B —4A() C

a ui acr[(PIP„)[—pip„+(Bp„/BP)/(ap/BP)] —2] —2a u,=y2"
(a /BT)(1 —u /u, ) (ao/aT)(1 —u', /u', )

(33)

Since we get
—M(ap/aP)(u', ")'+R (u', )'+S

y2= =0(a)
2+B2—4A, C

[as long as (u2" ), R', and S' contain a) y2 can be writ-

ten in the form

Bp„/BT
P„Bo-/BT

Note that the result in Ref. 1,

+O(a) .3 Pn

2 p
(34)
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ap„/aT
p„acr /aT

does not contain the exe exact correction of the firs

p„/p on the supposition a =0
e rst order in

30-

20-

10-

B. Temperature behavior of Do oppler parameters

p regio

aPn 5a Pn aPn 4Pn ap 1

c' p' aT T' aI' c' '

p acr f2p c p8
p T aT
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See Eqs. (36) and (71) in Ref. 3. Note the corrections to
Eqs. (68) and (71) in Ref. 3: the correct expressions are

Ki(T)=1+ [ ]/[ . ](3T
I

p2 dT Bp

Bp ]+3-0
~p p

Ki ( T ) = 1+(3a + 1)(a + 1);
corrected terms are underlined. We see that the low-T
value of ~y4~ is smaller by one order of magnitude than
that of y&. We discuss below the detailed explanation of
all the di6'erences and the similarities in the behavior of
y;. Now we only note that y4 is the result of the "com-
petition" (subtraction) of two large terms, the first and
third in the expression (22) (see Fig. 7) whereas y, con-
tains only the first term

C. Doppler parameters and structures of sounds

ap/a(U, '/2) ~a~/a(U, /2)

pap/aP a~/aT
—yg()+y(o. )+y(a)

Bo./B(U, /2)
(ap/aP)(a~/aT )

(38)
2

2 p a /a( /2) 2+ ... 2+
/gT y2 y4

pn pn

(39)

02 CK Q
y(1) p y(G )+2

2

p, u i (Bo./BT)(1 —u ~/u, )

The expressions for y, (22), (32b), and (33) are deter-
mined on the one hand by the terms in the coefBcients in
the hydrodynamic equations which are proportional to
the relative velocity w, and on the other hand by the
structure of the sounds at w =0. The expressions for y,.
can be represented in the form

p„Bp„/r)P+
p Bp/Bp

with negative factor ~ a &0 [see Eqs. (33) and (22)]. We
discuss below the physical origin of these terms and their
very difFerent behavior due to He admixture, XAO. Fur-
ther, we get

max[D4, ]=26.6 (T=0.63 K) (BEF),

max[( Di )]=43.—7 ( T=0.56 K) (OEF),

max[( D)]=1.1—8 (T=0.61 K) (BEF) .

(37)

The absolute value of the maximum OEF parameter for
first sound turns out to be much more (by two orders of
magnitude) than that of fourth sound,
max( —

y4
—p„/p) =0.6X 10 ( T=0.4 K) and

max( —y —p„ /p ) = 1.7 X 10 ( T=0.67 K).

p yg()
pn (Bo /BT)(1 —u2/u, )

()(w'/2)
clp

B(v, /2)

&(p„ /p )

p

Bo

B(w /2)

1 Bp Boa= — =ppaT M
'

Bo

B(U, /2)
&(p„ /p )

aT

The derivatives in the numerators of the terms of y, ,

(40)

(41)

30.0-

describe the dependence of the densities of mass and en-

tropy (per unit mass) on the relative velocity and the
"coupling" between the oscillations

20.0-

pn
p =9 p =QPU ~ T —9 2o

ps~

up„
W

po
(42)

10.0-

(c)

0.0

-5 0-

-10.0—

-15.0
0.0 0.5 1.0

T (K)

1 ~ 5
I

2.0

FICi. 7. Doppler parameter D4(T) =(y4+p„/p)/{p„4/p) for
pure He. Contribution of density F(T) and entropy G(T) key
fac«rs: (a) (y4"+p„/p)/(p„4/p) =1++; (b) yg '/(p„4/p)

[o /T(Bo /BT)]G; (c) y' '/(p„ /p) = —[au, /T(I)o /dT)]G
[Eqs. (38) and (46)].

respectively. The latter are independent at +=0 in the
case of free sounds (i.e., without the condition
U„=U„'=0). The derivatives in the denominators of y, ,
dp/dP and oo /dT, characterize the relation between the
oscillating quantities p' and P', cr' and T'. The origin of
the derivatives (41) in y, is the following. The densities
and the currents in the hydrodynamic equations contain
terms proportional to w and Aw, respectively (A is
some thermodynamic quantity). These terms give in the
equations for the sound amplitudes linear (in w') terms
( ~ ww', w'A ) with the factors (41) (as well as with the
quantities dp/BP, B(r!BT, and p„/p). Correspondingly,
the structure of the sounds acquires at wAO without fail
the terms proportional to w'. However, the sound veloci-
ty changes in the first order in w' only in the case of the
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presence of w oscillation (w ) already in the initial struc-
ture of the sound. In fact, in the case +=0 when the os-
cillations (42) correspond to independent sounds, the first
sound has no Doppler correction, y&=0, whereas the

second sound has it, yzAO [Eq. (32a)]. The cause of this
becomes evident if we exclude the variables T' and P'
from the equations for T', P', w', and u' which corre-
spond to the determinant (51) in Ref. 3:

Mw- a
a(co /2)

—2
pn u2

p u

+ 2P P, gp 2 gp
,

w'+p 1 —u U'=0,
aP aP

p„u2 a(p, o)IaT (p, +p)o ao p„2p„p,+ "+
Pao/aT pao/aT a(w2/2) p p'

Bp

p a(w /2)

w

oa(p, cr )/ap
acr /aT

U'=0 . (43)

In the linear approximation we obtain

aP

o'ap IaT pcr
y2 2 2 gp„a~raT

=
p„a~raT

(44)

Although the independent oscillations of v' and w' (42)
are mixed in Eqs. (43), the linear (in w) correction to the
first-sound velocity is absent. Further, both the terms f
and g introduce changes in the structure of sounds which
are linear in w, but only g leads to the first-order Doppler
correction.

This consideration explains the existence of a in y, :
only because of the inequality ccAO does the structure of
first sound contain at w =0 the w' oscillations (with the
factor cc). In the structure of fourth sound the oscilla-
tions v' and w' are mixed independently of a: because of
the condition v„' =0 the independent mode is proportion-
al to v,'=v' —(p„/p)w'. The small coefficient of w' im-

plies a small factor in y4, y4=y4". The term y4
' is pro-

portional to the similar term in yz(
' [Eqs. (38) and (39)],

but in y4 this term is supplemented by the direct contri-
bution of the p' oscillation which contains w', yf) [owing
to the breaking of the relations (42) in the case of fourth
sound], in addition to the indirect contribution which is
proportional to a, y4 '.

We show below that y(4)') ensures in the phonon region
a negative constant of y4 and (with the factor a&0) a
positive constant of y„whereas y2

' ensures a deep
minimum for y2 and [with the factor
a PIP„=O(p„/p) & 0] for y„and simultaneously a sharp
maximum for y4. here y4 '= —f2y2 'p„/p, so that

y(a)+y(a) (f 1)y(~)
P

[f2
—1 =8.27 see Eq. (35)].

D. Origin of Tbehavior of D;:
Key derivatives, properties of phonons and rotons

The common peculiarities of the Doppler parameters,
D; or I;, for pure He, the plateau in the phonon region

l

(T& T) and the sharp peak after it (T-T), are deter-
mined by the density (F) and entropy (G) "key factors"

Pn4 ap G
Pn4G=g

p aP pT

[Note that f and g in Eq. (41) do not change at XXO:
a(p„ lp) IaP =a(p„ Ip)/aP, a(p„ lp) IaT=a(p„ /p)/aT.
The dimensionless form F, G of the "key derivatives" f,g
corresponds to the simplest T dependence. ] In fact, the
results of Eqs. (32b), (22), and (33) can be represented in
the following form (here p„=p„4):

(45)

ps o.
D2=y2, y~

— = 1 — G +b,y
p Tacr /aT

b,y = — —y +O(a),Pn
2 2 1

c7+cxu )D4=I +1- G,Tao IaT (46)

D, =eTP
pn

—2
u21——2u)

0 0 +cxu )
—2

F—2
Tao/aT Tao/aT

2—2
p CXQ)+ 1—
p„ao /aT

2 —2
u2
—2u) Tacr IaT

All the terms in the expressions for D; including I and G,
are almost constant at T (T, but the "key" factors intro-
duce a substantial change at T-T: I' corresponds to a
sharp increase (large step) and G to a positive peak. In
D2=yz the only factor G (with negative coefficient)
causes a lowering of the plateau (so that y2

—p, /p&0,
absence of the OEF) and a negative peak (BEF).

In D4 a "competition" occurs between two factors: G
(with positive coefficient —ccu i »o ) substantially dimin-
ishes the modulus of the negative plateau which is caused
by (F+1) (OEF) and gives a positive peak (BEF). In D)
a similar competition occurs, but I" and G appear with
opposite signs, so that G lowers the positive plateau
(BEF) and gives a negative peak (OEF).

The behavior mentioned above of the key factors and
of their coef5cients is the consequence of the peculiarities
of the phonons and rotons. In fact, we get
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—(5a + 1)pph+ [(6/T )
~
r

~

—
—,
' ]p„F=

Pph+Pr

4pph+ (b, /T )p„6=
Pph+Pr

p h+ 1,( T/b )p„

Tatr laT 3pph+kp

(47)

(48)

mph

P Q2

2 — —2
1.28 X 10

3k~2 T

Some additional considerations relative to the role of the
phonon and roton peculiarities as well as to the pressure
dependence of D; are given in Appendix A.

AQ )

Taa laT
f~p,h—+~I r

Ip,
3Pph+ ~pr

III. FOURTH SOUND IN A He- He MIXTURE

A. Exact equation for the fourth-sound velocity

—2
Q2
—2
Q)

[pph+A( Tlb, )p„]
(p,h+p, )(3p,h+~p, )

'

a Tp fzPph+ ~I r IP,

pn pph+ pr
(49)

In the case of a completely locked normal component
the basic two-Quid hydrodynamic equations are the fol-
lowing:

Bp +dlv pzvz =0,

f2
=—3a + 1 =9.37, r = = —0.59,aa

a ap

3(k~ b, )2
=0.18

(cpa )

(50)

a(pa )

at

Bv Z
at

+(v V)v = —V p —X—
p

a(px)

(51)

(see Ref. 3; b and po are the energy and momentum of
the roton minimum, respectively).

A negative sign of (F+1) (the source of the OEF) cor-
responds to the negative "compressibility" of the pho-
nons [(F+ 1)~ ap„ /aP (0]: the equilibrium phonon
concentration decreases by compression (a & 0).

The behavior of the fractions (47)—(49) at T- T [large
step of F and sharp peak of 6 which is the basis of the
peaks of D, (OEF), Dz (BEF), and D4 (BEF); slow change
of other fractions] is determined by two peculiarities of
the phonon and roton contribution. (i) The fast exponen-
tial increase of roton concentration: the index
b, /T=15. 17. (ii) The unusual smallness of the roton
contribution to entropy: A, T/b =10 . The latter is ex-
plained by the very large "effective mass" of the rotons,
m„=p„ln„=(po/3k&T) in comparison with the phonon
case mph pph/nph kB T/c

Z=p=Xp3+(1 X)p4~ ——=p3 p4 ~—
p

1 Z Pndp= dP odT+——d—X— v, dv, .
p p p

(52)

As in Refs. 2 and 3 for pure He, we consider the case of
fourth sound in a capillary, where we do not have to wor-
ry about the effect of porosity which modulates the veloc-
ity of fourth sound in porous media. '

Regarding all the variables in Eq. (51) as functions of
P, T, X, and u, and substituting the latter variables with
the corrections (P', . . . ) ~exp[ice(x ut)] which—corre-
spond to the sound propagating along the x axis, Ox ~~v„
we obtain a system of linear equations for the amplitudes
P', T', X', and u,

' (u„=u„'=0) and correspondingly the
equation for the fourth-sound velocity u:

Bp ~p"aP+" eP

a(p )

a(1/p)pXax
Bp
BP

a

BT ' BT

a(po )

BT

BcT
cr —Xax

Bp
aT

, a(p„/p)—Qu p +p,

p„a(p„/p)
aX

, a(p„/p)
Xu,p

—Q+u 1—
S

a(p„/p), a(p„ /p)

Bp + ~P
"aX+" aX

a(p~)
aX

a(X/p)
BX

a(px )

aX

(53)
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The peculiarity of the underlined factors will be discussed
below [see Eq. (B18c)].

We used here the Maxwell relations based on Eq. (52)

P

Bi p„
Lf 0 ps &

AQ 1
D 2p

A+8+C
2D

(55b)

ap
B(v, /2)

a(z/p)
B(v, /2)

a(p„/p) a a(p„/p)
a(v2/2) BP a(v, /2) a T

=p'
(54)

Ps Pn A +B+C
hu = y4 V, y4=

p
'" ' 2p+ 2D

(55c)

Supposing v, «u we find, as in the case of pure 4He [cf.
Eqs. (10)—(12) in Ref. 3], Bp a(per) Bp a(po)

pap BT aT ap
(56)

Du —P,B&+uv, '— +1 D+ A+B+C '=0,
, P

(55a)

is the coefficient of u in the determinant (53) (note that it
does not depend on X), —pp, S, is the term of det (53)
which is independent of u (and v, ),

8, = 1+—
p ax X

Bo' B(po ) + 1 Xa(1/p) a(po')
BX aP

+
p aX aT

X ap XB(Z/p) a(per) + a(po) 1 XB(l/p)
paT aX aP

+
aX p aX

T

x ap xa(z/p) a(po) a(po) ao+
p aP aX aT aX aX

(57)

and P=P( He)—

P'

where

+1 D+ A +B+C '=pE,
P

(58a)
see Eq. (B7). Further we obtain

, a(p„/p)
B=BiB2, B2 =p (58b)

Ps 1 Ps +0 P 4

BP c2 p p

[cf. Eq. (12) in Ref. 3] is the coefficient of uv, .
The origins of all the terms, A, B, C, and D, their first-

order approximation, and the dependence on T and X, as
well as the proof of the exact cancellation of the finite
corrections ~ O(X") at T +0, are discussed—in Appendix
B.

x+ 'oT
BT To T p

B. Direct calculations at T~0

aps

BT P

Ps 0 Pn4

+0 T

Bp 1 TX + Pn4

BP C2 T0 p

1 1+0 Pn4

C
—2 P

cf. Eqs. (23) and (24) in Ref. 3; we get here

Now we prove the result at T~0(y 4+p„ /p )
=0(p„z/p ) by means of the direct calculation of the
deterniinant (53). We find

P

Bp m4(1+a) —1 p= —8p= —0.71p,ax m3

ps pn

aX 'P X

[see Eqs. (B8), (B14),and (B16)].
Thus we obtain for the deternunant (53)
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u ~s Ps
2 2 p
a(po)

as

1 x a(1/p)——X

X
—2
C

pX PsX
To TQ

a(po )

aT

acT
cr —Xax

X p
To

Ps

0

0

Pn
uOP —

U, Op, +

a(po)
ax

x a(z/p)X ax

p(1 —XO)

=(u —2uv, ) + +0(u, )+terms independent of (u, u, ) +0a(po. ) pX a(po ) 1 2 Pn4

as T, aT P

Substituting u =uo+(p, /p —y4)v, we find the exact result for y4 (T~O):

=0.

P
—

y~ (T~O) =1+0
P

Pn Pn4i.e. , yf (T~O)+ =0
P P

(59}

Another proof is given in Appendix B [see Eqs. (B18)].

C. Temperature behavior of y4{T) in a He- He mixture

In order to represent the result (59} in the approximate expression y& [Eq. (B6)] exactly it is sufficient to add one
correction of the second order from the first term of 8 i in Eq. (B2a) which gives the following change in Eq. (B6):

ap

ap
ap aP ap X Pna

p aX

Thus we get

PsED4= f4 U

P

p„ap„raP x ap+ 1+—
p ap/aP p aX

x ap

p ax
(~ Xao IaX),' [a—p„/a T+pa(p„/p) /a T ]

pao /a T
(a Ip) —,

' [ap„ /a T+pa(p„ /p) /a T ]

(ap/aP )(ao/aT)

ap f+ pn

ap' p

acT

ax
acT ap aa +0 p4X

ap aT p
a g+0

=yg''+y' '~'+y" +y"+o "'x = — " +o
P P P

see Eq. (B18c),cf. Eq. (38);

(6oa)

(z/P ) —X
P

U
2

a
'

U

Pn

P
ax= — +h =—Pn

P P P P

Pn Pn4 Pn4

V4
a(J
ax

acT
g

This result coincides with that in Eqs. (6) and (7) in Ref. 5. [Here we redefine y4. b, u~=y4u, —&b,u~=(p, /p —y4)v, . ]
Substituting Eqs. (B8) and (Bl 1)—(B15) in Eq. (60a) we find at low T (including the beginning of the roton region)
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dpn4/dI' Lpph P o p
/ +(T/ )X][4P h/p+(«T —

—, )p, p —p. 3I — 3XT!2pTo ]Pn + n4

3[p h/p+( T/2To)X]Bp IBP Pph

2ph pI +(T/T )X][4p h/p+(b, /T ——p, p —
p„&

——') I —„&XT/ZPTo] p 40 p +0 X
P

+
3[pph/p+ ( T/2To )X]

r

4 Pn4Pn ( )+ Pn4 +~ (o )+rE 4
P P

(60b)

1+c a2 Bo'

BX

Pph TX
1 —f2 +

where

lt —
( 1 +~(n)/~(o ) )

Pph + TX

p To

/ ~O(X )]. The "competition" between the first
f + / ) (Fig. 7) which determines3'~+P P
+ / ) at X=O is repace ythe coefficient (y4 p„p y

redominance of the first term, y4, +p„/p=y p„4pre ominan
im lies a substan iat 1 increase of the constant

)~ at arbitrarily small X, i.e.,i[y~(T~O)+p„/p]/(p„q p a ar '

a jump, (
—a ) —+( —5a ),

~P (p),x=0f,=3u+1, ri''"'=pf

g'+ " = —Sa
Pn4 Pph

y p=
p

2 Pr—r ——
T 3 p 25

r

Pph Pph TX(~),xylo 4 p +
P P To

+O(X ) .

Pph TX
3

P 2To

20

15

10

We see that, although the scale o y4f turns out to be of
the order of p„ /p,

p (T=O) m3n

m

re He (T=O)WO, the de-so that unlike the case of pure e y4
/ becomes substantially smal er, ovratron from y4=p„p ec

the order of p„~/p.
h is clear: at low T theh sical reason for that is c ear: a

atoms of the admixture are stoppe an
art in the sound oscillations. is meado not take par in

'
nt in the expressionthat the Doppler coefficient m e

)U, at T~O goes to 1, i.e., y4
f h' '

1 ki—+ — / . The deviation rom is
is caused by the He excitations only,

bility o ef th transformation between p„4 and, : U„=
'„%0. This was pointed out already

'
is

'
d inRefs 2but P'„=p„,

and 3.
tain an unexpected result: for all

role of the admixture is substantial. n ac a
fth adm' t oto 1the contribution o e a

'+ ' ',practically to the cancellation ocontribution y4 y4, pr
these terms, cf. Eq, f t(38)]. The factor
o —X(Bcr /BA, ) ] [ in the relation y4 y4

jumps by the transition p«P„3 „4 „3Q
up to 0 p„~/p„) [the jurnp of y4 is not so i

-10
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yx&0( T 0)+ Pn
4

p

Pn4
10

instead of

Pn
yg'( T~0)+

p
= —5a = —13.95

(61)
D4

Pn4 = —a = —2.79 .Pnyx=0( T 0)+
p p

The cancellation of (y4 '+y4' ') implies also the disap-
pearance at X &)10 of the sharp peak of y4 which is
caused in the case of pure He by the term y4'

' (Fig. 8) as
well as a broadening of the temperature region of the
OEF, (y~+p„/p)(0, which leads to an additional in-
crease of the maximum of the OEF parameter:

max — + =0 89X10 (T=0.52 K)
p

(62)
instead of

&V~+ C n/P)

max — y4x + =067X10 ~ (T=04 K);
P

see Fig. 9. Thus we obtain for the mixture with
X»10 a behavior of yz(T)/(p„4/p) which differs sub-
stantially from the case of pure He throughout the most
interesting region, T & T, T-T and is practically in-
dependent of X.

Thus concerning the role of the He admixture in He
we And the following results.

(1) A jump of the low Tlimit of the -Doppler
coefficient, D4=(y4+p„/p)/(p„4/p), which appears at
an arbitrarily small concentration, XAO, and is practical-
ly independent of X.

(2) A drastic change of the whole picture of the tem-
perature dependence of the Doppler coefticient,
(y4+p„/p)/(p„z/p), throughout the interesting region,
0 & T—T, already at small concentrations 10 «X

-10-

(-5a) X—6/o
t C t C

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

T (K)

FIG. 10. Two levels of the l3oppler parameter D4.. ( —a)
[T & T(x) ] and ( —5a ) [ T(T(X)] [see Eq. (13)].

IV. FIRST AND SECOND SOUNDS
IN A He- He MIXTURE

A. Basic equations

Now we have to use the complete set of two-Auid hy-
drodynamic equations:

ap +div)=0, g=p„v„+p,v, ,at

ai
+Vk(P5ik+p~v«vnl, +psvsivsk )at

a( ~)
+div(po v„)=0,

at (63)

vs z+(v, V)v, = —V p, —X—
S S

«0.06=X,„,and the practical invariability of this pic-
ture by changes of X by an order of magnitude, up to the
maximum possible value of X. Note that at too small
values of X we get for the low- T behavior of
(y~+p„/p)/(p„4/p) a variation between the two levels:
the high-T ("pure") value, —a, and the low T("rnixtu-re")
one, —Sa (see Figs. 8 and 10).

1.0 (b): x 104 a( x) +div(pXv„) =0,
at

0.5

-0 5

-1.0
0.35 0.7

FIG. 9. "Outstripping parameter" of fourth sound:
(y4+p„/p)=D4p„4/p&0, for pure "He (a) and He- He mix-
ture {x=6%%uo) (b).

Zp=XV3+(1 X) 4 =p3 —u4— —(64)
p

For simplicity we consider the sound oscillations propa-
gating along the x axis, Ox~~w=v„—v, and choose the
reference frame so that v —= j/p~~Ox. Taking into account
also the formula

dp= —dI' —o.dT+ —dX — w dw (65)"p p p
and substituting all the variables A; with the oscillating
corrections

A =(I",T', w', v', X') ~ exp[ik(x ut )], —
we obtain a set of linear equations for A which gives the
equation for the sound velocities of the normal modes:
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Q.

I

B

a(p„ /p)
a~'/2, , aP

=p'
T,X, w

Bo a(p„/p)
BT P,X, w

As in the case of pure He, the sound velocity u appears
(owing to the Galilean invariance) only in the combina-
tion U=u —v (U is the sound velocity in the c.m. refer-
ence frame). In the derivation of Eq. (66) we used the
Maxwell relations which follow from the expression for
the chemical potential (65):

a(z/p)
ap

a(z/p)
aT

T,X, w

P, X, w

a(z/p)
am /2 wax

a(1/p)
ax P, T, w

P, T, w

ao
ax

a(p„/p)
ax

(67)

A detailed analysis of Eq. (66) and of its exact solution is
given in Appendix C.

Q
0

CV

I

Q cQ

+ I
cQ

CQ CQ

B. Jumps of second-sound ve1ocity

In the pure He case the ratio (u z ) /c does not con-
tain any small factor at low T: in the phonon region we

p2
get u2 /c = —,

' [Eq. (A3)], which formally corresponds to
the elastic (collision) sound in a system of particles with
the linear dispersion law e=cp. The situation drastically
changes in the case of a He- He mixture in the region of
the admixture dominance. The point is that at low T the
small factor of the ratio [(o —Xao /aX)/ (ao /aT)] —T
is not compensated here by the ratio
(o —Xao!aX)/(p„/p, ) unlike in the pure He case in
the phonon region where o/(p„/p, ) =c /T. We get [see
Eqs. (C16), (810), and (813)]

ps ~ a(z/p)
u z

—uz+
BXPn

p, (o4+ kX/m 3 )
u 2—

(p«+Xpm3 /m3)(ao4/aT+ ,'kX/Tm3)—
2Ps kT 2 kT
3 pm,* 3m3

(69)

The last term in the expression (68) is of the same order
as the first one. In fact, using the formulas for an ideal
solution (see Ref. 6)

I ~a„
co

CQ

Z =p(u3-v'»
kT

p3 ~p3O+ lnX
m3

kT
p4 =@40+ ln( 1 —X),

m4

(70)

we get
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Ps 2 B(Z/p) ms kT
P„~X m,*

kT
m4(1 —X)

kT
m*

3

x10
4

3.5-

(71)

Thus we obtain

O2 5 kT
m 3

(72a)

v2 (cm'sec)

1.5-

Let T reAect the difFerence of the real He- He mixture
from an ideal solution. We get

( u o2 ) = ( 'T+ T—) .k

m 3

(72b)
0.5

0
0 0.2 0.4 0.6 0.8 1

T (K)

1.2 1.4 1.6 1.8 2

However, at low T we get practically T= T; see Fig. 11.
We see that the second-sound velocity in the region of

admixture dominance coincides approximately with the
velocity of elastic (collision) sound in the ideal Boltzmann
gas (P =(plm )kT, PVr =const, y =c~ Ic, =—', ):

FIG. 11. Second-sound velocity in the ideal-solution approxi-
mation u 2

=Q '
, kT/m—, (dashed line) and as a resu1t of numeri-

cal calculation (solid line).

BP P S kT
Q y

Bp s p 3 m
(73)

2/3
25

2 9 3
k T

fi X(PX/ms )

T
18X T~

(74)

Here we used the expression for the ideal Fermi gas
2/3

m3

pXA

' 1/3 2PX 2 m T
m3 2m 3 Tg

The result (72) is correct beyond the region of the
quantum (Fernii) degeneracy, T»T& [Eq. (17)]. Inside
the latter region ( T « T„)we obtain

2
PFps= =(3' pX/m3) /2msm3

2m3m3

(Jtl3 6+ /m s is the chemical potential per unit mass).
The result in the quantum region (u2) =(UF/v'3)

corresponds to the elastic (collision) sound in the ideal
Fermi gas.

We see that at low T [T« T„see Eq. (7)] already the
arbitrarily small concentration of the He admixture,
X~O, leads to a finite (even large) change of the second-
sound velocity, i.e., we get a jump. In particular, we find

5 kT (T» T~),
3 3 ms

At TIT& « 12X/25m =O.OSX, this term turns out to be
small in comparison with the last term of the expression
for u~ [Eq. (68)]:

~—=(3' pXlm, )' Ims &3 (T«O. SXT„) .

(76)

P, 2 B(Z/p) ms d(P3 P4)
X = Xax m, dx

2
m3 2 2 PF

3 2m3
P3

UF 2 kTg

3 3 m3

1 PF
3 m*

3

2

C. Doppler parameters in terms of thermodynamic derivatives

(u, ) —(u2) =+8 4AC /2—
[see Eq. (C9)] we obtain the exact formula

(77)

The exact results [Eqs. (C10), (C12), and (C13)] allow
one to find the Doppler parameters y, .

First of all, using the relation

(pz and UF are the momentum and the velocity on the
Fermi surface, respectively). We took into account here
that i.e.,

R
'V2= 2~ 'Vi ~ (78a)

y2= 1+ h-p
pn

3pn

2p

(o —XBcr /BX ) p Bp Bp

[(BPIBP)(Bo/BT)—a ] p„
f

XBPIBX p Bo Bo.

[(BPIBP)(Ba/BT)—a ] p„
g ' 'Y» (78b)
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or

a(p„ /p)
X

aX
o —Xao/aX p a(p. /P»)

ao /aT p„aT +O(a)+O(X) —yi .3 Pn

2 p
(79a)

p a(p„ /p)
y,")=2— X

Pn

o —Xao/aX p a(p. /P)
ao/aT p„aT

p o Xao/ax—pp„ao /aT p„

M0 =1+0 Pn4

2pao/aT p

Note that Eq. (78) is correct for the case of pure He
too (the case X=0) and Eq. (34) corresponds to Eq. (79a).
The term in square brackets in Eq. (79a) corresponds to
the simplest (zero) approximation for y2 (y2 ') since
yi-O(p„/p) (see below); cf. Eq. (32b).

~{0) 2+~{Z/P)+ ~{o.)

P (y(z/P}+y(cr})
Pn

(79b)

[cf. definitions in Eqs. (38)—(40) and (60b)].
Equation (78b) can also be represented in the similar

form

We mean here the expansion in p„/p, independently of
p„4/p; the latter small parameter is refiected by the fac-
tors f, g, and h [Eq. (Cl)]. We can also write

r —'2—3 ( / )+ p (Zap)+ p p ~4

2p p„ 1 —a'/(ap/aP)(ao /aT)

a(o Xao /aX—)(p/p. )y g~~

+
(ao/aT) [1—a'/(ap/a~)(ao/aT) ]

(X/p)(ap/aX) p ( }+ ( }

[1—a /(ap/aP)(ao/aT)] p,
(79c)

In order to calculate y, in the first approximation, y'i" (hence, hy2("), we use the representations (u, z ) =u, z+(u", 2 )

and A = Ao+ A i [see Eqs. (C14)—(C17)] as well as R = —(ap/aP)M+R' and S=M+S' [Eq. (C13)] where R, S, and
M are the quantities of the first order in p„/p, R ', and S'—of the second order. Besides that we must use the simplest
approximations for M, R ', and S': M0, R 0, and S0.

The exact expression for y, is the following:

R(ui) +S
2(/B 4AC—M[1 —

(u i) /u, ]+R'(u ) +S'

2A(ui —u )

M(u ',") /u —R '(u, ) —S'

2AO(1+ A'/A(}) ju, (1—u2/u, )+[(u'i" ) —(u 2" ) ]]
(80a)

where

M= 3p, —p+ h —2 u —X g,2p2 p2

BT ' P„P„BX
2 2 22p

h p ao ap f 2p ap ao ao
ax aT p„ax a~ aT

ps Bo Bp Bc7 Bp
aX aT+ aT ax

[see Eqs. (C13) and (Cl); Ao, A', u, 2, and u (('z' are given in Eqs. (C12), (C14), (C16), and (C17)]. Thus we get
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1

[1—a /(Bp/BP)(ao/BT)j[(1 —u2/u, )+[(u',") —(u2") j/u, j
(1) 23P p p o —XBo /BXX 1 — + h—

2p p„p„Bcr/BT u 21

a 3p. p „p' a(o —Xao/BX)
(Bp/BP)(Bo /BT) 2p p„p„(BplaP)(acr/BT)

p XBp/BX ao' Bo'+
p„(ap/BP)(ao/BT) aP g aT

(
(1) )2

1+
Q)

Ps XacT + acT X ap
pao BT BX BT p BX

(80c)

Equations (80c) and (80b) give the exact expressions for y1 and y2.
In the simplest approximation we find

where

(u(1))2
—2(1 —2/ —2) —2

Rou )+So
—2(1 —2/ —2)

(81a)

Bo p p (o —XBcr /BX) ao
aT

'+ p„" p„ao/BT aT ' '

R0=2a p 1+ h —2 o —X f+ X g — fao ap 2p' ap ao aop„p„BX BT p„aX BP BT

acT Bp ao' ap
ax aT+ aT ax

Thus we obtain

Q(&)
1'

u21(1 —u22/u21) (ao/BT)(1 —u2/u21)

(81b)

X a o. —X BcT

The representation

(0)
(1)—

1 —u /uQ2 Q)

a [u, —(p, /p„)X a(Z/p)/BA, ]+2a(x/p)(ap/BX)(p, /p„)(cr —Xacr/BX)

(ao/aT)(1 —u,'/u', )

(p, lp„)(X'lp')(ap/aX)'
2 / 2

p p Bp„ /Bp

p„p„BplBP
Bo Bo' X ap
BX BTp BX

T

p 2 2 p p Bp 2 Bo' acr X ap ao'

p„aplBP ' p„p„BX ' BT BP p BX BT
(81c)

Pn Pn Pn Pa(
a Q) 1+

p p BX

aQ
& BP„X Bp

—2

P„BT p BX
Bo
aT '

—2
Q2
—2
Q)

is more convenient by comparison with the case of pure "He [Eq. (33)j.

D. Low-T exyressions for Doyyler yarameters

Let us consider the behavior of y2 and y, at T~0 (i.e., f,g, h ~0). We get

y(o) —
1 (83)

Psy2=
P

Pn

P
(84)
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(P, /P —
p „/2P }[ {u 'i" )

' /u, —[a'/{ ap /aP }{ao /a T}][ 1 +{u ',"}'/u, ] J
—2(P, /P }[a [o —X{ao /aX ) ] /{ao /a T}+ {X/P }(Qp /aX }}

[1—a /{ap/aP }{aa/aT}] [(1—u /u, )+ [(u ',")' —(u "') ]/u, I

(85)

(86)Y1
p 2p

Neglecting the terms with the factors (ao. /aT) ' ~ T we
get at T~O [see Eq. (85)]

(u(, 1) )2 X ap—2—
u2 p BX

[see Eqs. (78b) and (80c)].
The result (83} shows the jump of y2(T~O), —', —+1, al-

ready at an infinitesimal X. But it corresponds formally
to the QEF: y2) p, /p. Actually the accuracy of the cal-
culation (a zero-order approximation) is not sufficient for
such a conclusion: y2

—p, /p=O(p„/p) is a quantity of
the first order in p„/p. VVe need the first-order correc-
tion, b,y{z". According to Eq. (84)

I

[see Eqs. (C18)], i.e.,

q(, ') =2eX+ O'X I 3

Thus we find

y', "(T~0)=28X )0 (BEF),

(88)

(89a)

y{ )(T
p

ps(
p

(absence of OEF).

(89b)

Pn
2&X

Ps Pn 1 +2&
3

2p p p 2 m3

where

(u', ") P, X ap
u2 p p2

(87)

E. Comparison with the case of pure He

Similarly to Eqs. (38)—(40), (60a) and (79b) we can
represent the results (81c) and (80c), respectively,

u2
y1= 1—

(ap/aP )(aa/a T )

X. 2—

1 p. . . , ( '") ( —xa /ax) p r —2

2—2 t

P y{zip} + P P (yg{)+y(a})
Bo /BT p„ p BX p„

—2
'

( (i})2 (
(1) )2 i

1 +—2 —2
u1 u1

3Pn p (z~p) ( )
(u'")' a(o —Xao /aX) p { )

(u'")' Ps

(90)

A u 3 (1) 2

+ P (zip}
ao /a T 2p p„ u1

(1) 2
p p

( (g)+ (a))
P ~X Pn u p

(91)

Comparing the expressions for y2 and y, [Eqs. (80c),
(8lc), (90), and (91)] with the case X=O [Eqs. (39) and
(40)] we see some natural complications: the addition of
terms with factors y4 ~' and XBP/BX, the replacement
o.—+o.—Bo./BX, including the definition of y2 '. Howev-
er, the main changes are introduced by the terms of the
former type: with the factors (p/p„)y4 ' and (p/p„}y4p'.
As we showed above just these terms caused the non-
monotomc character of y2 and yi/(p„/p) at X=O: the
sharp negative peaks of yz (BEF) and yi (OEF) in the be-

ginning of the roton region. However, at XWO there ap-
pears the small factor pn4/p„which suppresses these
terms [y4, yg' ~ O(p„4/p) ] unlike the terms
~O(p„/p). This means that at X))10 (10 is the
estimate of p„ /p in the beginning of the roton region) the
nonmonotonicity is suppressed (Fig. 12). Let us note that
the situation in the cases of y1 and y2 somewhat di6'ers
from the case of y4, where instead of the factor pn4/pn
there happened a cancellation of some terms (y4 ' and
y&' }), in addition to the transformation of the scale of the
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absence of the OEF for second sound (in s 't f th
0

in spi e o t ejurnp
o y2I —,~1):

D)

0.5-
y2(T~O)= Ps

P

Pn Ps—y, (T~O) &
2p P

-0.5-

F. What happens to Doppler parameters D4» at XXOt

The results at XAO can be represented as follows [cf.
Eqs. (12)—(14) and (45)—(49)]:

D2=y2

-1.5
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T (K)

y2
Ps Pn4

p p

o —XBcr/Bx Pnc

TBcr IBT p„

FIG. 12. Doppler parameter D& for 'He- He mixture: (a)
X=0.05%, (b) X=0. 1%,and (c) X=6%.

2p p

+ Pn Pn4
4 y4 p. p

(~ xa—~ Iax)+au '
=F+1- CXQ i

Ta~/aT 7

(93)

(94)

m3 m3
y, = 20 + 0

m3 m3 P

[see Eq. (88)].
At T~O we obtain the jumps of the low-T limit of y2

and y &/(p„/p) at arbitrarily small X.

y2(T~O):

contributions of yg', y4 ', and yz
' to (y4+p„/p),

p. /p
It is important to note that, in spite of the suppression

of the nonmonotonicity of y,. in the mixture that is natu-
ral since the thermal excitations are here a small fraction
of the normal component, the BEF parameter, y&)0,
turns out to be much more than in the case of pure He:
up to three orders of magnitude. The point is that the
scale of y &

& 0 is p„ lp but not p„z/p, e.g. , at T~0
2

=0.66
P

1 ~ 0-

D2

-1 0-

.5

(3)

T (K) 2 ' 0

2 2
3
~ 1 ~ more exact 1y 3

y 1( T 0) Ip Ip:

Ps Pn 1—+20
p 2 m3

2

1P 10

0.5

D2 0

(3a + 1)(a + 1)=35.5~ 28, +
m3 m3

=0.66

(92)

-0,5

[see Eq. (36)]. At quite small X)&10 these constants
embrace the whole phonon region. At too small X the
"jumps" appear in the curves yz(T) and y&(T)l(p„lp)
by the transition from the "high-1 ' part of the phonon

Fi . 13
region (p„~&)P„3) to the "low T" part ( && -)'Pn4 Pn

sg. . The result y, (T~O)/(p„/p)=20m3/m3 &0
means (i) the BEF with large parameter a:p„/p for first
sound; (ii) the scale p„/p for y, and y, +p„/p, unlike the
case of fourth sound where y&+p„/p =0(P„4/p); (iii) the

-1.5 I

0.1

I I I I

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T (K)

FIG. 13. (a) Doppler parameter D2 for He- He mixture:
isappearance of BEF and of the minimum. (1) X=0 0%%u—. %, and (3) X=6%. (b) Two levels of the Doppler pa-

ter D2: 3 [T) T(X)] and 1 —O(X) [T& T(X)] [see Eqs.
(7) and (13)]. Absence of OEF, D2 & 1.
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o —XBo/BX p h+~(T/~)p. +(T/T»
o BT 3pph+Ap„+ —',(T/To)Xp

p, /p

m3C 2

0 k
=20.8 K, (95)

0.5—

r

x ap x' Bp

p„BX pl BX

'2

+ terms with factors
Pn4 Pn4

G

—2au, —fzpzh+A, ~r ~p„—(T/T )X
o /BT 3p „+Ap„+—',(T/To)Xp

Pn
1 F1

p

-0.5-

-1.5
0

I I

0.2 0,4 0.6 0.8
I

1

T (K)

I I I I

1.2 1.4 1.6 1.8 2

0.66+0 Pn4

Pn

(96)

FIG. 15. Doppler parameter y& for ure 4

b f OEF, yp p, /p. (1) X=0.0%, (2)X=0.01%, (3)
o, (4) X=0.1%, (5) X=

l%%uo, and (6) X=6%.

x10

-2
0

I

0.1 0.2 0.3
I I I

0.4 0.5 0.6 0.7 0.8 0.9
T (K)

x10

12

1
10

This allows us to explain br' fl th
Doppler parameters D at XA ', , n . n

ie y e universal chs; at 0(Figs. 8, 12, and13}. In the expressions for (y' '—
yz

—p, p and ( i')+
XAO [E . (93) d(94)] lith t h

The other changes of D are the
o~o —XBo/BX and han t e quantities o., TBo./BT
depend substantially on X. Th'
cancellation occurs of the coe cient of G E s.

on . is is important for D

e e w ere it diminishes the cone: the term (F+1}"8
we get a jum f h

'
mp o t e plateau of D, —a-p„4/BE&0. So

( hfi tio ofhOEo e, together with a uick dim'

tion by increasing X of the BEF eak
e y up to its disappearance at X «0.06 Fi

q. (96)]. This implies a quick diminu
' ' '

g

0.66p„/p in y ( 1

up to their disappearance at X «0.06).
yi p ateau) means a s

The term

amplification of th BEF
a substantial

absence of the OEF fore (and the
so»: y, —p, /p=hy, = —1.16p„/p&0), Figs.

Thus we see that the influen
on the Do le

in uence of the admixture of He
on e oppler anomalies is stron and n

1 p

type.
anoma ies but an arnplification of another

~4 I I

0.2 0.4 0.6 0.6 1.2 14 16 16 2

FICx. 14. (a) OEF a
tures, +

parameter of first sound fo H - Ha or e- e mix-

, y& p„/p &0; disappearance of OEF wit
(1) X=O O%%u 2o.o%, ( ) =o.o %, ( )

F parameter of first sound y& )0 fory, for He- He mixtures.
=0.1%, (3) X= 1%, and (4) X=6%.
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APPENDIX A: PURE He: DOPPLER COEFFICIENTS
AND THERMAL KXCITATIONS

1. Phonon and roton peculiarities

in the roton region correspond to some anomalies: nega-
tive "compressibility, " dp„/dP (0, and positive thermal
expansion coefficient, a= 1/PBPIBT )0, respectively [see
Eqs. (38), (41), (45), and (47)—(50)]. The anomalies origi-
nate from the special properties of the phonons and ro-
tons, BP„IBP is negative since the increasing pressure P
causes an increase of the sound velocity,

dc dc BP
dP dp BP pc

&0,

which implies a decrease of the phonon number: the
latter is not conserved, it is determined by the tempera-
ture and the spectrum. The coefficient a becomes
anomalous —positive in the roton region because of the
decrease of the roton minimum by increasing density
[r =(plh)(dhldp) (0]. The latter leads to the anoma-
lous (negative) contribution of the rotons to the pressure,
P=PO+P „+P„, P~h=w (kT) l90c~R, P„=kTn„s,
s= 1+(b,/T)r (0, and this provides the positive term in
the expression for a

gp (BPIBT)
dT p (B(t)/Bp)z. p

m (kT)
90c A

—kTn„s
(Al)

[see Eqs. (22) and (24) in Ref. 3].
Let us comment on the negative "compressibility. "

This is not the true compressibility of the "normal sub-
system, " (Bp„/dP ) TA(BP„ /dP„) T. Negative compressi-
bility implies the instability of the system because of an
amplification of density perturbations. Here we get only
the "acceleration" of the sound excitation in the direction
of superAuid motion. The true compressibility of the
phonons (Bp h/BP h )T is positive. In fact,
P~h =(c /4)f2(p)p~z, f2=1+3a, a =(p/c)(dc/dp);
p~h=p~b(P, T), P„),=P~h(P, T) [see Eqs. (17) and (21) in
Ref. 3], i.e.,

It is interesting to note that the negative values of
y g') /(p „/p ) = —( 5a + 1 ) (0 in the phonon region and of

y(a) pn b, f2 pph

p T ~lrl p„

second sound as an oscillation of T, or o [see Eq. (42)], or
p„~pzh (p~h=(PT/c )o~h, p here being approximately
constant). Thus it is a collisional sound in the gas of exci-
tations (phonons}. This interpretation is supported by the
value of the second-sound velocity at low T:

2 2

P„Bo /c)T 3
(A3)

m(p)= deldp c '

' (kT)4
90 3(A'c )

we obtain

BP

Bpg

c'
dpg 3

(A4)

Returning to the phonon case we see that the simple
connection between the sound velocity and elasticity is
absent here: the relation between P h and p h differs
from that in the photon case, cf. Eqs. (A2), (A3), and
(A4). The difference is explained by (i} the special inertial
properties of the phonons, p h

=—', p, which are connected
with the broken Galilean symmetry, " correspondingly,
c /3 —+c /4; (ii) the dependence of the spectrum (velocity
c) on p, fz=l+3a, a=(p/c)(dc/dp)%0. Both causes
are connected with the fact that phonons are quasiparti-
cles (in a medium) but not particles (in the vacuum).

Thus there is not a simple analogy between collisional
sounds in the gases of phonons and photons.

2. Pressure dependence of D;

In conclusion we discuss the pressure (P) dependence
of the Doppler shift. By increasing P at fixed T the pho-
non density quickly diminishes:

—S

The result u2=c/&3 is exact for the collisional (i.e.,
local-equilibrium) sound in a gas of free particles with the
dispersion law e~ =cp (like photons c does not depend on
p) —it corresponds to the elasticity of the gas. Using the
formulas for the gas

3 2 4
y Tf

d p
1 ( 1 cp/T) y

77 (kT)
(2~)'d'p, qT m' (kT)4

p, —— ~, m p e'»' —l =
(2n) 30 (A'c) c

BP h (BP „/Bp)T

app„, (app„/ap),
spv

pph

c(P)
c

dc a D dca = =2.79,dP pc' c dp

(A5)
c2 p df2

3 dp

2

1+3a++
4 adp (A2)

whereas the roton density sharply increases:

Pr( ) (a(p) a]yT d5 r6
SPv ' dP C2 '

It is interesting to compare this result with the inter-
pretation of second sound. At low T we can regard

o dhr= = —O. S9 .5 dp
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its of numerical calculations are p

t P=2416—18. In particular, we get a

maxD =43.3 (T=0.39 K),maxD4—

min Dz=yz)= —2. 53 (T=0.39 K

minD, = —61 (T=0.4 K),
[cf. Eq. (37)].

ax (T) and ~mmy& (T)
~

decrease at highHowever, maxy4
f h trema to lower T:P because of the displaclacement o t e ex r

rease of the factor p„p. o e„/ Note that thethis leads to a decrease o
(T) decreases in t e ph honon re-total normal density p„

40.0 '

~ [6—5(,P))]j/Tp„=p„=p„(P=0)e (A8)

b the numerical calculations, e.g., forThis is con6rme y e n

Pn" (P =24 atm)I (P =0)
p

we get

0. 128 (T=0.3 K), 4.936 (T==0.5 K),
8.751 (T=0.6 K), 7.636 ( T=0.7 K) .

te of (T,P) we can use the linear ap-Vg

proximation of the basic quantities m e'

[see Eqs. (A5) and (A6 ]
5c P 5b, P

2' g 2 (A9)

p„(P)g(P)= "(P) 1+ 5c
'5

(A 10)
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40

20-

from det (53) by the division of its third column in four
parts. The latter are proportional to u, 1, uu„and U„re-
spectively,

-20-

-40

-60)

-80
25

0 0

M I 4

(i)=(0,0, —u, O), (ii) =(p„0,0,0),
(iii)=( —uv, p f,0,0,0),
(iv) = (0, [pg +op f ]v„(1—h )v„p fv, ),
where

a(p„ /p) a(p„/p) p„a(p„/p)
aP ' aT '

p aX

(Bla)

(Blb)
FIG. 20. Doppler parameter D& as a function of temperature

( T) and pressure (P). The case (i) gives two contributions which correspond to
the division of the first line of the determinant (i) into two
parts, ~ u and o- U„respectively,

A,(P)= = A., A, =0.18,
(cpo) (1+b,c /c )

e.g. , for P =24 atm we get

P 5c 5A=0.28, =0.78, = —0. 165,
pc2

'
C

A, (P)=0.22K, =0.04.

The dependence of the Doppler shift on P at fixed T is
plotted in Figs. 19—21. Near the beginning of the roton
region we get graphs of D; (P ) which have some similari-
ty to the temperature curves of these quantities: the
graphs contain a sharp extremum (this happens in a very
small temperature interval) or a sharp monotonic in-
crease or decrease.

APPENDIX 8: He- He MIXTURE:
EQUATION FOR FOURTH-SOUND VELOCITY

AND ITS SOLUTIQN AT T—+0

1. CoefBcients in the exact equation

Let us explain the origin of the terms of pE as well as
of pD and PP, B& [see Eq—s. (SS)—(58)]. All these quan-
tities correspond to the determinants which are formed

D

2
Q

-3
25

0 0

(il)~ —u, —u, O, —u
ap ap ap
ap' aT' ' ax

ap ap ap
"' ap '"' aT' '" ax

(B1c)

The case (il) corresponds to the term pDu and the ver-
sion (ii) describes the term pp, B, [s—ee Eqs. (56) and
(57)]. The independence of D of X becomes obvious if
one subtracts the first line of the determinant (i 1) with the
factor X/( —u ) from its fourth line.

The case

"ap" aT '" ax

Bp Bp Bp„" aP '" aT' '" aX

2. First-order approximation

Up to the first order in X we find

2X Bp Ocr 2 Bp Bo
OX aT p aT ax

gives two terms: uv, ( pD )+uv, p A—, respectively [cf. the
case (i 1)].

The case (iii) gives the term uv, ( p f )( pB, )— —
uv, pB [cf. the case—(ii)]. In the remaining version, (iv),

we take into account only the first part of the first line [as
in the case (il)] since the terms ~ v, are neglected. Di-
viding the third column of (iv) into two parts,

(iv) = 00, v„ops

p

a(p„ /p)+ 0, [pg+op f]v„X v„p fv,aX
we get two terms: uv, ( p, D)+uv, pC, re—spectively [cf.
the case (il)].

FIG. 21. Doppler parameter D2 as a function of temperature
(T) and pressure (P).

Bp Bo+
aP Xax (B2a)



52 EXTRAORDINARY SENSITIVITY OF THE INTERNAL. . . 6763

and

0 2 aP
1

Pn + 2a(o —Xao/aX)
a

' +
a /aT

2

+ CK

(ap/aP )(acr /a T )

apn ao' apn ao'
A=p

ap aT aT ap

ap aPn ao
ap aT xax

ps ao
ax aT

a~ aP aP, 2x ap
ax' ap ap

'+
p ax (83)

Omitting the complicated exact expression for 3 and C
let us write the coefticient of uU,

(a —Xaa/aX)'ap/ap 2X ap
ao/aT

+
p aX

(82b)

In comparison with the result (23) for pure He we see
the following changes:

, a(p„/p) aaB =B1B2=B1B2=p ap aT '

a Pn/P 1 ap ao ap
aT p aT+ aX aP

ap aa ap. ao ap ap ap ap aa
ap aT ax+ ax a~ aT+ aT ap ax

p' +1 D+ 3+B+C
p

in the first order (in X) approximation:

(84)
x ap ap ao

+xax ap aT

[cf. Eqs. (12) in Ref. 3].
Substituting Eqs. (85) into Eq. (55) we obtain

(85)

Au =Au = 1—(1)
4 4

ap

ap aP
a xaa—/ax ap„a(p„/p)

+p
2p aT aT

a0
aT

a ap a(p /p)
+p

2p aT aT
T

—
y4 U, = 1 —D4

ps (1) (1) pn4
"s

. p ".'
.

' p. '

ap
ap

x ap„
aT p aX

(86)

[cf. Eq. (1) for U„=O and Eq. (22)]. 1a
p

ap

P, X

=CX4+ CX3

3. Thermodynamic and hydrodynamic quantities of the mixture

ap

P, X

(ap/aT) p ~
(ap/ap)

Comparing y4'"(T) in pure He and in the He- He
mixture one must take into account not only the
di6'erence between the expressions for them [Eqs. (22) and
(74)] but also the changes of the thermodynamics and hy-
drodynamics at XAO. On the basis of the relation

r

f2 ppha4=- +—
T p T Ir I

——T Pr

p

P7l 3C

k
=20.8 K

3CX

0. 18 To=3(kh)
(cpa)

x
TO

(88)

[cf. Eqs. (22)—(25) in Ref. 3]. We took into account that
(aP!ap)Tx=c . The accuracy of this ideal-gas descrip-
tion of the He admixture is shown in Fig. 22. Further,
we obtain

s =1+—r,T
we find

90 'A' (87) 0 04+0 3~ 04=

5+—
2

m3 /m3=2. 46

C Pph C Pr
T p 5 p

3/2
2m3 m 3kT

0'3 = 111
m3 px

(89)
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r

I

14 18 18 2

Bpn3

BT
3 Bp

m3 BT
m3 X X2

XP~3 Pn3
=0

m3 Tp Tp

Pn 1 6 1 XT
BT=T 4P;+P, T

—
2 0

[see Eqs. (26) and (27) in Ref. 3 and Eq. (19)].

Bp„m3 m3+X
BX m3 m3 BX

Bp/BX can be obtained from the definitions

~P„ ~P„4 ~P„3 ~P„4 4P h P„
BT BT BT ' BT T T T 2

(B15)

oo; /PI'
x 10

l
I7- I

1

XM3+ (1—X)M4
P Vq(1+aX) ~M

X=. X= X.M3 m3

M m

In fact, we get

[a=0.286, see Eq. (20)],

I I

0 02 0.4 0.8 0.8 12 14 18 18 2

Bp Bp dX
BX BX dX

M3 —M4 Ma V~ dX dX
Vm p"2 dX '

T (K)

FIG. 22. Accuracy of the ideal-gas description (IGD) of the
3He admixture (x=0.1%). Dash-dot line, IGD; dashed line,
numerical calculations; see Ref. 9. (a) a3(T) and (b) 803/BT.

M3M4

M 2

so that [see Eq. (B15)]

Bp Mp M —M aM
M3M4 1+aX

[see Eq. (16) in Refs. 3 and 6],
Bcr kX0' X ~0'4+
BX m3

(B10)

m4(1+a) —1 p=——Hp,
m3

(B16)

In the phonon region and in the beginning of the roton
one we get

m3

m4 4+—a —1 =0.71,
3

~'

XBo c Pi T
BX T p To

Qo ~o ~~3 3c2 p h+ + XBT BT BT T p

(B1 1)

(B12)

Bp

aX =Pm
m3

m3 m4
~ 1 —X (1+a) —1

3m—=p (1—8X) .
m3

(B17)

~pn4 5a Pph

B~ C2 p

1 Pr 6 2—r ——
p T 3

Bpn3 1 m3 1 p 3

c2 m3 c2

Finally, we obtain

m
Pn Pn4 Pn3& Pn4 Pph+Pr & Pn3 XP+ 3

m3

Bp Bp 4 Bp 3

az a~ +
a~ '

(B13)

(B14)

4. Exact cancellation of the corrections O(X ) at T~0
Using the results of calculations in Eqs. (B8)—(B17) we

find that for (y4+p„/p) all the terms of first order in X
cancel so that there remain only the terms of first order
in p„4/p. However, this result, y4+p„/p=O(p„4/p),
must be proved exactly since at T~O the quantity p„~/p
becomes smaller than a finite quantity of any order in
p„/p, O([p„/p]"), k =1,2, . . ..

Let us prove the exact cancellations in y4( T=O) of the
terms of a11 orders in p /p. The result
y4+p„/P= 0(p„4/p), or hu4 = [1+0(p„4/p) ]u„ implies
that the coefficient of uu, in Eq. (55a) is
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—2D+0 '"'
(B18a) Pn4

P

In order to prove Eq. (B18a) let us, first of all, take into
account that according to the definition

and Eq. (B18a) is proved:

m
X+O '"'

P

3
Pn =Pn3+Pn4 P

we get f=B(p„4/p)/BP, g =d(p„4Ip) IBT,

(B18b)
+1 D+ 3+B+C = ' —2D+O

P P

or [see Eqs. (55c), (B18d), (B18e), and (B18f)]
T

Pn4 d(pn4/P) Pn4
h = —X = [1+O(X)],

p ax p

Pn A+B+C
2p 2D

Pn + Pn4

i.e.,

(f,g, h)=O
P

(B18c)

APPENDIX C: He- He MIXTURE:
EQUATION FOR FIRST- AND SECOND-SOUND

VELOCITIES AND ITS EXACT SOLUTION

[see Eq. (Blb)]. Thus we get
r

8 =p fBi =0—
P

(B18d)

[see Eqs. (58b) and (57)].
Estimates of A and C can be found if we somewhat

change the divisions which were considered above in the
cases (i2) and (iv) [Eqs. (Bla) and (Blc)]. Dividing the
third column of det(iv) into two parts in the following
way:

(iv)=(0, 0, u„0)+(0,[pg+op f ]u„—hv„p fv, ),

ap
ap

ap ao
ax P' ax m3

apn aps

ax P' ax

and others are proportional to the small parameter
P„/P -X:

1. Peculiarities of the basic determinant

Before the calculation of the coefficients in the equa-
tion for U (66) it is necessary to take into account some
general considerations.

The matrix elements of the determinant (66) contain
quantities of difFerent orders of magnitude. In the dimen-
sionless form some of them are of the order of unity:

we get two terms: puu, ( D)+uu, O(p„4—/p) [cf. the case
(il) which corresponds to pDu and Eq. (B18c)],i.e.,

Bp g dps y dpn

aT T' aT T' aT m3

Pn
O

Pn4

P .'P
(B18e) k ao.

m T' m 3pc

Further, we use the equalities

ap

ap P
~ Pn/p Pn Bp Pn Bp O

Pn4

ap
+

p ap, ap+O
P

ap

aT
Pn ap Pn4

p aT p

Pn Pn Bp Pn IP Pn Bp Pn Pn4

BX p BX BX p BX X p

and according to them divide the first line of det(i2) in the
following form:

(i2)~ u,
P Pn Bp P Pn Bp 0 P Pn BpaP'' p aT' ''

p aX

+ 0,0,0, —U,

This gives two terms: —uu, (p —p„)D uu, p„D. The re-—
sult for the first term follows from the analogy with the
case (il). The second determinant is easily calculated.
Thus we get in addition to Eqs. (B18d) and (B18e)

a(p„/p)
a~

B(P„4/p) B(p„ /p)
ap ' aT

&(p„ /p)
aT

d(p. /p») p.~
h = —X = [1+O(X)],ax p

m 3
Pn Pn4+Pn3 Pn4+ PX

m3
(C 1)

[cf. Eqs. (Blb), (B18c),and (B18b)].
Further, the quintic equation for U (66) can be reduced

to a quartic one.
The point is that the set of five solutions of Eq. (66)

contains besides the four values of the sound velocities
for the first and second sounds in the directions along Ox

U1, —~ 1,2 +7 1,2~ U1, 2 ++~0 (C2)

The derivative B(Z/p)/BX corresponds to a special esti-
mate: it varies inversely as X but is ~ T [see Eq. (71)].
However, it is especially important to pick out the factors
which are proportional to p„4/p-T [they are under-
lined in Eq. (66)]:

f/(pc ) ', g/T ', h~
P
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the special fifth solution, U5-w, which describes the ve-
locity of the "concentration wave" that can be set up by
injecting a pulse of He into the How. The distortion of
the concentration only, X', must move together with the
normal component, so that we get

Ps
U =u —u= w.5 n (C3)

The existence of the exact solution
U5=(p, /p)w+O(w ) and its separation from the other
solutions, U„. . . , U4, can be proved by the following
simple consideration. Let us multiply the fifth line of the
determinant (66) by ( —o /X) and add it to the third line.
The result will be proportional to [ U —(p, /p) 8'] with
the exception of the third term:

a~ p,—p U — w
BP p

Bo
P

Ps
U — w

P

a(p„/p) ~ a~—
Up w, 0, cr —X U — w

Ps

P

However, with an accuracy to w we can represent the
third term in the form —[U —(p, /p)w]pa(p„/p)IaTw.
Thus we get U~=(p, /p)w+O(w ). Further, we have
now obtained the equality

det(66)= U w—det, +O(w ), (C4)
P

where det, difFers from det(66) in the third line. The
latter is

a~ a~ a(p. /p») gpap' paT' p az. ' 'x ax

+

b
CQ CQ

I

B

I

I

deti= AU +SU +C+RU w+SUw . (C6)

Substituting U, =u;+y;w, u; »w, in det&=0 we find
the equations for ( u

& 2 ),

(C5)
Equation (C4) can be used for the calculation of
Q$) ~ ~ ~ )Q4 ~

2. Exact equation for sound velocities

In order to find the solutions U;&5»w, we calculate
the coefficients, A, 8, C, R, and S in the expression for
det„

cD cD b Q ~ ro
CO

I

A(u; ) +B(u ) +C=O,
and for y;,

2y; [2A (u, )2+B ]+R (u,o) +S=0,
which give

o p Bk+B 4AC(u)2) =

R(u, ~) +S
Xi 2=+

2&B'—4AC

[cf. (24) and (25)].
Calculating the determinant

(C7)

(C8)

(C9)

(C 10)

co ro
4v

CQ

+



52 EXTRAORDINARY SENSITIVITY OF THE INTERNAL. . . 6767

pn4 p
( )g

pn4a( /)
aX p

[see Eqs. (18) and (B16)],we find the exact expressions for
the coe%cients A, B, C, R, and S:

ap ao
P apaT

As in the case of pure He [Eqs. (26) and (27)] we omit
the common factor pp„ in the coefficients of det& [Eq.
(C6)]. The underlined terms in Eq. (C13) correspond to

(ap—/aP)M [in Eq. (C13a)] and M in Eq. (C13b).
At X =0 Eqs. (C12) and (C13) coincide with Eqs. (26)

and (27).

acr PsB=—p +
aT p

2 r

ao ap Ps X ap
ax ap p. pz ax

ps x ap acr
+p„"p ax xax

2
ao'

aT

3. Sound velocities in the absence of internal motion

In order to calculate u
& z [see Eq. (C9)] let us pick out

small corrections in the exact expression for A and B
[Eq. (C12); cf. Eq. (26)]

psC=p
pn

Ps z a(Z/p) ap acrp„aX aP aT
2

ao a(Z/p) ao.

ax + ax aT

R=2 o —XP acrp„aX ap ap
ap' aTf

ap acr z +3 2p aP P

r

p ao. p p apS——2 cr —X g —2

r

r

+ PXP g
— f = — PM+B',p„aX aP aT aP

(C12)

(C13a)

ap ao aP Ps (o —Xao IaX)
aP aT ap p„acr/aT

+'X'" 'P'
axPn

We find

(u, z)—:u, z+(u, z)0 2 —2 (1) 2

BO+'((I B—
()
—4AOC

0

(u"') =(u )' —u

A', C
Q1 2+

~0 QBO —4AOC

B'
2A0

Bo

'((I B()—4AOC

A =Ao+A ~ B Bo+B ~ Ao=p ap acT

aaaT '

(C14)

(C15)

=M+S' . (C13b)
I

Substituting Ao, A', Bo, and B' [see Eqs. (C12) and
(C14)] we get

aP P (cr —Xao'/aX)z, a(Z/p)
ap

' p„ao IaT aX

Q1
—2

+
2

2
—2

( (() )2
a 2 + 2

(ap/aP)(ao /aT) '
1 —„— /g

1+—2/ —2

2 / —2
Q2 Q1

P, Xz ap (2P, /P„)(o —Xao. /aX)a(X/P)(aP/aX) —(P, /P„)a X a(Z/P)/aX
ao/aT

(C16)

(C17)

Here we took advantage of the equations

Bo= —Ao(u, +uz), QB()—4AOC = Ao(u, —uz) .

Thus we obtain

l

where

p x' ap p, a xap+a 2 o.—Xax +
p ax p ax

(u, ) =u& 1+

(u ) -uz 1—

a Q

(ao /aT)(1 —u,'/u', )

a Q2

acr/aT(1 —uz/u, )

k
1 —u /u

k

1
—2/ —2

Xz a(Z/p)
ax aT
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