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Recently, a nontrivial T (temperature) behavior was found for the Doppler shift of the fourth and first
sounds in superfluid *He with internal motion: a plateau in the phonon region and a sharp peak in the
beginning of the roton region of the Doppler parameters I'y ; (T)=(Auy ; /v),=o. The situation is simi-
lar to the case of second sound investigated long ago for T'y(T)=(Au, /v, ), =0, but the signs and values
of plateaus and peaks indicated some kinds of Doppler anomalies: the “outstripping effect” (OEF), in
addition to the “back-entrainment effect” (BEF) described by Khalatnikov (Au; is the Doppler shift of
ith sound; v,, v,, v are the velocities of superfluid and normal components and of the liquid as a whole,
respectively). The Doppler anomalies mean the breaking of some “natural” suppositions: that Aw; is in-
termediate between v, and v,, and that the sign of (Au; —v) is determined by the velocity of the “dom-
inant” component (at low T this is the superfluid component for first and fourth sounds, v, =v,, and the
normal one for second sound, v;=v,). The direction of (Au;—v) can be opposite to the direction of
(vg —v) (BEF) and the center of spreading sound can move faster than the flowing dominant component
when the other component is stationary: Au; > v, (OEF). The Doppler anomalies as well as the very ex-
istence of the nonkinematic (internal) Doppler shift Au; —v+0, and its nontrivial T behavior are special
manifestations of the superfluidity. Here we investigate the Doppler phenomenon in the “He-*He mix-
ture. We find strong sensitivity of the T behavior of the Doppler shift and of the Doppler anomalies to
the *He admixture. At low T this is associated with a general peculiarity of the “He->He mixture: the
nonanalyticity of its characteristics, i.e., the inequivalence of T—0, X —0 to X —0, T—0 (X is the con-
centration of *He). We find some “key derivatives:” 3p/dw?, g /dw?, crucial for the T behavior of T
whose role changes at X#0 (p and po are the mass and entropy densities, respectively). The detailed ex-
planation of the strong sensitivity (including finite T, X) is found by means of an analysis of peculiarities
of the quasiparticles. We find (i) a jump of the low-T plateau of the Doppler parameters are D; (modified
version of T';) for all the sounds at infinitesimal X (8X); the T range of the new plateau increases with X;
the jump is greater than the variation of the plateau level with X for all X <0.06=X,,,; (ii) a sharp de-
crease of the peak of D;(T) with increasing X up to its disappearance already at X <<X,,,; (iii) strong
amplification at X0 of some Doppler anomalies.

I. INTRODUCTION

1 SEPTEMBER 1995-1

A. Internal Doppler effect and Doppler anomalies

Internal macroscopic motion which is the main pecu-
liarity of superfluids, and several types of sound, imply
some unusual manifestations of the Doppler effect. The
relative motion between the normal and superfluid com-
ponents creates in the rest frame of the liquid an anisot-
ropy of the state of a special type. First of all, the purely
kinematic coincidence of the velocities of the center of
spreading sound, Au;, and of the fluid as a whole, v, is
broken, Au; —v50: although both components take part
in the sound oscillation (even in the case of fourth sound),
the participation of the components is not on an equal
footing. [In the case of fourth sound the velocity of the
normal component does not oscillate (v, =0, v, =0) but
there exists the possibility of conversion between the
components, so that p, oscillates, p;,70.] Thus the
different “weights” of the components in the structure of
sounds imply a deviation of the velocity of the center of
spreading sound Au; from the center-of-mass (c.m.) ve-
locity, v=73/p=(psvs +p,v,)/p.

In the first approximation (w /u <<1) the nonkinemat-
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ic part of the Doppler shift, Au;—v, is proportional to
the velocity of the relative motion, w=v, —v,. In the
case u||v||w (where u is the sound velocity) we get for the
ith sound

u,-=u,-°iAu,-, Au,—v=f;(w)=y,w,

or

Au; =

Ps p
7—7,- v, + ‘?n—-i-'yi ’vn . (1)

At v =0 one can represent

Auy=Ty,, Au; =T,

Ps Pn
F2=Yz/“,)_» l-‘1,4=_7’1,4/7)‘

The Doppler parameters I'; have a simple and universal
(qualitatively) T (temperature) behavior: a plateau in the
phonon region, T < T, and a sharp peak at the beginning
of the roton region, T~T [T=0.57 K is defined by
pen! T)=p,(T); p,y, and p, are the phonon and roton con-
tributions to the normal density p,,, respectively].

()
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However, the existence of the internal Doppler shift
(Au;—v)#0 1is not the only peculiarity of the
phenomenon. It seems natural to suppose that the com-
bined oscillation of the two moving components has an
intermediate rest frame, i.e., v, <Au; <v, (if v, <v,), and
that the sign of (Au; —v) is determined by the velocity of
the dominant component. [At low T, i.e., far enough
from T,, where p, /p; =B << 1, the normal and superfluid
components are dominant in the structure of
second(v, /v, =B"') and first (j;/j,=B"!) (or fourth)
sounds, respectively.] This means that the velocity of the
center of spreading sound would be intermediate between
the c.m. velocity v and the velocity of the dominant
component, vV, Or Vg: ’

0<yr<ys |r5=21,
p
P
—=¥1,4<¥1,4<0 7’?,4=7n )

or

0<I'y,<1 (i.e., for v, >v, v<Au,<v,),

0<Ty,4<1 (e, for v;>v, v<Au;,<v,). (3)

The case ¥y =0 (I'=0) corresponds to the participation of
both components on equal footing, ¥y =y ¢ (I'=1)—to the
total disappearance of the influence of the ‘‘auxiliary”
(i.e., nondominant) component. But these restrictions
turn out to be broken [very strongly; see Eq. (6)].

There emerge two effects—the anomalies of the inter-
nal Doppler shift.

(i) The direction of the internal Doppler shift (Au; —v)
can be opposite to the direction of motion of the dom-
inant component (in the c.m. frame):

¥2<0, 714>0, orI';<0. 4)

This “back-entrainment” ef fect* (BEF) was described in
Ref. 1 for second sound, y, <0, i.e., for v, >v, Au, <v,
and in Refs. 2 and 3 for fourth and first sounds, v, 4>0,
i.e., for vy > v, Auy 4 <v.

(ii) In the cases of first and fourth sounds the Doppler
shift can exceed the velocity of the dominant component
v

y1’4<—%=—y§’4 or Ty y>1. 5)

Equation (5) means that the center of the spreading sound
moves faster than the flowing superfluid part of the liquid
when the normal component is stationary. This
“outstripping” effect (OEF) was described in Refs. 2 and
3. A similar effect is absent for second sound, i.e., the
condition y,>p,/p=y5 or I';>1 is not fulfilled:
maxy,=~=0.9y5.

The scale of the Doppler anomalies, i.e., of the break-
ing of the “natural” conditions [Eq. (3)] is shown by the
following list of plateaus and peaks of Au,,=T, v,
Au 2 = FZUII H
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Auy=~3.79%;, (>v,, OEF),
minAu 4~ —25.6v; (<0, BEF),
Au,~—35.5v, (<0, BEF),
maxAu,=43.7v; (>v,, OEF),

(6)

Au,~2v; (<v,, OFEF is absent) ,

minAu,~ —1.18v, (<0, BEF) .

B. Subject of the paper

In this paper we investigate the influence of a *He ad-
mixture on the internal Doppler effect. First of all we an-
alyze in detail the physical origin of the Doppler
anomalies and of the peculiarities of the T behavior of the
Doppler shift in pure “He. We explain the common
features of the behavior of the Doppler parameters I'; (or
D;, see below) for different sounds (a sharp peak in the
beginning of the roton region and a ‘“plateau” in the pho-
non region) and the differences [e.g., the opposite sign of
peaks and low-T constants of I'y (D) and I'y (D,) which
appear in spite of the similarity of the structure of first
and fourth sounds at low 7). Then we compare the role
of the thermal and 3He quasiparticles in the Doppler
?henomenon. It appears that, unlike the case of pure

He, the important aspects of the problem at X0 re-
quire an exact approach. Here we investigate the prob-
lem for all the sounds using exact considerations. In the
former investigations of the Doppler effect in mixtures
the anomalies and the peculiarities of T behavior either
were not discussed at all (Ref. 4) or were considered only
for fourth sound in the first approximation (X <<1) (Ref.
5).

The results are the following. (i) There are jumps of
low-T asymptotic values of the Doppler parameters D;:

AD,=D!V—D?=D/(T—0,6X)—D;(T—0,X=0) ,

and of the second sound velocity u,. (ii) The values of
the jumps, |AD;|, are much greater than the variation of
D;(T—0) with X <0.06=X_,,.. Thus at small X we get
an approximately constant step of D;(T):

DT <<T(X))—DAT>T(X))=AD; (T<T).

Here T(X) describes the T range of the new level of the
plateau. T(X) quickly increases with X so that already at
small X (<<X_,,) it spans the whole phonon region,
T <T. The other consequence of increase of X is a sharp
decrease of the peaks of D; at T~ T up to its disappear-
ance (already at X <<0.06).

T(X) separates two types of T behavior of thermo-
dynamic or hydrodynamic quantities Q, i.e., the regions
of predominance of thermal and 3He quasiparticles:
T>>T(X) (almost pure *He) and T <<T(X) (“pro-
nounced mixture”). Actually there exist two characteris-
tic temperatures, ‘“‘thermodynamic” [ 7T(X)] and ‘“hydro-
dynamic” [T,(X)]; those are defined by o (T )=03(T,)
and p;(T,)=p,3(T;) [0 p, 03, pons and p,; are the con-
tributions of the phonons and “He quasiparticles to the
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entropy (per unit mass) o and p,,, respectively]:

#ic | 45pc |7
le._ _ZL X1/3z7.4X1/3 (K) ,

kB 21 m3

#ic [ 45pc | m3 ?
T,~—— | =£5 | —x'~12.0x'/* (K)

kB 2m°h mj

(c is the sound velocity of phonons, m} =2.46m; is the
effective mass of the *He atom, and p is the density of the
mixture). At low X we get T,>>T,;>>T,, where
T,~X?"? is the Fermi degeneracy temperature of *He.
Both T, and T, appear for Q=D;. There appears an
unexpected amplification of the Doppler anomalies: We
find two “key” derivatives, dp/d(w?/2)=p*d(p, /p)/dP
and 3o /d(w?/2)=3(p,/p)/dT, which determine the
peculiarities of the T behavior of all D; (w=v, —v, is the
relative velocity of the components). We prove that they
are independent of X. This points out the thermal-
excitation origin of the Doppler anomalies. Nevertheless,
it appears that some anomalies substantially increase in
the case of predominance of *He quasiparticles.

C. The main peculiarities of the internal
Doppler effect in a *He-*He mixture

Unlike the case of pure “He where all the peculiarities
of the phenomenon can be described in the simplest ap-
proximation!~? p, /p << 1, the important questions in the
case of mixtures require exact considerations. (i) There is
exact cancellation at small T of all the terms of type
O((p,/p)¥)=0(X*) in the expression for the OEF pa-
rameter of fourth sound:

Pn
Vet —
op

Pna
P

(Auy—v,)/vy=— =0 =0(TY. @

This result has a clear physical meaning: the natural
“reference point” of the Doppler shift Au, is not v but v,
[cf. Eq. (1)], and the natural scale is not p, /p but p,,/p.
In fact, in the case of fourth sound the oscillations of nor-
mal velocity are excluded (v, =0), so that the participa-
tion of the normal component which creates Au, —v,70
is connected only with intertransformations of the nor-
mal and superfluid components (p, =—p.). But this is
possible only for p,,, the thermal-excitation part of p,.
(ii) There is exact separation in the fifth-order equation
for first and second sounds of the special solution u 5 [ad-
ditional to (£uf,+y,,w)]—the velocity of the “con-
centration waves.” We prove its coincidence with the ve-
locity of the normal component [us=(p,/p)w at v=0].
(iii) The simplest approximation for y,,

7AT—0,X7#0)=1+0(p, /p) ,

does not solve the question of the existence of the OEF,
v2>p,/p [unlike the case y,(T—0,X=0)=2]. The ex-
act results

6741
_Ps _ Pn
Yo T—0,X7#0)=——""—y (T—0,X#0) ,
P 2
_ | Pn
y(T—0,X#0)=0 |— | >0 9)
P

prove the absence of the OEF, y, <p, /p.

According to Egs. (8) and (9) the following parameters
are convenient for consideration of the influence of X0
at small T

7,4+£L:0 Pn4 , 71=0 &_ ,
P
(10)
P _o|Pn
P P

Equations (10) reflect the low-T scale and the ‘“‘natural
reference points” of the Doppler shift at X¥0: v, v, and
v, for fourth, first, and second sound, respectively. In
fact, we get

Buy=o, == |yt o, (0,=0),
Au,—v=yw, (11)
Auy,—v,= "}/2—& lvn (v;=0) .
p
In terms of the parameters D;,
P
D,=y, _plz_rl )
= Ps _
Dz—yz/j—l"zz‘yz (at T<<T,), (12)

D4=

'}’4"‘% /pn4:_(r4_1)pn

P Pn4 ’

the influence of the admixture (*He) acquires a simple
and universal (qualitatively) character: jumps of the pla-
teau (which are substantially larger than the variation of
D; with X <0.6) and disappearance of the peaks. For the
plateau we obtain

D,~—a=-—2.79 (T>T,),
—5a~—13.95 (T T,) (OEF),
D,=Ba+1)a+1)=35.5 (T>T,),

mj

2
~0.66 (T<<T,) (BEF), (13)

=~(1—2.85X) (T <T,)
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(the condition of the OEF, D, >1, is not fulfilled for
the mixture either). Here a=(p/c)(dc/dp),
60=—(1/p)3p/3X)=0.71, p,/p;=(p,3/p)=mj /m;X;
T>>T,;; T, and T, are defined in Eq. (7).

Both jumps of the plateau, for D, and D;, —a — —5a,
35.5—0.66 [Eq. (13)], correspond to a substantial
amplification of the anomalies,

Prs
P

(OEF parameter) by a factor 15, max(y =
parameter) by 10° at X =0.06:

max Yat+— | =—Dy

D,p,/p) (BEF

max 7/4+%"— =0.6X10"° (X=0),

0.9%X107* (X>>107%),
maxy;=0.8X10"* (X=0),

0.662" ~1.62x (X>>107%),
P

i.e., up to 0.1 (at X =0.06).
In conclusion we give one more example of the
nonanalyticity (in addition to D;)—the second-sound ve-

locity,
ps do aO' 2 /
—X— —+tX oX
ud(X, TP~ o, ax 3T d ]
(15)
[Z /p=p4—ps; m;u; (i=4,3) are the chemical potentials

of “He and *He, respectively]. We obtain

uzz-\/—3 (T>>T1) .

5 kT

T, >T>T,), (16)
3 mi ( ! d)

Uy=

u,=—= (T <<0.05XT,);

V3
see Eq. (7); V=(37%pX /m3)!/*/m¥ is the Fermi veloci-
ty and

#(pX /m 4?2 (37?)?/3

T,= ~1.42Xx*2(K). (17
2kBm;

It is interesting to note that in all cases the results coin-
cide with the velocity of collisional elastic sound of an
ideal gas with the spectrum of the corresponding quasi-
particles. This is noteworthy since the second sound is
the oscillation of the relative velocity of the components
but not of the normal component onlx Neither the elas-
ticity of phonons, 3P, /3p,, (#¢?/V'3), nor the Doppler
shift, Au,7v,, corresponds to the elastic sound in a gas
of particles with the spectrum e=cp.
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D. Two-fluid hydrodynamics of pure
‘He and *He->He mixtures

For the numerical calculation of the internal Doppler
shift in “He we use the well-known two-fluid description®
of the thermodynamics and hydrodynamics of pure “He.
This theory has been verified experimentally as long as
the temperature is not close to the transition temperature
T, and the relative internal motion is not large enough to
create turbulence (w <60 cmsec™!). The maximum er-
ror in the thermodynamic functions as given by the
theory is’~3% for T<1.2 K and the description is ex-
pected to be exact at T—0 K.

The hydrodynamic description of the liquid assumes
that it contains two components, the normal viscous
component that contains all the entropy, and a superfluid
component that has no viscosity and has nonrotational
flow. The normal component is regarded as an ideal gas
of excitations—phonons (e= cp, ¢=2.4X10* cm/sec)
and rotons [e(p)—A-Hp —po)/2u, A/kp=~8.65 K,
Po/fi=1.91 AL p#=0.16m,, ]. The ideal-gas approxi-

mation includes the neglect of the derivatives (0A /9T,
(du/3T),, and (3p,/3T),, which is correct for T'=1.2
K."® Other approx1mat10ns used in the thermodynamic
description are”?®?

r=L 35 _ 459, f2_1+3a—1+33—~937

A Jp dp
2% 1 pdp_ ., (18)
Po p 3" pdp

The thermodynamics of the “He-’He mixture and of
the *He component is taken from Ref. 9. The thermo-
dynamic functions are computed numerically using a
series representation which is easy to integrate and calcu-
late. The series have been fitted to experimental results in
the range T<0.25 K and X < 8%, where X is the molar
concentration of *He in the mixture [(X=(M,/M )X,
M=XM,+(1—X)M,).

We checked the validity of the description by compar-
ison with experimental measurements of the specific heat

10°

C, (mJ/mole K)

10" 10°

T (K)
FIG. 1. Verification of the thermodynamics. Comparison of
our calculation of the specific heat of 3He-*He mixture (solid
lines) and experiment (Ref. 10) (data points and dashed lines).
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50

Up (m/s)

0 ols lf()
T (K)
FIG. 2. Velocity of second sound (u,) for *He-*He mixtures.
Solid lines, results of our calculation; symbols, the experimental

results (Ref. 11). Molar concentrations are (a) 107°% and (b)
0.173%.

of the mixture,!° as shown in Fig. 1. The excellent agree-
ment with the experiment means that the thermodynamic
description we use is good for T'<1.2 K. Further
verification of the thermodynamic description is shown in
Figs. 2 and 3 where we compare the calculated velocity of
second and fourth sound at different temperatures with
experimental results.!"'> For second sound (Fig. 2), the
agreement is good but for fourth sound (Fig. 3) it is only
fair. In this second case we see that the experiment and
calculation tend to agree at low temperatures (7 = 1.0 K)
and diverge as the temperature approaches the phase
transition. We see that below ~1 K our description
gives a maximum relative error of ~10%.

The *He component contributes a practically constant
amount to the normal density:

XMy 3
Pn=pPnaT)+ V. =pustXp M, (19)

where p,4(T) is the contribution to the normal density of

250

200

150

Usinm/s

100

50

le) '. 1 L ; 2 1 :
1.00 1.20 1.40 1.60 1.80 2.00 2.20
T (K)

FIG. 3. Velocity of fourth sound (u,) for *He-*He mixtures:
Solid lines, results of our calculation; symbols, the experimental
results (Ref. 12). The molar concentrations are (a) 0% (b) 5.2%
and (c) 11.2%. Our calculations are accurate only for 7<1.3
K.
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the “He excitations, M} =2.46M is the effective molar
mass of *He in the mixture, and V,, is the molar volume
of the mixture. The *He component also changes the to-
tal density of the mixture:

_ XM, +(1-X)M,
= > ,

m

(20)

where M, is the molar mass of “He. The molar mass of
’He is roughly 3 that of *He and its molar volume is
larger so that the molar volume of the mixture is

v, =V,1+aX), 1)

where V, is the molar volume of *He and @=0.286 (see
Ref. 9). For the exact numerical calculations we used
MACSYMA.!3

II. DOPPLER SHIFT IN PURE “He:
ORIGIN OF THE ANOMALIES AND OF THE
PECULIARITIES OF THE TEMPERATURE BEHAVIOR

A. Doppler parameters and initial sound velocities

Let us consider the expressions for the sound velocities
in the absence of internal motion (w =0), u? (with correc-
tions «p, /p), and for the Doppler parameters y;, which
were obtained in Refs. 2 and 3 on the basis of the solution
of the two-fluid hydrodynamic equations for oscillating
perturbations.

For fourth sound we get (in the first approximation in

Pn/p)

(1) p.  Op, /0P 0dp, /0T
Ya=V4 = —_ -
p dp/dP poo /0T
_ al(l/p)3p, /dT) (22)
(3p/dP)(3c /dT) ’
—19p
@ p oT’
(wdP=ai+ui)?
do /3T
P P (23)
a? a?
+ )
+ (8p /9P )(d0 /3T) 9o /0T
wPrsai=o P, a3=28
P dp

[see Egs. (32) and (44) in Ref. 3]. Here and below all the
partial derivatives are taken with all other independent
variables held constant.

For first and second sounds let us begin from the exact
expressions

R(u9,)*+S Ruf,)*+S
Y1,2=— ) = ——, (24)
' 2[24(ui,)*+B] 2V B2—44C
— 2_
(ul, )= BELVB —44C (25)

24
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= ) __Q_ do [see EQs. (57) in Ref. 3].
A=dot+ 4, 4,= Substituting in Egs. (24) and (25) the expansions of the
Pap ar’
_R Py coefficients (26)-(28) we obtain
A'= o =—ap,
Par ap » Y12=712+ Y0 712=0(@),
2 2
__ |98 , P9 3p _ PspPo _ M[—(3p/dP)u 1,2+1]
B=—p 3T +——p 3P —————p (26) V2= —
n n 2v/B*—44,C
[see Egs. (52)-(56) in Ref. 3; the correct sign before B in
Eq. (55) and in the expression for B (56b) is plus]. u?22 =52 12 +(u(” 2, (u (” )2/u1 , =0 Bpi ,
= _aﬂM+ 4 = 4
R= 3P R', S=M+S', (27a) . —B+VBI—44,C
u ==
ap,/p) b2 24 ’
M=(p+3ps)a —20 _L Pn/pP , 0
aT pn 9T A [_» C
2 2 3(p, /p) iaVim =y e V' B*—44,C 2
0 —
R'=(P+3Ps)‘1‘2‘ 9 | _, 0" %Pn/P) 3p , (27b) 0
p? | oT p. OP AT ie.
1 =4g P 0P o’
S'=do"- ,7:;-=a_§, ,7§=p g;/aT ) (30)
In the exact expressions for 4, R, and S we pick out the "
terms A’, R’, and S’ which contain the small factor ()2 a? 17‘1‘
a~(1/T)p,/p). [The definitions (27b) are somewhat (ui")?=~ 30 /3T 1—a2/a?’
simpler than in Ref. 3.] The terms M, R’, and S’ can be uy/uy 31
represented as power series in p, /p with finite number of 2 o? s
terms: (uy’)'=— 30 /3T 1—u2 /a? ’
M=M,+M, , M
(28a) =y 0= p,=— = p0} , 2
IRy I dPFY O Prar u 3. JoT
r—pt ' ©o—_ Mo _,_ o %n/0f
R'=R,+R,, Y2 2pdo /3T 2 pn, 00/3T ° (320)
' apn , 9
R0=4pa2_2£- 3 Rl=_3pna2_2apna_2- ’ M, 3P
Pn op Ay,=————=—="" (320)
(28b) 2pd0 /3T 2 p
., ) ) The expression for ¥, (=y1) to first order in p, /p can be
§'=S¢+S], So=4apo, Si=—4ap,o (28c)  represented in a form which contains y5:
J
M3p/3P)u{V P—R"(u?)*—
‘,/ = =
v 2VBI—44C
= Mydp/dP(u{V ) —Rat—S;
2v/'B*—44,C
_ a’ul 4 ac{(p/p,)—p/p,+(3p,/dP)/(3p/dP)]—2} —2a’u? 33)
2 (30 /3T )(1—2 /a2 ) (30 /AT)(1—u2 /7?) '
[
Since we get ten in the form
—M(@3p/3P)uiV P +R"(ud)+S’ o 90,79T | 3p
P = =0 =|pg—=_Tr |2 .
Y2 2\/___—B2—-4A0C (a) Y2 . 30 /0T 2 p +0(a) (34)

[as long as (u3")% R’, and S’ contain a] ¥, can be writ-

Note that the result in Ref. 1,
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Ps g apn/aT

=f_o +
Y2 p p, 90/0T Ola),

does not contain the exact correction of the first order in
P /p on the supposition a=0.

B. Temperature behavior of Doppler parameters

The temperature behavior of D; which corresponds to
v and y§!] [see Egs. (32b), (22), and (33)], is plotted in
Figs. 4—6. Here it is compared with the results of the ex-
act numerical calculation on the basis of the determinants
(6) and (51) in Ref. 3. The functions D; have the follow-
ing common features: an almost constant behavior (pla-
teau) in the phonon region, a drastic change in the begin-
ning of the roton region (sharp peak of |D;|), and almost
constant behavior (not large but different from the kine-
matic value 0) at high temperature.

The main differences between the functions D; are the
following: The low-T plateau is negative for D, (OEF,
Y4/(p, /p) < —1) and positive for D, (BEF) and D,; the
peak is positive (maximum) for y, (BEF) and negative
(minimum) for ¥, (OEF, v,/(p, /p) < —1) and y, (BEF).

Using the expressions in the phonon region,

n __SapPn Ou _dpn  3p 1
P~ 2 p’ 3T T’ oP 2’
gol8p _ 30 _fopn P 3o CPn
pal Pap Tp ' °" T BT T2
(35)

dc
fr=3a+1~9.37, a=‘%$

we find

vy T <0.4 K) %—z—(a+l)z—3.79 (OEF) ,

yT<0.4 K)/%"~(3a+1)(a+1>z35.5 (BEF) ,

y,(T<0.4K)=1%. (36)

30.0

20.0
Dy

10.0 4

0.0

-5.0+

-10.0

0.0 0.5 1.0 1.5 2.0
T (K)

FIG. 4. Doppler parameter D,(T)=(y4+p,/p)/(pns/p) for
pure “He. Solid line corresponds to the first-order expression

[Eq. (22)]; triangles, an exact solution of the initial determinant
[see Eq. (6) in Ref. 3].
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40 T T (a) +
Dy
5% 02 04 06 08 3 1.2
T X
®
0.51
10 s /}}A_
0.0 A
-0.5
-1.5 - y

0.0 0s \/ 1.0 15

FIG. 5. (a) Doppler parameter D(T)=vy,/(p,/p) for pure
“He. (b) Doppler coefficient y,(T) for pure “He. Solid line cor-
responds to the first-order expression [Eq. (33)]; triangles, the
exact calculation of the initial determinant [see Eq. (51) in Ref.
3].

Dy
ay

0.5 \

0.0

-0.5

-1.0

-1.5 . - T )
0.0 0.5 1.0 1.5 2.0

T (K)

FIG. 6. Doppler parameter D,(T)=y,/(p,/p) for pure “He.
Solid line corresponds to the simplest expression [Eq. (32b)]; tri-
angles, the exact calculation of the initial determinant [see Eq.
(51) in Ref. 3].
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See Egs. (36) and (71) in Ref. 3. Note the corrections to
Egs. (68) and (71) in Ref. 3: the correct expressions are

—14 9 | L%, gy

_3_11[]+ g

K (T)=1+Ba+1)a+1);

corrected terms are underlined. We see that the low-T
value of |y,| is smaller by one order of magnitude than
that of ¥,. We discuss below the detailed explanation of
all the differences and the similarities in the behavior of
v;. Now we only note that y, is the result of the “com-
petition” (subtraction) of two large terms, the first and
third in the expression (22) (see Fig. 7) whereas y, con-
tains only the first term

_ Pn, 9p, /0P
p  9p/dp

with negative factor «<a <0 [see Egs. (33) and (22)]. We
discuss below the physical origin of these terms and their
very different behavior due to *He admixture, X#0. Fur-
ther, we get

max[D,]=~26.6 (T=0.63 K) (BEF),
max[(—D,)]~43.7 (T~0.56 K) (OEF), (37)
max[(—D,)]=1.18 (T'=0.61 K) (BEF) .

>

The absolute value of the maximum OEF parameter for
first sound turns out to be much more (by two orders of
magnitude) than that of fourth sound,
max(—y,—p, /p)=~0.6X107° (r=0.4 K) and
max(—y;—p,/p)=1.7X1073 (T ~0.67 K).

30.0+

Dy
20.0+

(c)

10.0+

0.0

5o ®

-10.0
! (a)

-15.0 T T T )
0.0 0.5 1.0 1.5 2.0

T ®)

FIG. 7. Doppler parameter Dy(T)=(y4+p, /p)/(p.4/p) for
pure “He. Contribution of density F(T) and entropy G(T) key
factors: (a) (Y +p,/p)/pns/p)=1+F; (b) v /(pns/p)
=—[0/T(30 /3T)]G; (c) ¥\* /(pns/p)=—[cis /T (30 /3T)]G
[Eqgs. (38) and (46)].
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C. Doppler parameters and structures of sounds

The expressions for y; (22), (32b), and (33) are deter-
mined on the one hand by the terms in the coefficients in
the hydrodynamic equations which are proportional to
the relative velocity w, and on the other hand by the
structure of the sounds at w=0. The expressions for y;
can be represented in the form

w_ /3wl /2)  0d0/3(v}/2) 3o /3(v2/2)
Ve T a0 /0P 30 /8T (3p/dP )30 /3T)
E,},E{))_i_y(o)_}_,y(a) (38)
) —n_ P 0030 /3w?/2) _ ()4 P, (o)
’V 2— Pn ao_/aT +YZ 2+ Pn Ya ’
39
2 2-2
yi=|L£ (a)+2_2 au;
n a3 | (30 /8T ) 1—u3 /u1)?
+ [ Lyp—2 i (40)
T Go e —alsat)
The derivatives in the numerators of the terms of v,
2= op _ dp ,9(p, /p)
p Aw?/2) 3(v2/2) P’
g= do _|_ 8o _ 9%pa/p)
dw2/2) |, |d(w2/2) or
-1 _ 3o
a > T paP , 41)

describe the dependence of the densities of mass and en-
tropy (per unit mass) on the relative velocity and the
“coupling” between the oscillations

u
r=u2Pr =P 42

[ A . ’
P'=u‘p'=upv’, pSUZ o
respectively. The latter are independent at «=0 in the
case of free sounds (i.e., without the condition
v, =v, =0). The derivatives in the denominators of 7,
dp /9P and do /9T, characterize the relation between the
oscillating quantities p’ and P’, o’ and T'. The origin of
the derivatives (41) in y; is the following. The densities
and the currents in the hydrodynamic equations contain
terms proportional to w? and Aw, respectively (A4 is
some thermodynamic quantity). These terms give in the
equations for the sound amplitudes linear (in w’) terms
(<ww’',w’'A) with the factors (41) (as well as with the
quantities dp /9P, do /9T, and p, /p). Correspondingly,
the structure of the sounds acquires at w0 without fail
the terms proportional to w’. However, the sound veloci-
ty changes in the first order in w’ only in the case of the
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presence of w oscillation (w’) already in the initial struc-
ture of the sound. In fact, in the case =0 when the os-
cillations (42) correspond to independent sounds, the first
sound has no Doppler correction, ¥,=0, whereas the
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second sound has it, 7,70 [Eq. (32a)]. The cause of this
becomes evident if we exclude the variables 7' and P’
from the equations for 7', P’, w’, and v’ which corre-
spond to the determinant (51) in Ref. 3:

In the linear approximation we obtain

u%=£, u%=17%+772w ,

% (44)
o —n_ 90 /T . po_
V2 0,80 /T - &p 80 /0T

Although the independent oscillations of v’ and w’ (42)
are mixed in Eqgs. (43), the linear (in w) correction to the
first-sound velocity is absent. Further, both the terms f
and g introduce changes in the structure of sounds which
are linear in w, but only g leads to the first-order Doppler
correction.

This consideration explains the existence of a in y;:
only because of the inequality a0 does the structure of
first sound contain at w =0 the w’ oscillations (with the
factor a). In the structure of fourth sound the oscilla-
tions v’ and w’ are mixed independently of a: because of
the condition v, =0 the independent mode is proportion-
al to v, =v'—(p, /p)w’. The small coefficient of w’ im-
plies a small factor in ¥4, y,=~v{". The term y{°’ is pro-
portional to the similar term in ¥’ [Egs. (38) and (39)],
but in y, this term is supplemented by the direct contri-
bution of the p’ oscillation which contains w’, v’ [owing
to the breaking of the relations (42) in the case of fourth
sound], in addition to the indirect contribution which is
proportional to a, y{*.

We show below that ¥’ ensures in the phonon region
a negative constant of y, and (with the factor a <0) a
positive constant of y;, whereas y5) ensures a deep
minimum  for ¥y, and [with  the factor
a*p/p,=0(p, /p)>0] for y,, and simultaneously a sharp
maximum for ¥ : here ¥\~ — f,7Yp, /p, so that

Yy =—(f,—1 )7"2"’%"

[f,—1=8.27 see Eq. (35)].
D. Origin of T behavior of D;:
Key derivatives, properties of phonons and rotons

The common peculiarities of the Doppler parameters,
D; or T';, for pure *He, the plateau in the phonon region

ap 2pnps _@R ’ 2_@2_ ’—_
Noi/2) PR w+p(l—u ap v'=0,
_ Pn ﬁ_u . pus Np,0) /AT (pitplo 30 pu 2pwps ||
p |u pu? pdo /3T pdo /3T d(w?/2) p p?
u?_ 3 _Pn_99p,0)/3p ‘=0 .  43)
p dw?/2) p do /0T v ’

—
(T <T) and the sharp peak after it (T ~T), are deter-
mined by the density (F) and entropy (G) “key factors”

Pradp o, [P
P2 aP’ pT )
[Note that f and g in Eq. (41) do not change at X+0:
d(p, /p) /3P =3(p,4/p) /3P, dp, /p)/d3T=0(p,4/p)/9T.
The dimensionless form F, G of the “key derivatives” f,g
corresponds to the simplest T dependence.] In fact, the
results of Egs. (32b), (22), and (33) can be represented in
the following form (here p, =p,4):

F=f (45)

Ps ag
Dy=yy 1ya— = 1= :
2=V V2 P 1 Tao/aTG +Ay,
__ Pn
An——“Z;‘VmLO(a) ,
D,=F+1 0 +at; G 46
= Téo /0T (46
=2 11 =2
u; o o+au]
D,=aT [1—-— F—
T | @ Too /o' *Tao /0T
4+ L azﬁ% _E_% - 1——9% @G
p, 90 /0T 72 T30 /3T )

All the terms in the expressions for D; including F and G,
are almost constant at T < T, but the “key” factors intro-
duce a substantial change at T~ T: F corresponds to a
sharp increase (large step) and G to a positive peak. In
D,=~vy, the only factor G (with negative coefficient)
causes a lowering of the plateau (so that y,—p,/p <0,
absence of the OEF) and a negative peak (BEF).

In D, a “competition” occurs between two factors: G
(with positive coefficient —a#; >>0) substantially dimin-
ishes the modulus of the negative plateau which is caused
by (F+1) (OEF) and gives a positive peak (BEF). In D,
a similar competition occurs, but F and G appear with
opposite signs, so that G lowers the positive plateau
(BEF) and gives a negative peak (OEF).

The behavior menticned above of the key factors and
of their coefficients is the consequence of the peculiarities
of the phonons and rotons. In fact, we get
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—(5a+1py+[(A/T)Ir|—1]p,
Pph+pr
4ppnt(A/T)p,
G=__—._——
Pontp,

’

47)

T30 /8T 3ppntAp,

I

(48)

aﬁ%

T30 /3T

_ _fzpph+}"lr|pr
3pph+}"pr

aTp _ _f2pph+}"!rlpr
Pn pph+pr

b

49)
[ppn+ AT /A)p, 12

72 (ppmtp)Bpmtip,) ’

fa=3a+1~9.37,

3(kpA)? 0
P kil

~0.18
(epo)?

(see Ref. 3; A and p, are the energy and momentum of
the roton minimum, respectively).

A negative sign of (F+1) (the source of the OEF) cor-
responds to the negative ‘“‘compressibility” of the pho-
nons [(F+1)x3dp,/dP <0]: the equilibrium phonon
concentration decreases by compression (a >0).

The behavior of the fractions (47)-(49) at T~ T [large
step of F and sharp peak of G which is the basis of the
peaks of D, (OEF), D, (BEF), and D, (BEF); slow change
of other fractions] is determined by two peculiarities of
the phonon and roton contribution. (i) The fast exponen-
tial increase of roton concentration: the index
A/T=~15.17. (ii) The unusual smallness of the roton
contribution to entropy: AT /A~1072. The latter is ex-
plained by the very large “effective mass” of the rotons,
m,=p,/n,~(p%/3kyT) in comparison with the phonon
case, At =pyy /o ~kpT /c?:
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m,  c’pf A2
My 3K3T  AT?

=1.28X10°.

Some additional considerations relative to the role of the
phonon and roton peculiarities as well as to the pressure
dependence of D; are given in Appendix A.

III. FOURTH SOUND IN A ‘He-*He MIXTURE

A. Exact equation for the fourth-sound velocity

In the case of a completely locked normal component
the basic two-fluid hydrodynamic equations are the fol-
lowing:®

90 4 giv p,v, =0,

ot

a(ga)=0

ot ’

W vV, ==V |u—xZ 1
3 v,V)v,= u E (51)
ApX) _,

ot ’

- Z _
p=Xp3+(1—X)u,, o THTHa
du=Lap—oar+Zax—Lrv av, . (52)

P P p

As in Refs. 2 and 3 for pure “He, we consider the case of
fourth sound in a capillary, where we do not have to wor-
ry about the effect of porosity which modulates the veloc-
ity of fourth sound in porous media.'’

Regarding all the variables in Eq. (51) as functions of
P, T, X, and v, and substituting the latter variables with
the corrections (P’,...)<exp[iw(x —ut)] which corre-
spond to the sound propagating along the x axis, Ox||v;,
we obtain a system of linear equations for the amplitudes
P, T', X', and v, (v,=v,=0) and correspondingly the
equation for the fourth-sound velocity u:

_yd 8 3 O g2 2P /P) _y0e ., %P
“ap TV 3p THar TUaT P —3p TP “ax TV ax
3(pa) 3(pa) a(p,/p) ,9(p, /p) . dpa)
P aT aT aP s axX
1 .3(1/p) ) p 3(p, /p) 3(X /p) -0 &y
1_y0/p) _ | 80 | _ _ | Pn__yOPn’/P) _yOX/p
P X ax la XBX] u-+tv |1 X ax ” X ax
3p p 9P, /p) d(pX)
Xap Xar UsP T ap oxX
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The peculiarity of the underlined factors will be discussed
below [see Eq. (B18c¢)].
We used here the Maxwell relations based on Eq. (52)

3p _ ,9pa/p) 3o _ 3p,/p)
Av?/2) opP A(v2/2) aT '
(54)
du_ __ P Az/p) __9pn/p)
A(v2/2) p’ 3wr/2) ax

Supposing v, <<u we find, as in the case of pure *He [cf.
Egs. (10)-(12) in Ref. 3],

Dut—p B, +uv, l— [%’H ]D+I+E+C‘

(55a)
|
= _ [ x0 B dpo) . 1 _,31/p)
By 1+anH[” XaX P o ¥ ax
_X 3 |,Z/p) po) | dlpo) a(l/g
p oT ¢ oP (5).¢ p
and
p[— %—+I]D+I+§+C' =pE , (58a)
where
- 3p,/p)
= = 2————"—‘
B=B.B,, B,=p—; (58b)

[cf. Eq. (12) in Ref. 3] is the coefficient of uv,.

The origins of all the terms, A, B, C, and D, their first-
order approximation, and the dependence on T and X, as
well as the proof of the exact cancellation of the finite
corrections < O(X¥) at T—0, are discussed in Appendix
B.

B. Direct calculations at 7 —0

Now we prove the result at T—O0(y,+p,/p)
=0(p,4/p) by means of the direct calculation of the
determinant (53). We find

I

1 pn4

= 1+0
62[

9 _ I_I_’K.;_O Pns.

aP - [ed To p
cf. Egs. (23) and (24) in Ref. 3; we get here

1
2
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u=ug+Au ,

B‘ ~
,_ B _|,_Pn_4A+B+C
ug=ps > Au=|l % ) v , (55b)
or
P Pn . A+B+C
Au= f—y,, Vs, y4=——2—;7+ 2D , (55¢)
where
__|8p d(po) _ dp 3(po)
PP=P\3p ar _oT oP (56)

is the coefficient of 2 in the determinant (53) (note that it
does not depend on X), —pp B, is the term of det (53)
which is independent of u (and v,),

d(pa)

oT

+ X% ¥ Z/p) dpo) _ 8pa) | _ 480 (57)
p P ax  oT axX ax ||’

¢=¢(4He)_£;7;LX .

’
4

see Eq. (B7). Further we obtain

¥, 1 Pps Pns
~—— |1+
P 2 p °% ]
3p o |y Toy|Pns
aT To T p ’
ap Ps Ty | Pna
~—— | X+— ,
aT T, tr0
m
—g% (1+ﬁ)7n-::-—1 ]pE—sz—OJIp ,
s o _Pn
ax ~ P x

[see Egs. (B8), (B14), and (B16)].
Thus we obtain for the determinant (53)



6750 Y. A. NEPOMNYASHCHY, N. GOV, A. MANN, AND M. REVZEN

52
_u VP pX | PX _ P
Ez+62 o uTo Vg T, Ps ubp—v, |6p;+ X
d(po) dpo) 0 d(pa)
oP aT 1).¢
1 a(1/p) o A(Z/p)
——x —o—xZ | — —xSLlel
o X ax la XaX] u +u ax
X X3
— - 0 1—X6
-2 T, pl )
=(u2—2uv,) a(g)}?)%+ 8(;);)_%17 +0(v2)+terms independent of (u,v,) | +0O B;—“— =0.
Substituting u =u~+(p, /p— 17 4)v, we find the exact result for y5” % T —0):
Ps L xror_0)|=1+0 |2 |, ie., y{¢°(T_>o>+f:-)'L=o pp"“ (59)

Another proof is given in Appendix B [see Egs. (B18)].

C. Temperature behavior of ¥ ,(T) in a “He->He mixture

In order to represent the result (59) in the approximate expression y, [Eq. (B6)] exactly it is sufficient to add one
correction of the second order from the first term of B, in Eq. (B2a) which gives the following change in Eq. (B6):

9Py, /_Qg_} 9, /3p X 9p,
ap / op or / ap p 39X
Thus we get
Ps

Auy= ?_7’4 Vs »

| Pn OPu/OP ) X 3p |_X P

Ve T T ap /AP poX | p ox

(0 —Xd0 /3X)5[0p, /3T +pd(p, /p)/3T] (a/p)i[dp,/dT +pd(p,/p)/dT]
poo /3T (3p/0P) (00 /0T)

P Pn do do oP do Pna

_ = + —_— J— — Y — —_— —_ | = —_

apr o +h o XaX ar |8 apa aT g+o0 o X]
=y Py EP Ly Oy @vo | Py | =Py o | B2t (60a)

p P P
see Eq. (B18c), cf. Eq. (38);
v2
riEv=x|a|Z | fa=-| =—xa|Pn Jox==Lrip=_LriPriig MXl;
P 2 v, P P P P P

(= | |g— 90 90
Va ax |/ or |8

This result coincides with that in Eqgs. (6) and (7) in Ref. 5. [Here we redefine vy, Auy, =y, —>Au,=(p,/p—v4)v;. ]
Substituting Eqgs. (B8) and (B11)-(B15) in Eq. (60a) we find at low T (including the beginning of the roton region)
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yom P 0p,4/0P B lopn/PH(T /T)X [[4ppn /p+(A/T—=3)p, /p—pn3XT /2pT ]
4 p  9p/dP 3[ppn/p+(T/2T()X]
+ [f20p0/0+H(T /To)X [4pyn/p+(A/T—~1)p, /p—p,XT /2pT,] vo Py
3ppn/p+(T/2To)X] P
=Py e+ 2 koo | Bt | (60b)
P P
[
where $Ppn/p—O(X 2)]. The “competition” between the first
K=(147@ /o) and third terms of (y,+p, /p) (Fig. 7) which determines
Ya /Ya the coefficient (y,+p,/p) at X=0 is replaced by the
I do predominance of the first term, y,+p, /p=~vy ¥ +pns/p.
= |l+c’a/ lo—X ox This implies a substantial increase of the constant
[y T—0)+p, /p1/(p.a/p)| at arbitrarily small X, i.e.,
ajump, (—a)—(—5a),
— |- [ x| /e x| jump, (—a)—
T, P T,

f2=3a+1, 7?”’X¢°=pf/§%=y5{’”"‘° ,

Pna Pph A 2 | Pr
P4 21— 5,00 12, £ |07
128 o 5a 7773 o
Pph |Pph , TX Pph X
(0),X7#0 — p p p
v =|—4— | —+ = /3 — =
¢ plp T p 2T,
+0(Xx?) .

We see that, although the scale of y, turns out to be of
the order of p,, /p,

(T=0) m%*
p(T—o)y=Lr" "5
P my

so that unlike the case of pure *He y,(T =0)7#0, the de-
viation from y{=p, /p becomes substantially smaller, of
the order of p,,/p.

The physical reason for that is clear: at low T the
atoms of the admixture are stopped and correspondingly
do not take part in the sound oscillations. This means
that the Doppler coefficient in the expression
Au,=(p,/p—74v, at T—0 goes to 1, i.e., YT
—0)— —p, /p. The deviation from this special kinemat-
ic result at 750 is caused by the *He excitations only,
which do take part in the oscillations owing to the possi-
bility of the transformation between p,, and p,: v, =0
but p, =p,470. This was pointed out already in Refs. 2
and 3.

However, now we obtain an unexpected result: for all
that the role of the admixture is substantial. In fact at
X >>5X10"* the contribution of the admixture not only
suppresses the scale of (y,+p,/p) (from p,/p up to
Pn4/p), but also leads to the special suppression of the
contribution 77 +y4{* [practically to the cancellation of
these terms, cf. Eq. (38)]. The factor K={1 +c2a/
[0—X(30/3A)]} in the relation y{+yP=yK
jumps by the transition p,4>>p,3—>p,4 <<p,; from —3a
up to O(p,,/p,) [the jump of y{’ is not so big:

@)
30 T T T ™ T T -

T (K)

FIG. 8. (a) Doppler parameter D, for He-*He mixtures.
Suppression of the term with the entropy factor G with increas-
ing concentration x: (1) 0% (2) 1073% (3) 1072% 4) 10™'% (5)
1% and (6) 6%. (b) Temperature regions of Doppler anomalies
(OEF and BEF) for pure “He (curve a) and 6% >He (curve b).
OEF when D, <0, BEF when D, >p, /pya-
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X¢°(T—+0)+ /p"“
Pns
~ |yP(T—0) +—— =—5a~—13.95
(61)
instead of
yX= O(T—>O)+ /P”“ =—a=~—2.79.

The cancellation of (y(”’+‘yf{"’) implies also the disap-
pearance at X >>1073 of the sharp peak of ¥4 Which is
caused in the case of pure “He by the term y{*’ (Fig. 8) as
well as a broadening of the temperature region of the
OEF, (y,+p, /p)<0, which leads to an additional in-
crease of the maximum of the OEF parameter:

max | — |pX=06+ 2% | | <0.89x107* (T=0.52 K)
p
(62)
instead of
max | — [pX=0+ 2% | | ~0.67x10~° (T=0.4K);
P
see Fig. 9. Thus we obtain for the mixture with

X >>1072 a behavior of y,(T)/(p,4/p) which differs sub-
stantially from the case of pure “He throughout the most
interesting region, T<T, T~T and is practically in-
dependent of X.

Thus concerning the role of the *He admixture in “He
we find the following results.

(1) A jump of the low-T limit of the Doppler
coefficient, D,=(y,+p,/p)/(p,4/p), which appears at
an arbitrarily small concentration, X0, and is practical-
ly independent of X.

(2) A drastic change of the whole picture of the tem-

perature dependence of the Doppler -coefficient,
(Yat+pa/p)/(pns/p), throughout the interesting reglon
0<T~T, already at small concentrations 1073 <<X
Y4+ pu/p)
1o A (a): x 1073 ®): x 10
0.5 4
0
-0.5 -
-1.0 t m
0 035 0.7
FIG. 9. “Outstripping parameter” of fourth sound:
(y4t+p,/p)=Dy4p,s/p <0, for pure “He (a) and *He-*He mix-

ture (x =6%) (b).
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10 T T T T T T

(-52)
-15

T ®)

FIG. 10. Two levels of the Doppler parameter D,: (—a)

[T>T(X)]and (—5a) [T < T(X)] [see Eq. (13)].

<<0.06=X .., and the practical invariability of this pic-
ture by changes of X by an order of magnitude, up to the
maximum possible value of X. Note that at too small
values of X we get for the low-T behavior of
(Yatp,/p)/(p,4s/p) a variation between the two levels:
the high-T (““pure”) value, —a, and the low-T (“mixture”)
one, —5a (see Figs. 8 and 10).

IV. FIRST AND SECOND SOUNDS
IN A ‘He-*He MIXTURE

A. Basic equations

Now we have to use the complete set of two-fluid hy-
drodynamic equations:®

—aE—-i-diijO, i=pnv,tpsvs s

ot

9j;
_a—_+vk(P81k+Pn ni nk+psvsivsk)=0
ﬂg;’—)+div<pov,, =0, 63)

Z

at m— Xp ] 5

a(a‘tX) +div(pXv,)=0

_ V4
p=Xp;+(1—X)u,, ;=,u3-—,u4. (64)

For simplicity we consider the sound oscillations propa-
gating along the x axis, Ox||w=v, —v, and choose the
reference frame so that v=j/p||Ox. Taking into account
also the formula

du=Lap—car+Zax—Lmy aw (65)

p p p

and substituting all the variables A4; with the oscillating
corrections

A/ =P, T ,w',v',X")x<exp[ik(x —ut)],
we obtain a set of linear equations for 4/ which gives the
equation for the sound velocities of the normal modes:
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(66)

—yde
Uax

9
Uap

ax

do a(psa)
ax +w

d(p,0)
oP

—-Up%%-*—w

ap,X)

psX

1/p)
)¢

Xa(

P

oP

p./p) 1

As in the case of pure *He, the sound velocity u appears
(owing to the Galilean invariance) only in the combina-
tion U=u—v (U is the sound velocity in the c.m. refer-
ence frame). In the derivation of Eq. (66) we used the
Maxwell relations which follow from the expression for
the chemical potential (65):

3 _ o(p, /p)

w?/2 |p 1y oP TLXw
99 _ |Xenlp)

w?/2 |prx T  |pxw

AZ /p) _ Ia<1/g) -
P |rxw X |pr.’

AZ/p) _ a_a]
oT P X,w oX P,T,w ’

A(Z /p) __ | 8%pn/p)

aw2/2 PT.X ). ¢ P,T,w )

A detailed analysis of Eq. (66) and of its exact solution is
given in Appendix C.

B. Jumps of second-sound velocity

In the pure “He case the ratio (u9)?/c? does not con-
tain any small factor at low T: in the phonon region we
get u3 /c?=1 [Eq. (A3)], which formally corresponds to
the elastic (collision) sound in a system of particles with
the linear dispersion law e=cp. The situation drastically
changes in the case of a *He-*He mixture in the region of
the admixture dominance. The point is that at low T the
small factor of the ratio [(0c —X 980 /8X)/ (80 /0T )]~T
is not compensated here by the ratio
(0 —Xd0 /3X)/(p,/p,) unlike in the pure *He case in
the phonon region where o /(p, /p;)=c*/T. We get [see
Egs. (C16), (B10), and (B13)]

=2, Ps ,,8(Z/p)
2= 5 y2 6
usj u2+an aX N ( 8)

_ ps(o4+kX /my)?
(ppatXpm3s /m;3)30,/8T+2kX /Tm,)

= . (69)

The last term in the expression (68) is of the same order
as the first one. In fact, using the formulas for an ideal
solution (see Ref. 6)

Z=p(u3—p,) »
'u,3zy,30+£ln.X , (70)
ms;

Ka= 4ot Eln( 1-X),
my

we get
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Ps 2 ¥Z/p) M3 | kKT KT | _ kT
Pn 3X  m? |mX my1-X) | m?

(71)

Thus we obtain
0?2 5 kT

us z;-;;— . (72a)
Let T reflect the difference of the real *He-*He mixture

from an ideal solution. We get

WP~ 2r+7).
3

(72b)

However, at low T we get practically T =~ T;, see Fig. 11.

We see that the second-sound velocity in the region of
admixture dominance coincides approximately with the
velocity of elastic (collision) sound in the ideal Boltzmann
gas (P=(p/m)kT, PVY=const, y =cp/c,=3):

op
9p

P_5kT

s e 3w
The result (72) is correct beyond the region of the

quantum (Fermi) degeneracy, T >>T, [Eq. (17)]. Inside
the latter region (7' << T,) we obtain

2=

(73)

2/3
72,25 |7 T2 _ 25w [T |'KTy
279 |3 | #X(pXx/m3y)¥? 18X | T, | m}
(74)

Here we used the expression for the ideal Fermi gas
2/3 173
k*T=k

m3

pX#

™ T

pX I
2m3 Td ’

mjy

~ | X
o3~ 3

At T /T, << 12X /257*~0.05X, this term turns out to be
small in comparison with the last term of the expression
for u5 [Eq. (68)]:

Ps 2 ¥Z/p) M3 Al 1)

Y. A. NEPOMNYASHCHY, N. GOV, A. MANN, AND M. REVZEN 52

4x10

3.5+
3r Pid
2 k)
u;  (cmJscc) 2-5f
L -
2 . 1
1.5F .
1t

0.5

0 . \ . . . . . . .
() 02 04 06 08 1 12 14 16 18 2
T K)

FIG. 11. Second-sound velocity in the ideal-solution approxi-
mation u3 =1/ 2kT /my (dashed line) and as a result of numeri-
cal calculation (solid line).

p#

=———=37%X/m;)?"/2m*m,
2mim;,

M3

(43 =€p/m is the chemical potential per unit mass).

The result in the quantum region (u3)*=(v,/V'3)?
corresponds to the elastic (collision) sound in the ideal
Fermi gas.

We see that at low T [T << T, see Eq. (7)] already the
arbitrarily small concentration of the He admixture,
X —0, leads to a finite (even large) change of the second-
sound velocity, i.e., we get a jump. In particular, we find

172
k
—‘/c—g %m{ (T>T,),
3
) (76)
7%—=(377'2pX/m3)1/3/m;‘\/§ (T <<0.5XT,) .

C. Doppler parameters in terms of thermodynamic derivatives

*
Pn X ms3 ax The exact results [Egs. (C10), (C12), and (C13)] allow
msy 2 2 DpE 1| pr 2 one to find the Doppler parameters v ;.
~ : Py ‘3”;”‘*—2 Y m? First of all, using the relation
5 (u9)?—(u9)?=V'B?—44C /A (77)
v 2 kT,
T3 3 m, (75) [see Eq. (C9)] we obtain the exact formula
(pp and vy are the momentum and the velocity on the Y= ——2%—7/1 , (78a)
Fermi surface, respectively). We took into account here
that ie.,
|
(0 —X90 /3X) L |9 _ Op
=l14+-Lp— —
T2 Pn [(3p/3P)(d0 /3T )—a?] Pn ap® an
3pn Xop/oX p |90 do
- —g—~=f| =71, (78b)
2p [(3p/3P)(3d0 /3T )—a?] P ap® an &
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or

0—Xda/3X p 9p,/p)

0 dPnlp)
Pn ax

-

Note that Eq. (78) is correct for the case of pure “He
too (the case X =0) and Eq. (34) corresponds to Eq. (79a).
The term in square brackets in Eq. (79a) corresgonds to
the simplest (zero) approximation for y, )) since
v1~O(p, /p) (see below); cf. Eq. (32b).

30 /3T p, oT

_0—X30/3X p 9p,/p)

y(zo)zz__‘o_xa(p,, /p)

Pn )¢ do /8T p, OT
— 44 P, 0—X30/3X p
1+ Pn h 90 /3T p, &
Mo Pna
=—— =1+
2pdc /3T 1+0

(o)

(p/pu)v4

3
V.= ‘2_%’.4__&7,&2/;:)_,_

Pn 1—a?/(3p /3P )30 /3T)

alo—X30 /3X)p/p, v

(X /p)(3p/3X)
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Bf_+

O(a)+0(X) |—y, . (79a)

W

We mean here the expansion in p, /p, independently of
Pn4/p; the latter small parameter is reflected by the fac-
tors f, g, and h [Eq. (C1)]. We can also write

,},(20)=2+,},(22/p)+,},(20)
(79b)

=24 _pB_(y[‘Z/p)_i_,},&a))
n

[cf. definitions in Egs. (38)—(40) and (60b)].
Equation (78b) can also be represented in the similar
form

‘B“(Yf)+7’(a))

+
(30 /3T )[1—a?*/(3p /3P )(dc /3T)]

In order to calculate ¥, in the first approximation, y
and A= A,+ A, [see Egs. (C14)-

[1—a2/(3p /3P )30 /3T)] p

(U (hence, Ay}
(C17)] as well as R =—(3p/0P)M+R' and S=M+S’ [Eq. (C13)] where R, S, and

(79c¢)

(1), we use the representations (u{ ,)2=3 , +(u{!})?

M are the quantities of the first order in p, /p, R’, and S’ —of the second order. Besides that we must use the simplest

approximations for M, R’, and S": M,, R, and S|,
The exact expression for v, is the following:

_ R@YP+s  M[1—(u9) /u1]+R (u°)2+s’
v 2V B*—44C 24u¥ —u®)
B M(u(ll))Z/ﬁ%_Ri(u(l))Z_S: (Soa)
2401+ A"/ AN (a1 —ad /a?)+[(w PP —(uiV )]
where
_8a |, 200 | P 3o
M aT3pS p+nh 2”0'Xan
e |3y —py 200 | 50" 3o | 3p _p_ dp (30 _ 3o
3p,—p+ nh ZPn XaX f aX P8 an (80b)
=g Ps 80 |9 , 80 . 3p
S 4p 7 X3x 8T+8T aX]

[see Egs. (C13) and (C1); 4y, A’, u#, 5, and u(llﬁ are given in Egs. (C12), (C14), (C16), and (C17)].

Thus we get
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_ 1
[1—a?/(8p /3P )30 /8T){(1—&3 /@) +[(u'{V )2 —(ul))?)/a3)
(uiD)?

%

_3Pn + Ly P o—Xado /oX

x 20 pn Pn 90 /3T

1

_ a? 3w o0 alo —X30 /3X) .
(3p/0P)(d0 /3T) 20 p, pn (3p/3P)(3d0 /3T)
(ui?)? s
P X3p/3X %o 80 l1+ ey L «
pn (8p/0P)(30 /OT) | P oT 7l pdo /3T
Equations (80c) and (80b) give the exact expressions for ¥, and 7,.
In the simplest approximation we find
p0= M, (w'V)? Ryt +S;
Yo2dggia—ai/ad) @t 240ai(1—ak/ad) ]
where
—~. 00 P, _p (0—X30/3X) |_, 30 (o
Mo=2p 3 |1t 5 P~ asser 8| Par?:
2 2
r—0g? Loyl |s_x8 |8p 20" 3 |80, 8o
R{=2a% 1+p,.h 2pn o—Xo5 an+anaX 3p% a7 |-
- _x99 |8p 4 30 3
So=41 19 X5x |ar T ar¥ax | -
Thus we obtain
i
(1) —,,(0) +
T S5kt | (30 /8T 1—ak /)
do p’ 22 P P +Op |00 do
X —X —2|- 1+ e
@\~ X3x || p.a070P” “1 h X ax " or o

The representation

(0)
(1) — Y2

318

(@2 —(p, /pn)X2Z /p) /OX]+2a(X /p)(dp /3X Np, /p, N o — Xd0 /3X)

Y —at/a? (30 /3T )(1—72 /7?)

+ (ps /pn (X2 /p*)(3p /3X )

1—u3 /a3
3p, /9
+llalo—x32 |48 X3 | p |_p %P/ ,
). ¢ oT p 08X | | p, p.  Op/dP
n n a( n/ ) 172 9 n )
—o? |14 Ln | Pr _xTPnlP ) O%1 P X Bp | /B0 1_1‘_;
P ¢ pn OT p 0X aT al

is more convenient by comparison with the case of pure *He [Eq. (33)].

D. Low-T expressions for Doppler parameters

Let us consider the behavior of ¥, and ¥, at T—0 (i.e., f,g,h —0). We get

] .

(80c)

(81a)

(81b)

(81c)

(82)

(83)

(84)



52 EXTRAORDINARY SENSITIVITY OF THE INTERNAL . .. 6757

e (ps /p—pa /20){(u{" /7, —[? /(3p /3P )0 /OT) [ 1+(u'" 2 /&, 1} —2p, /p){alo— X (3o /3X)] /(B0 /3T)+ (X /p)(3p /3X)}
' [1—a?/(3p/3P)(30 /AT) {(1—ia5 /@) +[(u{V P —(usD 2] /7" )

[see Egs. (78b) and (80c)].

The result (83) shows the jump of y,(T—0), 21— 1, al-
ready at an infinitesimal X. But it corresponds formally
to the OEF: y,>p,/p. Actually the accuracy of the cal-
culation (a zero-order approximation) is not sufficient for
such a conclusion: y,—p,/p=0(p, /p) is a quantity of
the first order in p,/p. We need the first-order correc-
tion, Ay$!. According to Eq. (84)

0) m=Ps _Pn __m)
vy + Ay, o 2 Yy . (86)
Neglecting the terms with the factors (3o /3T) '« T we
get at T—0 [see Eq. (85)]

(uiV)? X 3
Y= __1_2 _2_—2— ’
uj P oxX
where
2
Wi _p X2 |3 87)
ﬁ% Pn P2 ax

(85)
[
[see Egs. (C18)], i.e.,
m
YV =~20X +62X—— . (88)
mj
Thus we find
(T —-0)=~26X >0 (BEF), (89a)
m
AT —0)=L5 —Pr _ogx=Fs _Pn i1,
2p 2 m%
B (89b)
P
(absence of OEF).

E. Comparison with the case of pure *He

Similarly to Egs. (38)-(40), (60a) and (79b) we can
represent the results (81c) and (80c), respectively,

1 (u'V)? | aloc—Xd0 /0X)
(1) — 2_|__P_( (Z/p) 4 (o)) + L,y
' 1—a§/a%{ P /AT  |p,"
a’ui X 9
_ 4Lz | 4 AP | P () (@)y_o ) 90
90 /0T Pn V4 p 3X | p, g +ra®) ©0
_ |, o? ! 1_17_% +(u(”)z—(u(z”)2 !
& (3p/3P )0 /3T) 7’ 7’
x| lam2Pr y 2 iz ooy | @) (0 —=X30/3X) | p. ¢ (D2 P
p, 4T 7’ 30 /3T pn 7l p
o’} 3p, wh? |, x3 W |_p
_ 92— +_B_ (Z/p) 1+u— 42 9P [ P () (a) 1+u— s 91
90 /3T 20 p, Ve @’ X | p, rd+ya) 7l p O

Comparing the expressions for y, and y; [Egs. (80c),
(81c), (90), and (91)] with the case X=0 [Egs. (39) and
(40)] we see some natural complications: the addition of
terms with factors y{¢/?) and Xdp/3dX, the replacement
o — 0 —30 /3X, including the definition of ¥$”). Howev-
er, the main changes are introduced by the terms of the
former type: with the factors (p/p, )y’ and (p/p, )y ¥ .
As we showed above just these terms caused the non-
monotonic character of y, and y,/(p,/p) at X=0: the
sharp negative peaks of y, (BEF) and ¥ (OEF) in the be-

[

ginning of the roton region. However, at X0 there ap-
pears the small factor p,,/p, which suppresses these
terms [y, 7P «O(p,s/p)] unlike the terms
< O(p,/p). This means that at X >>107° (1077 is the
estimate of p, /p in the beginning of the roton region) the
nonmonotonicity is suppressed (Fig. 12). Let us note that
the situation in the cases of ¥, and y, somewhat differs
from the case of y,, where instead of the factor p,,/p,
there happened a cancellation of some terms (7’ and
y{®), in addition to the transformation of the scale of the
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FIG. 12. Doppler parameter D, for *He-*He mixture: (a)
X=0.05%, (b) X=0.1%, and (c) X =6%.

contributions of y¥’, ¥{"), and ¥{® to (y4+p,/p),
Pn/P—Pra/pP-

It is important to note that, in spite of the suppression
of the nonmonotonicity of y; in the mixture that is natu-
ral since the thermal excitations are here a small fraction
of the normal component, the BEF parameter, y,>0,
turns out to be much more than in the case of pure *He:
up to three orders of magnitude. The point is that the
scale of ;>0 1is p, /p but not p,,4/p, e.g.,at T—0
"12n _o.662n

'y ~
! P P

20—+ ‘0 3
m

*
3 m3y

[see Eq. (88)].
At T—0 we obtain the jumps of the low-T limit of y,
and y,/(p, /p) at arbitrarily small X.

Yz(T—’O).
251 ‘more exactly 2 |8 _Bn +2 ’
3 P
Yi(T—0)/p, /p:
2
(3a+1)a+1)=35.5— 29——+ 0— ~0.66
m3 m3

(92)

[see Eq. (36)]. At quite small X >>10> these constants
embrace the whole phonon region. At too small X the
“jumps” appear in the curves y,(T) and y (T)/(p, /p)
by the transition from the “high-7>’ part of the phonon
region (p,4>>p,;) to the “low-T" part (p,4 <<p,3); see
Fig. 13. The result y,(T—0)/(p,/p)=20m;/m3 >0
means (i) the BEF with large parameter <p, /p for first
sound; (ii) the scale p, /p for vy and y,+p, /p, unlike the
case of fourth sound where y,+p, /p=0(p,4/p); (iii) the
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absence of the OEF for second sound (in spite of the jump
of ‘}/ 23 2. 51 ):

Y (T—>0)=—————'y (T—+O)<—
2 p 2 ! p

F. What happens to Doppler parameters D, ; , at X0

The results at X0 can be represented as follows [cf.
Egs. (12)-(14) and (45)-(49)]:

D,=y,,
Ps Pna a—Xao'/aX Pna
—_—— = —_— . e +
¥ p Pn Tdo /3T u G| +Aara,

Pn Pna
Ay,=—-——y+0|—X |, (93)
D4= 4+____ /pn4

Fil (a—Xaa/aX)+aa%G
=~ Tdo /T ’ 4)
(@)
1.0+
-5 @ @
m
Dy

.0
1.04

.0 '-5 I‘-U T (K) ZI.D

0 01 02 03 04 05 06 07 08 09 1
T &)

FIG. 13. (a) Doppler parameter D, for He-*He mixture:
disappearance of BEF and of the minimum. (1) X=0.0%, (2)
X=0.1%, and (3) X=6%. (b) Two levels of the Doppler pa-
rameter D,: % [T>T(X)] and 1—O(X) [T < T(X)] [see Egs.
(7) and (13)]. Absence of OFEF, D, < 1.
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0—X30/3X _ PpntMT/A)p, +(T/Ty)Xp
Tdo /0T 3pontAp, +UT/Te)Xp

M302

0 kb

ail _ —fapmtAlrlp,—(T/To)Xp
T30 /dT  3pyu+hip, + AT /To)Xp

Pn
1 1 p

2
—9 X op + X2
Pn X Pn

~20.8 K, (95)

~
~

ox

2
9&]

Pna F, Pna

Pn Pn

+ ‘terms with factors G

Pns4
Pn

~0.66+0

(96)

This allows us to explain briefly the universal changes of
Doppler parameters D; at X0 (Figs. 8, 12, and 13). In

. a,
x10° @

n " . . s . n x X
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T (K)
x 10° ®

T

.4 L L " . " . " s :
o 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T (K)

FIG. 14. (a) OEF parameter of first sound for “He->He mix-
tures, ¥,+p, /p <0; disappearance of OEF with increasing *He
concentration. (1) X=0.0%, (2) X=0.05%, and (3) X=0.1%.
(b) BEF parameter of first sound y,>0 for “He-*He mixtures.
(1) X=0.0%, (2) X=0.1%, (3) X=1%, and (4) X =6%.
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. L . . n A . .
02 04 06 08 1 12 14 16 18 2
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FIG. 15. Doppler parameter ¥, for pure “He->He mixtures:
absence of OEF, y,<p,/p. (1) X=0.0%, (2X=0.01%, (3)
X=0.05%, (4) X=0.1%, (5) X =1%, and (6) X =6%.

the expressions for (y¥"’—p,/p) and ('yi”—i—p,, /p), at

X+#0 [Eqgs. (93) and (94)] all the terms acquire the small
factor p,4/p whereas the term (—p, /2p) in Ay, becomes
large (~X) and ¥, acquires a term ~X [Egs. (93) and
(96)]. The other changes of D; are the following:
0 —>0—Xd0 /90X and the quantities o, T00 /3T, and a
depend substantially on X. This is important for D,. A
cancellation occurs of the coefficient of G [Egs. (94) and
(95)] so that this term leaves the competition of the case
of pure “He where it diminishes the contribution of the
source of the OEF: the term (F+1)xdp,,/dP <0. So
we get a jump of the plateau of D,, (—a)—(—35a)
(amplification of the OEF), together with a quick diminu-
tion by increasing X of the BEF peak at T~ T which is
caused by G (up to its disappearance at X <<0.06, Fig. 8).
The factor p,4/p, in (y,—ps/p) and D; means a
suppression of the terms containing F and G in compar-
ison with Ay, [Eq. (93)] and the first term (=0.66) of D,
[Eq. (96)]. This implies a quick diminution by increasing
X of the BEF peak of y, and the OEF peak of D, at
T~ T (up to their disappearance at X <<0.06). The term
0.66p,/p in vy, (plateau) means a substantial
amplification of the BEF (and the absence of the OEF for
second sound: y,—p,/p=Ay,=~—1.16p,/p<0), Figs.
14 and 15.

Thus we see that the influence of the admixture of *He
on the Doppler anomalies is strong and nontrivial: jumps
of plateaus and decrease of peaks imply a suppression of
one type of anomalies but an amplification of another
type.
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APPENDIX A: PURE *“He: DOPPLER COEFFICIENTS
AND THERMAL EXCITATIONS

1. Phonon and roton peculiarities

It is interesting to note that the negative values of
v¥ /(p,/p)=—(5a+1) <0 in the phonon region and of

f2 Pph
Alrl p,

Pn |1A

7/4 —’—)—z—r—T‘ 1—

in the roton region correspond to some anomalies: nega-
tive “‘compressibility,” dp, /0P <0, and positive thermal
expansion coefﬁcient, a=1/pdp /3T >0, respectively [see
Egs. (38), (41), (45), and (47)-(50)]. The anomalies origi-
nate from the special properties of the phonons and ro-
tons, dp, /0P is negative since the increasing pressure P
causes an increase of the sound velocity,

dc _dcdp a
dP  dp 3P pc

which implies a decrease of the phonon number: the
latter is not conserved, it is determined by the tempera-
ture and the spectrum. The coefficient a becomes
anomalous—positive in the roton region because of the
decrease of the roton minimum by increasing density
[r=(p/A)XdA/dp)<0]. The latter leads to the anoma-
lous (negative) contribution of the rotons to the pressure,
P=P,+P,+P,, P,=ukT)/90c*#, P,~kTn,s,
s=1+4+(A/T)r <0, and this provides the positive term in
the expression for a

b

3 | __ (8¢/3T),,
T (@6/3p)1.p )
2(kT)*
¢=P—f1 f2 1;0 343 —an,S

[see Egs. (22) and (24) in Ref. 3].

Let us comment on the negative ‘“compressibility.”
This is not the true compressibility of the “normal sub-
system,” (3p,, /OP);7(dp, /0P, ). Negative compressi-
bility implies the instability of the system because of an
amplification of density perturbations. Here we get only
the “acceleration” of the sound excitation in the direction
of superfluid motion. The true compressibility of the
phonons (0ppn /0P, )7 is  positive. In fact,
P, =(c?/4)f p)pph, f2 1+3a a=(p/c)(dc/dp);

Poh=Ppn(P> T), Py =P, (p,T) [see Egs. (17) and (21) in
Ref. 3], i.e.,
aPph _ (aPPh/ap)T
apph T (apph/ap)T
_c? p 92
% | +5 3 dp

_c* p da
=£ {1+3a+a o (A2)

It is interesting to compare this result with the inter-
pretation of second sound. At low T we can regard
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second sound as an oscillation of 7, or o [see Eq. (42)], or
Pn =Pph (pph=(pT/cz)aph, p here being approximately
constant). Thus it is a collisional sound in the gas of exci-
tations (phonons). This interpretation is supported by the
value of the second-sound velocity at low T
2 2
WAT—0)=—02T <

pnd0 /T~ 3 (A3

The result u,=c /V'3 is exact for the collisional (i.e.,
local-equilibrium) sound in a gas of free particles with the
dispersion law €, =cp (like photons ¢ does not depend on
p)—it corresponds to the elasticity of the gas. Using the
formulas for the gas

F,=vT [ (%j%ln(l_e*CP/TF—Vgg% ;
py= %m<pxe“’“’—l>=§g((—hi%»
m(p)=7g%=% ’
Pg__((:;: st

we obtain
u2= %ﬁf a=g§_z=%2 (A4)

Returning to the phonon case we see that the simple
connection between the sound velocity and elasticity is
absent here: the relation between P, and p, differs
from that in the photon case, cf. Eqgs. (A2), (A3), and
(A4). The difference is explained by (i) the special inertial
properties of the phonons, p;, = $p,, which are connected
with the broken Galilean symmetry;'* correspondingly,

c%/3—c?/4; (ii) the dependence of the spectrum (velocity
c) on p, f,=1+3a, a=(p/c)dc/dp)#0. Both causes
are connected with the fact that phonons are quasiparti-
cles (in a medium) but not particles (in the vacuum).

Thus there is not a simple analogy between collisional
sounds in the gases of phonons and photons.

2. Pressure dependence of D;

In conclusion we discuss the pressure (P) dependence
of the Doppler shift. By increasing P at fixed T the pho-
non density quickly diminishes:

(P)
Ppl;Pv ~ | £P) g—}c;z—a—, a=£ic—z2.79,
Poh c pc c dp
(A5)
whereas the roton density sharply increases:
Pr(P) ~e—laP-ayT dA A
el dP  pc?
=L 45 59 A6
A dp .59 . (A6)
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FIG. 16. Comparison of the Doppler parameter D,(T) at sa-
turated vapor pressure (SVP) and at P =24 atm.

This means that the temperature of the beginning of the
roton region, T(P) [g(T)=p,/p,n=1], becomes lower,
together with the position of the peaks of the functions
D;(T) which become in addition sharper and higher: the
“competition” between the phonon and roton contribu-
tions by increasing T happens earlier and is ‘““‘more hard.”
The results of numerical calculations are plotted in Figs.
16—18. In particular, we get at P =24 atm

maxD,=43.3 (T=0.39 K),
min(D,~7y,)=—2.53 (T=0.39 K),
minD,=—61 (T=0.4 K),

[cf. Eq. (37)].

However, maxy,(T) and |miny,(T)| decrease at high
P because of the displacement of the extrema to lower T:
this leads to a decrease of the factor p, /p. Note that the
total normal density p,(T) decreases in the phonon re-

(A7)

40.0

20.0

P=24atm
-30.0

0.0 : T '
0 0.5 1.0 15

T K)

FIG. 17. Comparison of the Doppler parameter D,(T) at
SVP and at P =24 atm.

6761
1.04
0.5
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[ 0.5 1.0 L5
T (K)

FIG. 18. Comparison of the Doppler parameter D,(T) at
SVP and at P =24 atm.

gion and increases in the roton one; the most substantial
increase occurs not far from the beginning of the roton
region:

Pn zprzp,(P=0)e[A_A(P)]/T . (A8)

This is confirmed by the numerical calculations, e.g., for
P p=24 atm) /2" (P=0)
P P

we get
0.128 (T'=0.3 K),
8.751 (T'=0.6 K),

4.936 (T'=0.5K),
7.636 (T'=0.7 K) .

For an estimate of y,;(T,P) we can use the linear ap-
proximation of the basic quantities in their expressions
[see Egs. (A5) and (A6)]

8 P 8A P

Tzapcz’ A zrpcz ’ (A9
L(P) §
()= = 14 8| ot
ph(P) c
(A10)

P (atm) 0 o T (K)

FIG. 19. Doppler parameter D, as a function of temperature
(T) and pressure (P).
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Dy

FIG. 20. Doppler parameter D, as a function of temperature
(T) and pressure (P).

3(kpA)? 2
apy="_2L JUFOAZAN, 1y g g8,
(cpo) (1+Ac/c)
e.g., for P=24 atm we get
L <028, 2~0.78, 22~ _0.165,
pc c A

AMP)=~0.22A=0.04.

The dependence of the Doppler shift on P at fixed T is
plotted in Figs. 19-21. Near the beginning of the roton
region we get graphs of D;(P) which have some similari-
ty to the temperature curves of these quantities: the
graphs contain a sharp extremum (this happens in a very
small temperature interval) or a sharp monotonic in-
crease or decrease.

APPENDIX B: *‘He-’He MIXTURE:
EQUATION FOR FOURTH-SOUND VELOCITY
AND ITS SOLUTION AT T —0

1. Coefficients in the exact equation

Let us explain the origin of the terms of pE as well as
of pD and —pp B, [see Eqs. (55)-(58)]. All these quan-
tities correspond to the determinants which are formed

P (atm)

0o o

FIG. 21. Doppler parameter D, as a function of temperature
(T') and pressure (P).
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from det (53) by the division of its third column in four
parts. The latter are proportional to u, 1, uv,, and v;, re-
spectively,

(i)=(0,0,—u,0), (ii)=(p,,0,0,0),
(iii) = (—uv,p2f,0,0,0) , (Bla)
(iv)=(0, [pg +0p’f v,, (1 —h v, p°fv) ,
where
dAp,/p) d(p, /p) Pn dp,/p)
= , 8= , h=——X——.
oP oT p oxX
(B1b)

The case (i) gives two contributions which correspond to
the division of the first line of the determinant (i) into two
parts, <u and <, respectively,

—u% % o _ 3p
(D)= | —ugp —ugp 0 —ugy
3 3 (Blc)
o, o,
12)— o, aP’ 37 %Y ax

The case (i) corresponds to the term pDu? and the ver-
sion (ii) describes the term —pp B, [see Egs. (56) and
(57)]. The independence of D of X becomes obvious if
one subtracts the first line of the determinant (i1) with the
factor X /(—u ) from its fourth line.

The case

9 8 4, 9

(D)= |0, 5pvs g0t gy

9P, vapn Uapn
S3P’ T’ ° 3X

gives two terms: uv (—pD)+uv,p 4, respectively [cf. the
case (i1)].

The case (iii) gives the term wuv,(—p 2f) (—pB )
=uv,pB [cf. the case (ii)]. In the remaining version, (iv),
we take into account only the first part of the first line [as
in the case (i1)] since the terms «v? are neglected. Di-

viding the third column of (iv) into two parts,

(iv)= [0,0,20,,0
P
dp, /p)
0,[Pg+UP2f]Us,X—aX"—vs,P2fvs ,

we get two terms: —p,D)+uv,pC, respectively [cf.

the case (i1)].

uv,(

2. First-order approximation
Up to the first order in X we find

5 ~ E_ap_ 90 2% |, _ 500
Bl~{1+ a:r+p or |© Xox
2
9 9o B2
+8P XaX (B2a)
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and

2a(0c—Xdo /0X)
do /3T

(w0 P | Pn
3p p

a2

+ 9p /0P (30 /0T)

6763
7=, | Pn 30 _ 9 30
P oT oI oP
_3p | % 80 |_ 95 30
aP | aT ax | " ax or

4 (0 —=X30/0X)*3p/3P | 2X 3p
do /0T X dp,/pP) 30
p B=B1B2zB1Bzzp2'———an—ﬁ——‘—a—-f N
(B2b)
In comparison with the result (23) for pure *He we see _ Np,/P) |1 8 3 | 3
the following changes: C=— 3T ;‘a‘% + |o —XFX— 5%
do OP 4P
__X _ _ =

e ax’ op —) op p oX (B3)

- . , S _8p 30 3 30 3p 3p , 3p 3p 430
Omitting the complicated exact expression for 4 and C P dT E)X a X OP aT aT ap ax
let us write the coefficient of uv,

do
s o + X_ﬂ_ﬂ (BS)
p{—- Ps i1 |D+A+B+C (B4) 3X 9P oT
[cf. Egs. (12) in Ref. 3].
in the first order (in X) approximation: Substituting Egs. (B5) into Eq. (55) we obtain
]
¥, o— 3 3(p, /p) !
Au4zAuf¢”= 1— aP P _ o XaU/aX Pn Pn/P o0
ap oP 2p oT aT oT
_a |, 3pu/p) |3 | [20 | _x ],
ar P et P aT p ax | [
Ps Pna
3 e v, = ‘I—Di”—p— s (B6)
[
[cf. Eq. (1) for v, =0 and Eq. (22)]. 11a
* a=; —a‘% =a,ta;,
3. Thermodynamic and hydrodynamic quantit?es of the mixture L _f;z_ Pon N 2 e rars o x 58
4 T p T Alp> 3 T, ’
Comparing y{!(T) in pure *He and in the “He-*He (KA mac?
mixture one must take into account not only the = T ~0.18, T,= 2~ ~20.8K
difference between the expressions for them [Egs. (22) and (epo) k

(74)] but also the changes of the thermodynamics and hy-
drodynamics at X70. On the basis of the relation

_aﬂ _ (8¢/8T)p,p,x
oT (8¢ /3p)r,p,x ’
2
—p_ w2(kT)* _ kTpx
o=P—f, f2 900 % —kTn,s m, (B7)
s=1+%r ,
we find

[cf. Egs. (22)—(25) in Ref. 3]. We took into account that
(0P /9p)r, x=c?2. The accuracy of this ideal-gas descrip-
tion of the *He admixture is shown in Fig. 22. Further,
we obtain

¢ Pph . c? Py
r=ortoy oGl
372
2my | m3kT
PO 0 Pl s Ll B AR (B9)
m;y pX 21# 2

m¥ /my=2.46
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FIG. 22. Accuracy of the ideal-gas description (IGD) of the
3He admixture (x =0.1%). Dash-dot line, IGD; dashed line,
numerical calculations; see Ref. 9. (a) a;(T) and (b) 90, /3T.

[see Eq. (16) in Refs. 3 and 6],

do
— ¥ — ~ B10

In the phonon region and in the beginning of the roton
one we get

9 _c¢? |Ppn , T
—x3Z = B "y, 1
4 X T | p T, (B11)
oo do 2
B0 e 0% e (P T o (B12)
aT  oT ' oT ~ 712 | p ' 27,

Finally, we obtain

m*

3
pn=pn4+pn3’ pn4=pph+pr7 Pn3=Xp m, ’ (B13)
apn = apn4 + aan
oP opP oP’

Ons _SaPom_ 1 Pr|A 2
aP cz p 02 P T 3 ’
Ons 1 .m3 1 Pums
oP ¢t my 2 p’
(B14)
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%n _Pns  Opu3  OPns _4Ppn _ Pr A _1
dT 3T 93T’ 3T T T |T 2|’
0,3 _m3 _gp _mj X x?

= = X = — —=0 =1,
AT m, AT m, “PO3T TPu, T,
P, 1 1 XT
aT _7 4Pph+pr T 2 Pn3 TO
[see Egs. (26) and (27) in Ref. 3 and Eq. (19)].
O, _ m3 _mia
=p—— — . (B15)
0X pm3 Xm3 5).¢

dp/3X can be obtained from the definitions
M H+-XM, My
Pm Ty, a+ax)

[@=0.286, see Eq. (20)],
—-Ms ~_—m3~
M m

In fact, we get
p _0pdX _|Ms—M, MaV, dX dX
90X 3X dXx V.. V2 dX’ Jdx

_ MM,
M’

so that [see Eq. (B15)]

O _ Mp |y ay - _OM

X MM, |7 Tt 1+ax

my
=~— ((1+a)——1 [p=—6p, (B16)
m;
m
0= [—4+ic“i—l ~0.71,
m; 3

aP,, m; my m;
= 1-X |(1+a)——1] |= —6x) .

3% P m, X |(1+a) -1 P (176X

(B17)

4. Exact cancellation of the corrections O(X*) at T —0

Using the results of calculations in Eqs. (B8)—(B17) we
find that for (y4+p, /p) all the terms of first order in X
cancel so that there remain only the terms of first order
in p,4/p. However, this result, y,+p,/p=0(p,./p),
must be proved exactly since at T—0 the quantity p,,/p
becomes smaller than a finite quantity of any order in
Pn/p, OUp, /p1¥), k=1,2, .. ..

Let us prove the exact cancellations in y,(T=0) of the
terms of all orders in p,/p. The result
Yatpn /p=0(p,4/p), or Auy=[1+0(p,4/p)]v,, implies
that the coefficient of uv, in Eq. (55a) is
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(B18a)

pn4 ]
P

In order to prove Eq. (B18a) let us, first of all, take into
account that according to the definition

[ —2D+0

pn4

pn=pn3+pn4:p _;;:X_*'O p (Blsb)

we get f=0(p,4/p)/3P, g =0(p,4/p)/3T,
Pn4 a(Pn4/P) pn4
T AL 1

h . X X » —[1+0(X)],
ie.,

(f.g.h)=0 |22 (B18¢)
[see Eq. (B1b)]. Thus we get

B=p*fB, =0 |2 (B18d)

[see Egs. (58b) and (57)].

Estimates of 4 and C can be found if we somewhat
change the divisions which were considered above in the
cases (i2) and (iv) [Egs. (Bla) and (Blc)]. Dividing the
third column of det(iv) into two parts in the following
way:

(iv)=(0,0,v,,0)+(0, [ pg +op*f lv,, —hv,,p>fv,)

we get two terms: puv, (—D)+uv,O(p,,/p) [cf. the case
(i1) which corresponds to pDu? and Eq. (B18¢)], i.e.,

c=—Lrpio |l (B18e)
P P
Further, we use the equalities
ap, Ap,/p) n "
Pn [ SPnlP]  PnBp _PnOp | Prs ]
oP JP p 0P p dP p
s
¥n _Pudp  o|Pm |
oT p oT p
%:p_".éﬂ_,_pa(p”/p) p”_aﬂ ,0,, 240 &‘i ,
X p X oxX p aX X p

and according to them divide the first line of det(i2) in the
following form:

. P Pn _@g P~ Pn _ag P~ Pn _all
(i2)— p ap’Ys p T’ »Ds p X
Pn
+ 10,0,0, —v, s x

This gives two terms: —uv (p—p,)D —uv,p,D. The re-
sult for the first term follows from the analogy with the
case (i1). The second determinant is easily calculated.
Thus we get in addition to Eqgs. (B18d) and (B18e)
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Pna
P
and Eq. (B18a) is proved:

A=0

) (B18f)

— |2 4+1|p+a+B+Cl={-2p+0 | }
P
or [see Egs. (55¢), (B18d), (B18e), and (B18f)]
Pn ., A+B+C Pn Pn4
A 2D p s

APPENDIX C: “He-*He MIXTURE:
EQUATION FOR FIRST- AND SECOND-SOUND
VELOCITIES AND ITS EXACT SOLUTION

1. Peculiarities of the basic determinant

Before the calculation of the coefficients in the equa-
tion for U (66) it is necessary to take into account some
general considerations.

The matrix elements of the determinant (66) contain
quantities of different orders of magnitude. In the dimen-
sionless form some of them are of the order of unity:

¥ /1 3 o [ k_ apn 9p; /
aP/ ¢z’ ax/P ox/ m,’ P P
and others are proportional to the small parameter
Pn/p~X:

G A s R

aT ’ oT oT m,

9o / k9o k

T/ m T’ 9P mpc?

The derivative 3(Z /p)/dX corresponds to a special esti-
mate: it varies inversely as X but is «< T [see Eq. (71)].
However, it is especially important to pick out the factors
which are proportional to p,4/p~T* [they are under-
lined in Eq. (66)]:

f/peh™Y, g/T71, hocfl—;'i,
_9p,/p) _3pn/p) _ dp,/p) _pus/p)
S=""3p ap &~ T ar AT’
Pn pu/pP) _ Pua
h= p X—= p [1+ox)],
*
Pn=PnatPn3=pPnat 3PX (CD

[cf. Egs. (B1b), (B18c), and (B18b)].

Further, the quintic equation for U (66) can be reduced
to a quartic one.

The point is that the set of five solutions of Eq. (66)
contains besides the four values of the sound velocities
for the first and second sounds in the directions along Ox

U1,2=iu?,2 +71,2w, U1,2 >S>w , (C2)
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the special fifth solution, U5~ w, which describes the ve-
locity of the “‘concentration wave” that can be set up by
injecting a pulse of *He into the flow. The distortion of

the concentration only, X', must move together with the
normal component, so that we get

Ps

Us=v,—v=—w. (C3)
p

The existence of the exact solution
Us=(p,/p)w~+O0(w?) and its separation from the other
solutions, U,, ..., U,, can be proved by the following
simple consideration. Let us multiply the fifth line of the
determinant (66) by (—o /X ) and add it to the third line.
The result will be proportional to [U—(p,/p)W] with
the exception of the third term:

do Ps do Ps
Par V"W “Par |V ’
d(p,/p) ra do Ps
ar W 0, ¥ |° Xa—X U -;w

However, with an accuracy to w? we can represent the

third term in the form —[U—(p,/p)w Jpd(p, /p)/0Tw.
Thus we get Us=(p,/p)w+O(w?). Further, we have
now obtained the equality

det(66)= det,+0(w?) , (C4)

U—-p—sw
p

where det, differs from det(66) in the third line. The
latter is

do do d(p,/p) 0 _&[ do

“Pan’ P A s Uy —X—
Pap’ Par’ P~ oar YU x |9 Yox

(C5)
Equation (C4) can be used for the calculation of
ul, c e ey u4.

2. Exact equation for sound velocities

In order to find the solutions U, s>>w, we calculate
the coefficients, 4, B, C, R, and S in the expression for
det,,

det,= AU*+BU?+C+RUw+SUw . (C6)

Substituting U;=ul+y,w, u?>>w, in det;=0 we find
the equations for (u,)%,

A *+Bu))*+Cc=0, (€7
and for y,,
2y [24(ul?+B]1+R(ul)?+S=0, (C8)
which give
—B+V B> —
(9, p=—B% ZBA a4c | (C9)

- R(uf,?+s
T VB —44C

[cf. (24) and (25)].
Calculating the determinant

(C10)

3
«©
+
img,\
& >
3|5 |
b 3 =
&m > S °
) ° [ + 3
| 6 ~ g
o< QI8 T}
o
b
|
I
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' D
|
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0
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S e 0 B
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o
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)
ax

[see Egs. (18) and (B16)], we find the exact expressions for
the coefficients 4, B, C, R, and S:

=(5a+1)02%
p
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As in the case of pure “He [Egs. (26) and (27)] we omit
the common factor pp, in the coefficients of det, [Eq.
(C6)]. The underlined terms in Eq. (C13) correspond to
—(38p/3dP)M [in Eq. (Cl13a)] and M in Eq. (C13b).

At X =0 Egs. (C12) and (C13) coincide with Egs. (26)
and (27).

=, |9 30 _ 2
oP aT ’
2 2 3. Sound velocities in the absence of internal motion
do |, Ps 3 | p , Ps X* |3p | 9o
B==r ﬁ+; _XE):Y‘ E)P-%Z—p7 ax | ar In order to calculate u?,z [see Eq. (C9)] let us pick out
small corrections in the exact expression for 4 and B
4Py X3p | 80 [Eq. (C12); cf. Eq. (26)]
pPn P OX ). ¢ .
_ ' p— ' —,90 90
L Ps 428(Z /p) ép_a_o_aZH A=dot A’ B=Bot+B', Ao=pypyp
X P oT ’
Pn 32 op 5, —p 3 80 [8P | P: (0—X30/2X
0= 90 |of , Fs \0—A00/0A )
OP 3T | 9 n 90 /3T
c=p= a—-Xg—;] +X23(§; )—ng , (C12) PP o
Pn
2 s 130 3 +§‘—X2 HZzp) ] . (C14)
—n P |, _y99 | |OP  _ 9P n
R=2—1""%ax | |ap® o1’
" We find
|23 o |t 3p,— 2 200 (W0, P=a2 , +(ui))?
Pn R—
—_— , _ —BytV'B}—44,C
2 a ﬁ]z= >
+_zLx.§P_ a_a'g__aif E——EM-FR', ' 2A0
p, 09X |aP® aT aP e
(Cl3 ) (u(l,%) =(ul,2) _1‘_‘1,2
’ ~—A g2 g ¢
s=—22 |g—x22 —2”"’;5% Ao | "7 y/BI_44,C
Pn )¢ _ P B
B’ 0
3o 202 ,3pu/p) s L 3p 24, | B dac (C15)
+5~7—, pt+3ps— X ax +4 XaX ) 0
— - Substituting 4,, A’, By, and B’ [see Egs. (C12) and
=M+S’ (C13b) (Cl14)] we get
|
2 3P _, Ps (a-—Xaa/aX)2+ ,d(Z /p)
=-— =— X , (C16)
“1 dp’ “2 Pn do /0T oxX
(w2~ o’ 2 +___l7_%_ _ﬂi H_ﬁ_g/ﬂ%
127 (@p/3P)30 /3T) | T 1—w2 /a2 2 1—a2/a?
2 2y2
’&__X; _3%1 +(2ps/p,,)(o-—Xaa/aX)a(X/pE;(afa/;X)—(ps/p,,)aXa(Z/p)/aX ] <1
Pn p log
I
Here we took advantage of the equations where
By=—Ay(@}+u3), V' B3—44,C=A4,at—a}).
0 oluy+iu; 0 0 oluy —uj 0. x2 [ 3 2 o, 50 | X 3p
i k=22 |22 ba= 2 lo— X | &
Thus we obtain on p2 X . ax | p ax
o’} k -1
(W rP=ni |1+ + , ANZ/p) | | 3o
VU @osema—aisah | 1—ai/al x> SE |2
a’ul k
02 oz2|1— 2 _ ,
(war~uz 30 /dT(1—u2/a?) 11—k /a? (C18)
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