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A prediction is made for the Josephson vortex structure in the d-wave Josephson junction (JJ) for
those (special) orientations of the JJ insulating plane when the critical current is expected to be
suppressed significantly (or zero} in accordance with the d 2 2 symmetry. It is shown that a spontane-

x —y

ous admixture of the d„y wave function in the vicinity of the JJ insulating plane makes the critical
current be finite. A conventional magnetic vortex in such a d-wave uniform and plane JJ, demonstrating
no time-reversal symmetry breaking, splits into two parts, each carrying half of the magnetic flux. The
explicit solution for such a pair as well as the lower critical field are obtained. The pair size diverges log-

arithmically as soon as the JJ orientation approaches the special one. Possible ways of experimental ob-
servation of this efFect are discussed.

I. INTRODUCTION

The d-wave scenario for superconductivity in high-
temperature superconducting (HTS) materials predicts
that the sign of the Josephson critical current J, depends
on the Josephson-junction (JJ) orientation. As suggested
in Ref. 2, the dependence of J, on the angle 8& formed by
the tetragonal, e.g., a axis of the d-wave superconductor
occupying the half-space y &0 and normal to the JJ
plane, with the JJ plane being parallel to the c axis, can
be represented as

J, =Juncos(28&) .

Here Jo stands for the factor which does not change sign
and can be assumed constant [in (1) and henceforth the
orientation of the a axis on the other side y & 0 of the JJ
is taken perpendicular to the JJ plane. It, on the one
hand, simplifies further consideration of the case of two
d-wave superconductors, and, on the other hand, allows
one to investigate on the same footing the case when the
side y )0 is occupied by an s-wave superconductor].

Qne can see that current (1) is to be zero at the special
angle 8, =8, —=m/4. However, such a zero has never
been observed experimentally. ' At the same time, a most
intriguing consequence of (1)—the spontaneous magnetic
half-Aux inside a ring made of three HTS grains for cer-
tain orientations —has been observed recently in Ref. 3.
The other coherence test suggested by Sigrist and Rice in
Ref. 2 and performed in Ref. 4 has proven that the a-c
and b-c faces of the HTS Y-Ba-Cu-0 grain demonstrate
opposite signs of the superconducting (SC) gap suggesting
d 2 2 symmetry. ' A resolution of such a paradox is

x —y
given by Sigrist and co-workers in Refs. 5 and 6, where it
has been shown that an admixture of a contribution of
another symmetry into the pair function should occur
close to the JJ. It should make the critical current be
finite for all the orientations of the JJ plane. Moreover,
under certain conditions this admixture might lead to the
time-reversal symmetry breaking and Josephson spon-

II. ENERGY OF THK d-WAVE JOSEPHSON JUNCTION

It is worth noting that, even if the SC gap were purely
of the d 2 2 symmetry in the bulk, an admixture of the

x —y

d„» representation might occur near the JJ plane (for a re-
view on boundary and the Josephson effects in unconven-
tional superconductors see Ref. 8). Then, one can antici-
pate the pair function to have the form

ildk& k2+ 12dk k
x x y

(2)

where g&
=—~ri& ~exp(iy, ), gz

=—~riz~exp(iy2) are amplitudes
of the corresponding irreducible representations. These
amplitudes depend on the x,y coordinates [uniformity
along the c axis is assumed in (2) and hereafter], which
are understood as coordinates of the Cooper pair center
of mass.

It is worth noting that an interpretation of the mixing
(2) can be twofold. An admixture of the d„» may be con-
sidered as a consequence of rotation of the Cooper pair

taneous cruxes not restricted by the quantization condi-
tion. ' Such cruxes have been observed along the cir-
cumference of the Y-Ba-Cu-0 grain in Ref. 7.

In this paper it will be shown that, while the condition
for the time-reversal symmetry violation ' does not hold,
the d-wave JJ should still demonstrate another peculiar
behavior —splitting of the Josephson integer vortex into
two halves. The distance between them diverges logarith-
mically as soon as the JJ plane orientation approaches the
special one, around which the critical current is expected
to be zero. In the next section the Ginzburg-Landau
(GL) formalism describing bulk and surface properties of
the unconventional singlet superconductor is considered.
Then, the Josephson's equation taking into account the
mixing of the different representations is derived in Sec.
III. The explicit solution for the Josephson's composite
kink and the correspondent lower critical field are
represented in Sec. IV. Then, a discussion and con-
clusions are given in Sec. V.
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by some angle 8(x) in the x-y plane, so that in the new
frame of reference (rotated by this angle) the form (2) ap-
pears to be the pure d 2 2. Indeed, originally, one canx —y
write

where A, yo denote vector potential and the unit flux, re-
spectively; the coefBcient X)0 before the gradient terms
is taken the same for both gradients; the other parame-
ters

a, &0, a, &(p„—Isl)lq, l'&0, p, &o, p, &o
(3)

cos28 sin20 kx
dk —k2 - ' dk k k

where k stands for the wave vector of the relative motion
of two electrons forming the Cooper pair (this vector be-
longs mostly to the Fermi surface). Consequently, one
arrives at (2) rewritten as

8 ) ( }
cos2[8 8'(x)]

(4)
2i, (x)=q(x)cos28(x), q2(x) =21(x)sin28(x),

if the phases y&, y2 are either the same or shifted by m.. In
close analogy with the case of the superfluid He con-
sidered in Ref. 9, the mixing (2) in the form (4) can be in-
terpreted that the Cooper pair tends to orient itself near
the JJ in such a way as to lower the tunneling energy'
fiJ, /2e, where fi, e stand for the Plank constant and the
electron charge, respectively.

However, under certain conditions this interpretation
might be incomplete because the term

fi
F~ = J dx — Jocos(28» )cosP

2e

81, =—81—8(x,y = —0),
P=y(x, y = —0)—y(x,y =+0),

ensure the condensation of the single amplitude g& in the
bulk; FJ stands for the Josephson energy. To find how FJ
depends on 8(x) the following considerations can be em-
ployed. The critical current (1) sees the actual orienta-
tion of the Cooper pair close to the JJ rather than the
orientation of the lattice. Therefore, given (4), one should
replace the angle 81 in (1) by 81, —=8,—8(x,y = —0) at
the y (0 side, with the JJ insulating plane y =0 assumed
to be infinitely thin, and either the pure d 2 2[8(x)=0]x —y
or the s-wave state is realized in the y &0 half space.
Consequently, the tunneling energy' per unit length of
the c axis can be represented as

5(g,* riz+c. c.), (5)

F=fd'x &IDn I'+&IDn I'+~ Ig I'

with 5&0 could appear in the CxL free-energy density.
As suggested in Ref. 11, such a term favors the relative
phase shift yi —y2=+m/2, and thereby the time-reversal
symmetry violation. This possibility has been explored
by Sigrist and co-workers in Refs. 5 and 6 to provide an
explanation for the very recent observation of spontane-
ous magnetic fluxes unrestricted by any quantization con-
dition, and occurring along the circumference of the HTS
Y-Ba-Cu-0 grain.

In what follows the opposite case 5&0 in (5) will be
discussed. If temperature is sufficiently below the SC
transition temperature, one can consider (5) to be sub-
stantially strong to favor the relative phase shift 0 (or n.),
and make thereby the representation (4) valid. Conse-
quently, 8(x) has to be found by minimizing the Gl.
functional in the bulk, with the JJ energy added, likewise
to how it was done in Refs. S and 6 in the case of 6)0.
Thus, the total energy per unit length of the c axis
(oriented perpendicularly to the x,y plane) can be found
as

FGL= d x. 1 f'o

8@k,,b

a +

2

+ (curlA) +f(&)
8m

(9)

—(M} +—8, y&0,
2 2

f(~}—= o y&o

where the parameters are defined as

x 4+ 9 v g[i22 + (p12 I
&

I
)11'.j i'„r0&

b 8~ E32 n2
f'o

—a
&0.

1

(10)

where y stands, as usual, for the phase of the SC order
parameter which, as discussed above, is taken the same
for both amplitudes in (2}.

It appears to be convenient to rewrite (6) in terms of (4)
as

0—Q 0 ~ ~

+~2lg21 + lail +
2 lg21

2 1 4 P2 4

+—(ni n2+c. c. }+p12lg, l'lg21
2

curl A
Sm

i A, 5(0.
f'o

(6)

Deriving (9) from (6), the constant amplitude approxirna-
tion ri=ri exp(iy) in (4) and the expansion with respect
to 8(x)~0 have been employed.

III. EQUATION FOR JOSEPHSON VORTEX
IN THE d-WAVE JUNCTION

As long as the crystal-field effect is expected to be
strong, one can expand (8) in powers of 8, and retain the
first nontrivial term only. Then, after varying (9) and (8)
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with respect to 8, one arrives at the linearized bulk equa-
tion

—b8+g 8=0, x'

It is worth noting that without the term —J'(8, ) this ex-
pression accounts for energy of a conventional JJ.' As
soon as the effective Josephson length is expected to be a
largest scale in the system, one can make replacements

and the boundary condition

y = —0: yB 8——Josin28, cosg=0 .

v 1+(gq)'~1, +1+(A.bq)'~1,
(12) in (17), and then rewrite (17) in the x-coordinate space as

'2
These can be solved by making use of the Fourier trans-
form along x. Consequently, one arrives at the solution

8»(y)=
fiJosin(28, )

(cosg)»exp(Q y), y &0,
ep 1+(gq )

Q, —=&0 '+q' V—=&Xv

(19)

J,(8, )
U(P):

~
J (8[)l 1

i

~

cosg +J'(8))[1 cos~f]
(13)

(cosp) —= f dx e'» cosp(x), 8»(y)= f dx e'»"8(x,y) .

Then, the variation of (9) and (8) with respect to other
variables —the phase and the vector potential —results in
the conventional equations

2+~2~ 1
~ +2m ~y x „2 xP x

0'o ~ab fo
2m 2 1

8
0'o

(14)

Q»—=QA, ,b +q, y (+0)+y ( —0)=0,
p»(y}= f dx p(x,y)exp(iqx) .

(16)

Solutions (16) and (13) can be substituted into (9) and (8)
and integrated over y (by parts). It yields (9) and (8)
rewritten solely in terms of the surface Fourier com-
ponents of the gauge-invariant phase difference as

describing the Meissner effect. In (14) the gauge A =0,
the uniformity along the c axis, and the same London
penetration A,,b length on the both sides of the JJ were
employed. The solution for the gauge-invariant phase

2'y=y+ cr, A =0 0. (15)x x

can be found by making use of the Fourier transforma-
tion along x as well. It results in

qr» ( +0)exp( —
Q»y ), y )0,

y (y)=
p»( —0)exp(Q»y), y &0,

P( —oo ) =0,$(+ oo ) =km. ,

c&p
J

8+»rAob JO

(20)

where A,J bears a meaning of the Josephson length at the
C

special orientation of the JJ, and the total Aux confined in
the JJ gap is given by Ref. 10 and (20) as

P(+ oo )
—P( —oo ) +go
2' 0'o=

2
(21)

For the JJ orientation different from the special one the
HV as a single kink does not exist. However, the two HV
solutions of the same sign of the magnetic moment can
appear as a bound pair. The correspondent equation
describing such a solution takes the form

where the constant energy was added to make the
ground-state energy be zero.

As long as the lattice orientation is given by 8&=0 (or
»r/2), the form (19) transforms into the expression, '

whose variation yields the conventional Josephs on's
equation. The latter, as it is well known, accounts for in-
teger vortices confined in the JJ.

For the special angle 8, =8, ( =n./4) the term —J,(8, )

disappears from (19). It ensures that the lowest energy
kink turns out to be the half-vortex (HV). The equation
describing the HV corresponding to this particular orien-
tation stems from (19) after varying 5FoL/5$ =0 as

—8 P+ sin2$=0,1

2A, 2

2
2

16»rkob 2»r +1+(g q)2

d2
z P+ A,z [Psing+ —,

' sin(2$ ) ]=0,

P —=
I J,(8) ) I

/2J'(8) ),
(22)

J,(8, }(cosg)»5» o

l(cos&)» I+J'(8, )
1+(gq )

J'(8& ) =— (Josin28& )
2'
ep

p» = f dx p(x)exp(iqx ) .

(17)

after varying (19) for an arbitrary JJ orientation. In (22)
the critical current J,(8, ) was taken positive (for a single
junction it is always possible to make by a trivial shift of
the phase by n.).

To understand why the lowest energy kink of (22) can
be represented as the two HV's, the following considera-
tions may be employed. If the JJ orientation were exactly
the special one, the two HV's carrying the half-Aux of the
same sign would have repelled each other. It makes the
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distance D between them increase unlimitedly. However,
the term —J,(8, ) in (19), given a small deviation of the JJ
orientation from the special, yields the energy which is
increasing as —~8, —8, ~D )0. Therefore some equilibri-
um D should exist. It is easy to realize that D should
diverge logarithmically as soon as the JJ orientation ap-
proaches the special one, and the intervortex forces are
exponentially decreasing with D~~. In what follows
the solution of (22), and D will be found explicitly.

IV. THE COMPOSITE KINK SOLUTION:
THE LOWER CRITICAL FIELD

D=kJ ln
~

~, 8, 8„8,
1 c

a—= '4 'Z~'g
2 0 ab

C

(29)

H„(0)H„= QJ, (8i)/J, (0) &1+(1/P)
2

where all the parameters can be expressed by means of
observable quantities.

To find the lower critical field the energy of the com-
posite kink (25) should be calculated. Then an integra-
tion of (19) with (25) substituted, yields this field as

Taking the first integral of (22), one finds

1
GX~ &1—cos2$+4p(1 —cosp) v'2A J

(23)
1+&1+P+ n (30)

where the boundary conditions

p( —~ }=0, p(+ 00 )=2m, (24)

cos(P /2) =— sinh[ &1+P(x —xo ) /Az ]

QP '+cosh [&1+P(x—xo)/Az ]

accounting for the kink carrying the unit flux, were taken
into account. Integration of (23) yields the solution (31)

where J„(8i) stands for the eff'ective critical current as a
function of the JJ orientation. One finds that

with H„(0) being the critical field which corresponds to
the angle 8i~0 (limit P~ ~). A siinple analysis of (30}
shows that the ratio of the critical field at the special
orientation to H„(0) is given as

H„(8, ) 1 J„(8,)
H i(0) 2 J„(0)

(25) J„(0)=Jo, J„(8,) =2J'(8, ), (32)

(27)

In the opposite limit P—+0 (achieved due to 8& —+8, ),
the other scale greater than (26} emerges. This scale
represents the separation D between two parts of (25)
each described by the solution of (20), and carrying there-
by half of the unit flux. The distance D can be defined as
a distance between two points where the phase in (25) ac-
quires values of m. /2 and 3m/2, respectively. Then, (25)
yields

2kJ
&1+Pln[+1+P '+ +2+P ']

4~XJ ln e

C
(28)

Employing (20), (11), (10), (22), and (25), one can rewrite
(28) as

with xo being a coordinate of the center of the kink. This
solution is characterized by two scales. The first,

XJ

&I+P
determines behavior of the exponents composing (25).
This scale is the Josephson's length, given an arbitrary P
in (22). In the limit P~ ao [achieved because of 8i ~0 in
(22)] corresponding to the case of the conventional JJ,
solution (25) transforms into the well-known Josephson's
vortex solution, ' with the Josephson's length given as

with (19) taken into account. It is worth noting that, if
there were no splitting of the Josephson's vortex, relation
(31) would not have had a factor 1/2. An explanation for
this fact turns out to be straightforward. Indeed, energy
of two halves (separated by the distance larger than the
Josephson's penetration length) of the unit flux is 1/2 of
the unit flux energy. As long as the lower critical field of
the JJ is given by the JJ vortex energy, the factor 1/2 ap-
pears in (31).

V. DISCUSSION

Now let us focus on how this efFect of the Josephson's
vortex splitting could be observed. The relation (31) con-
taining the extra 1/2, while compared with the situation
of the conventional junction, allows one to make it in-
directly.

The technique' of Josephson vortices imaging might
resolve the splitting of the integer vortex, if the distance
D given by (29) becomes larger than the Josephson
length. Let us estimate how the JJ orientation should be
close to the special one to make D sufficiently large. To
this end the following parameters Jo=10 —10 A/cm,
A,,b =2X 10 cm, can be taken for the HTS compounds.
The parameter g determines a scale of Eq. (11) describing
how far from the JJ the admixture of the representation
d „persists. A magnitude of this length depends on how
strong the crystal-field efFect is nearby the JJ. Indeed, the
magnitude of g' is determined by the parameter v [see
(11)],which in turn is controlled by the Cooper pair lock-
ing to the lattice [see (9) and the discussion following (2)].
Diminishing of this eff'ect (v~0) because of, e.g.,
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structural defects normally existing close to boundaries,
would result in values of this scale significantly larger
than the typical correlation length. Presuming that
$= 10 cm, one finds B ~ 0. 1 in (29). The latter estimate
implies that the distance D between two half-vortices be-
comes observably large, if the JJ orientation belongs to
the domain

~ Hi
—8, ~

~ 0.01 —0. 1[rad].
It is worth noting that the fractional SC vortex in the

bulk has been predicted by Volovik and Gor'kov in Ref.
13. The possibility of splitting the integer bulk vortex
has also been discussed (see Refs. 8 and 14). However,
these effects can occur, if the SC order parameter is mul-
ticomponent. In the case of the bulk vortex splitting the
distance between two half-vortices is fixed, being given by
microscopic parameters. Contrary to this, the distance D
between the Josephson half-vortices considered above can
be made arbitrarily large, in principle, by changing the JJ
orientation.

The possibility of HV occurrence in the plane JJ, one
part of which has negative critical current, has been con-
sidered by Bulaevskii, Kuzii, and Sobyanin. ' In this case

the HV turns out to be spontaneous and attached to the
line where J, changes sign. 1n the situation 0& =0, con-
sidered above the HV cannot exist in the ground state.
However, it can appear as a zero mode kink. In other
words, it can move along the JJ.

In conclusion, it is shown that the conventional
Josephson vortex in the d-wave JJ, demonstrating no
violation of the time-reversal symmetry, should split into
two half-vortices, if the JJ plane and the tetragonal axis
Inake an angle sufBciently close to the special one ~/4.
The distance between the halves diverges logarithmically
as soon as the angle approaches the special one. Esti-
mates of the distance between such half-vortices show
that the effect of splitting could be observed by the tech-
nique. '
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