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Topological solitons and geometrical frustration
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We study classical Heisenberg spins coupled by an isotropic or an anisotropic spin-spin interaction
on an infinite elastic cylinder. In the continuum limit, the Hamiltonian of the system is given by a
nonlinear o. model. We investigate the cylindrically symmetric solutions of the sine-Gordon equation
(the Euler-Lagrange equation for this Hamiltonian). The periodic solution as well as the anisotropic
one-soliton solution do not satisfy the self-dual equations of Bogomol'nyi [Sov. J. Nucl. Phys. 24,
449 (1976)j which are a necessary condition to reach the minimum energy configuration in each
homotopy class. This generates geometrical frustration and produces a geometric eKect: a shrinking
of the cylinder coupled with nontrivial spin distributions.

I. INTRODUCTION

The role of nonlinear excitations in the study of low-
dimensional, artificially structured materials is becoming
increasingly important due to their observable eKects on
the physical properties of a realizable condensed matter
system. The underlying physics becomes much richer
when the interplay between the geometry and topol-
ogy is also considered. Here we illustrate this point by
exploring classical Heisenberg-coupled spins on an in-
finite elastic cylinder. In the continuum limit, classi-
cal one- and two-dimensional static Heisenberg (ferro-
magnetic and antiferromagnetic) spins are described by
a nonlinear cr model. 5 Under homogeneous boundary
conditions, the spin distributions fall into difFerent ho-
motopy classes. 2' The latter are associated with the
minimuxn energy configuration for each spin distribution.

In the first part of this article, we apply this model
to isotropic spin-spin coupling on a rigid cylinder (i.e. ,
a cylinder with constant radius po). In this case, a so-
lution of the sine-Gordon equation (the Euler-Lagrange
equation for this Hamiltonian) is given by a nontrivial
spin distribution (one-soliton) which satisfies the self-
dual equations (Sec. II). These equations represent a
necessary condition to attain the absolute minimum of
the energy in each homotopy class (Sec. III). Therefore,
the one-soliton solution realizes the minimum of the mag-
netic energy in the first homotopy class, and no pertur-
bation (perturbation of the spin distribution or deforma-
tion of the elastic cylinder) could lower the energy of the
system (Sec. IV).

Next, we study the nonlinear 0 model on a cylindri-
cally symmetric support, and show that in this case, Bo-
gomol'nyi's decomposition can still be applied (Sec. V).
The self-dual equations are first order diR'erential equa-
tions and all solutions of these equations satisfy the sine-
Gordon equation, which is a second order differential
equation, but not vice versa. %e explore an ansatz for
the two-soliton solution (Sec. VI) as well as the exact

multisoliton solutions of the sine-Gordon equation (Sec.
VII), and in fact we 6nd that, due to the soliton-soliton
interaction, these spin distributions do not satisfy the
self-dual equations, and therefore do not reach the mini-
mum energy (per soliton) in each homotopy class. This
is due to a geometrical &ustration, which stems &om a
misfit between the width of the soliton and the radius
of the cylinder, which is the characteristic length of the
system. Thus, a variation in the geometry of the cylin-
der, compensating for the misfit, can lead to a lowering
of the energy. Indeed we find that the increase of the
elastic energy for a periodic shrinking of the cylinder is
more than compensated by the lowering of the magnetic
energy associated with the lattice soliton (Sec. VIII).
Here we note the analogy with the Peierls instability in
low-dimensional, interacting electron-phonon systems.

In a difFerent approach, we used the multisoliton solu-
tion as an exact solution describing magnetic solitons on
a cylinder of finite length (Sec. IX). This enables us to
look for approximate solutions of the nonlinear cr model
on a sphere, when compactifying the finite cylinder into
a sphere. In the last sections, because the misfit between
the magnetic length and the characteristic length of the
geometry of the support plays an important role in the
&ustration, we introduce anisotropy in the spin-spin cou-
pling and thus renormalize the characteristic magnetic
length (Sec. X). We also deal with a moving soliton in
view of the relativistic contraction of the length (Sec.
XI). Finally, we suggest some materials such as magnet-
ically coated cylindrical thin films on which our model
and the magnetoelastic efFects predicted here could be
tested experimentally (Sec. XII).

II. THE RICID CYI INDE&

The nonlinear 0 model is the continuum limit of
the Heisenberg Hamiltonian for classical ferromagnets or
antiferromagnets. On an infinite rigid cylindrical sup-
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port, for isotropic spin-spin coupling, it is given by

~isotropic = J (&~)
cylinder

with ~n~ = 1 and J is the spin-spin coupling constant.

The order parameter of the classical Heisenberg model
covers the sphere S . In order to incorporate this con-
straint in Eq. (1), we will work with the two fields (8, 4)
where n = (cos 8, sin 8 cos 4, sin 8 sin 4). Here 8 is
the colatitude and 4 is the azimuthal angle. . Then, in
cylindrical coordinates (p,x,y) we write Eq. (1) as

8 82
~isotropic = J (8~8) + sin 8 (0~4) + +

cylinder po
(D~O)' p dx dp.

po

= 0.

The Hamiltonian (1) then becomes

+- (d8~
'

IIisotropic 2'Ir po J
E"*j

sin 0+ 2 dx.
po

(4)

After variation of the Hamiltonian, the Euler-Lagrange
equation bH = 0 leads to

We will work with homogeneous boundary conditions,
because we desire His t, pic to be finite. By homoge-
neous boundary conditions, we mean lim ~ 8 = 0[vrl
and lim ~ &

——0. The way & goes to zero should
ensure the convergence of the integral in Eq. (2). With
these boundary conditions, we can identify all points at
infinity and compactify the infinite cylinder into a sphere
(the ends of the cylinder become the two poles of the
sphere). The mapping of this sphere to S2, the order pa-
rameter manifold, gives us a homotopy group isomorphic
to Z, the group of the relative integers, because the order
parameter manifold S is a simply connected manifold.
Thus the spin distributions on the infinite cylinder can
be classified in different classes of topologically nontriv-
ial spin distributions ' ' [i.e., 8 = 8(x, p)j. Inside each
class, the spin distributions are topologically equivalent:
they belong to the same homotopy class.

In this paper, we restrict ourselves only to solutions
with cylindrical symmetry, which will be suKcient for
our purposes. This means that 8 and 4 will satisfy the
following conditions:

x
8 = 2 arctan exp —.

po
(6)

It is represented schematically in Fig. 1. The energy
associated with this distribution is given by

1
Hisotropic

The solution (6) depends explicitly on the radius of the
cylinder: the soliton has a fixed width pp. But H t pi„
which is the minimum energy level in the first homotopy
class, is independent of po. It is equal to the value of the
first energy level in the case of a two-dimensional (2D)
plane, where, because of the invariance of the Hamilto-
nian under homothety, any soliton could be shrunk into
a metastable point, the result being a degeneracy of the
energy levels. A homothety in the 2D plane is a length
scaling transformation f, such that f:x + Ax, y -+ Ay.
In our case, when studying the nonlinear o model on a
cylindrical geometry, and thus introducing a character-
istic length that is the radius po, we lift this degener-
acy. But when working on an infinite rigid cylinder, the
change of variable x ~ u = —in the Hamiltonian elim-

Po
inates any dependence on po.

+- &d8) + sin 0 du.
i du)

motion in magnetic crystals, two-dimensional models of
elementary particles, etc. A solution for a single spin
twist, i.e. , a solution for a distribution belonging to the
first homotopy class, is given by

d28(x) 1

Qx 2po

This second order differential equation is the sine-Gordon
equation whose solutions are solitons. This equation
appears in a wide variety of physical systems, includ-
ing charge-density-wave materials, splay waves in mem-
branes, magnetic Qux in Josephson lines, torsion-coupled
pendula, propagation of crystal dislocations, Bloch wall

~~~~+ g '/

FIG. 1. Cylindrically symmetric 0 ~ m twist soliton on an
infinite cylinder.
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III. THE SELF-DU'AL EQUATIONS
FOR THE RIGID CY'LINDER

The choice of cylindrically symmetric solutions (3) is
justi6ed by the fact that we are able to reach the topologi-
cal minimum energy in the first homotopy class H t pi,
for these solutions. All other, more general, distributions
belonging to the same homotopy class have higher, or
equal, energies.

The solutions corresponding to the absolute minimum
energy in each homotopy class satisfy the self-duality
equations:

po 0~0 = + sin 0 19~4') 0~0 = + po sin 0 t9~4.

n4 = ax+ np, U = —x+ appp.
Po

Because of the 2' periodicity of 4 and because 0 has
to be single valued, a should be zero and n is an inte-
ger. The cylindrically symmetric solution corresponds to
n=l. When using the above solution for 4 in Eq. (9), we
see that the spin distribution will belong to the homotopy
class of winding number n, and the width of the longitu-
dinal soliton is ~'. Then, if we are looking for a solution
of the self-dual equations for the rigid cylinder belonging
to the first homotopy class, we must take n=l. There-
fore, the solution (6) is the only solution corresponding
to the first excited level.

These first order differential equations are obtained in
the general case [8=8(x,rp) and 4=4(x,p)] by using
the technique employed by Belavin and Polyakov and
Bogomol'nyi. Using the obvious expressions

sine l t 8~0
~

0 0+ 8~4 + ysin98 C &0,
)

we can obtain the following inequality:

'R;, t, p,, & 2 ~B 08~4 —0~00 4~.
po

Therefore, when integrating over the whole support, we
get

+isotropic Pod+ d P~isotropic = J
cylinder

& 2J sine d8d@ = 8~J (9)

The right-hand side of the inequality (9) is just the
winding number of the solution, Q, and does not depend
on the geometry of the support. The equality holds when
Eqs. (8) are satisfied. Thus, Bogomol'nyi's decomposi-
tion allows us to show the existence of equidistant energy
levels and generates first order differential equations, the
self-Qual equations, which have to be satis6ed in order
to reach the absolute minimum energy in each homotopy
class.

Equations (8) can be written as Laplace equations in
U and 4:

0 U+O„„U=O, 0 4+0„„4=0, (10)

Pp g~g = + SlI18)

and Eqs. (10) lead to O„„U = 0. The solution (6) satis-
fies both the self-dual and the Euler-Lagrange equations.
The derivative of Eq. (8), with respect to the variable x,
leads to the sine-Gordon equation (5).

If we look for more general solutions of Eqs. (8) and
Eqs. (10), we find that

where U = ln (tan z) and u = —.In the case of a
cylindrically symmetric solution, Eqs. (8) reduce to

IV. ONE-SOLITON DISTRIBUTION
ON AN ELASTIC CYLINDER

In this section, we will study the spin-elastic coupling
for a nontrivial spin distribution on the cylindrical sup-
port, i.e., the efFect of a variable cylindrical geometry on
the excitation spectrum. Henceforth we do not impose
the constraint p = po. The cylinder radius p becomes
a function of x: p(x). The geometry of the support of
the spin distribution is dependent on the magnetic distri-
bution and vice versa. We are interested in the possible
modification of the spin distribution due to a modi6ca-
tion of the geometry, which could lead to a lowering of
the energy.

We consider solutions with cylindrical symmetry

(4 = p and ——0, i.e., we are dealing with a quasi-

one-dimensional case. Therefore, we may take into ac-
count the results of Cieplak and Turski concerning the
renormalization of the spin-spin coupling resulting &om
the addition of a spin-elastic term to the Hamiltonian. As
a consequence, we add to the nonlinear o model Hamil-
tonian only the elastic term

2
&dp& x.&.i = -xi — + —,(p —pp)',
&"*)

(12)

where yi and y2 are elastic constants of the cylinder
for deformations along the axial and radial directions,
respectively. This Hamiltonian density physically mod-
els the cost in energy of elastic deformations of the
support and imposes additional boundary conditions:
llm~ ~~ p(x) = pp and hm~ ~~ & (x) = 0 in order to
have lim~ ~~ 'R, i = 0 (then, the cost in energy of elastic
deformations is finite). The new Hamiltonian reads

(dg ~ sin 8
~isotropic+el = 2~ J P ~ +

(dp&'
p+ —(p —pp) p d

4 (dx) pp

where the coupling constant J does not depend on the
geometrical deformations. Now we vary the radius of
the cylinder in the presence of a quasi-one-dimensional
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magnetic soliton. The variation with respect to the vari-
ables 0 and p leads to the following differential equations
(Euler-Lagrange equations):

I I /I scn 20
p8 +p8 )

2p

xl p p+
(p')' —2 —,' (P —Po) (2P —Po)

po

2 0

where (/) denotes &" . Note that after direct integration
of Eq. (13), we get the following expression:

p (8') = sin 8+ C.

the following Hamiltonian represented by the generalized
nonlinear 0. model:

II;..„.„.= J (Dn)' golgi dQ.
S

Bogomol'nyi's technique is still valid and leads to first
order differential equations.

When dealing with a cylindrically symmetric support,
the exact Hamiltonian is given by

(B 8)2 sin 8
isotropic—

(B~8)2 sin 8+ 2 +
p p

xpgl+ (B p)' dxdrp.

Starting &om the obvious inequalities

If the integration constant C is equal to zero, Eq. (15)
is nothing but the self-duality equation (11). Then the
right-hand side (rhs) of Eq. (14) vanishes. This hap-
pens, in particular, when we apply homogeneous bound-
ary conditions. But in general, this constant is different
&om zero. This case is discussed in the following sections.

A trivial solution of these highly nonlinear differential
equations, compatible with the boundary conditions, is

given by p= po and 0 = 2 arctan exp —* . Obviously,

the system does not exploit the "new degree of &eedom"
p = p(x). Any other solution of these equations difFer-
ent &om p=po would lead to a higher energy because an
elastic deformation would give a positive contribution to
the Hamiltonian. This happens because the solution (6)
satisfies the self-dual equation (ll). Therefore, it corre-
sponds to a metastable state in the first homotopy class,
for which any perturbation would drive it to a higher
energy level.

An important feature of the Bogomol'nyi's inequal-
ity (9) is that the Hamiltonian, i.e. , a metric-dependent
term, and a topological term appear on different sides
of the inequality (9). The nonlinear o. model is "auto-
tuned, " in the sense that, in the one-soliton case, the
width of the spin distribution is equal to the character-
istic length of the geometric support: po. This charac-
teristic length is introduced in the Hamiltonian via both
the gradient and the element of surface.

V. HEISENBERG SPINS ON A 2D SURFACE

We will show now that on an arbitrary smooth surface
S, we will still be able to use the above method based
on the existence of a topological invariant. The gradient
is to be replaced by the covariant derivative, D, which
reQects the metric. The differential element of surface
becomes

dS = Q~g~ dO,

where g is the metric tensor of the support. We must now
extract the second order Euler-Lagrange equations &om

( B8
(Ql +Bsp

sin 0 t9~8 sin 0

&
p
' ~i+B.p )

we prove the existence of stable energy levels by means
of the inequality I;sot»p, c & Sar J~Q~. This gives rise to
the same energy spectrum as in the rigid cylinder case,
and also to the following self-dual equations:

Hisotropic +isotropic Qlg I
d&

S

= J ~~g( g"h p B;n B~n~dO,
S

where h p is the metric tensor of the differential mani-
fold which represents the order parameter n, and g'~ is
the dual of g;~, the metric tensor of the support whose
determinant is g~g~. As the metric tensors and their du-
als are real, symmetric, positive definite matrices, we can
define the tensors (~h) p and (~g);~ in such a way that

(Vh) = h and (~g) = g. —k
Now we can define the two tensors T

&, = (~h)~-(V~)"'B'n

+.,"'~(V%)»(~g)"B,n',

where e is the antisymmetric tensor. We then write

E,,,(&,)' & o

1 (B8& sin8 (BC')

gl+ (B.p)' (B*) p

(B8) psin8 (Be )
+~1+ (B*p)' &')'

If dealing with a more general 2D surface S, the non-
linear 0 model Hamiltonian for static Heisenberg spins,
represented by the local order parameter n, is given by
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By developing these inequalities, we get the following
expression:

g"h 8;n 0 n~ & 2/~h~ ]8;n 8 n~ —0 n . 8;n~~
1

v'I
I

Multiplying by g]g] and integrating over the whole
surface 8, the rhs of this inequality becomes the Pon-
tryagin index Q (or the winding numbers). We can thus
write, for any smooth 2D surface, the following inequal-
ity:

~isotropic + 8'7r J~Q~. (18)

Therefore, on any smooth 2D surface, the nonlinear o
model leads to the saxne energy spectrum (18), indepen-
dent of the metric. We can obtain the self-dual equa-
tions, if we require the tensors T to be identically zero.
These equations represent a necessary condition to attain
the absolute minimum of the energy in each homotopy
class. They are first order differential equations and all
solutions of these equations satisfy the Euler-Lagrange
equations, which are second order differential equations.
We can associate to each static soliton, which is a solu-
tion of the self-dual equations, a self-energy 8'J (or mass
energy). Thus, the value of the energy associated with
a topological metastable solution is independent of the
metric. This discussion (and Sec. IX) are germane to
membranes, vesicles, and bubbles of magnetic materials.

V'I. THE TWO-SOLITON ANSATZ

In the following we will approximate the 0 ~ 2x soli-
ton on the rigid cylinder by an ansatz describing two
cylindrically symmetric static solitons separated by a dis-
tance 2d,

0 = 2arcsin
e —d —a —d

e ~0 —e

1+(e «+e «)' (19)

Note that the sine-Gordon equation does not have an ex-
act static two-soliton solution. However, an exact mov-
ing two-soliton solution exists. The above function cor-
responds to a distribution belonging to the second homo-

2d
topy class. Up to a term proportional to e «, it satis-
fies both the sine-Gordon equation (5) and the self-dual
equation (11). Therefore, when the two twists are well
separated (compared to pp, the characteristic length in
our problem), this function can be considered as a good
analytical approximation of the exact solution. We cal-
culate up to the first order the magnetic energy associ-
ated with this spin distribution, and find the following
expression:

8 twice, therefore Q=2). In addition to the mini-
mum energy, there is a positive term which describes
the exponential repulsive interaction between the two
solitons. ' 4 This additional energy appears because the
function in Eq. (19) does not satisfy exactly the self-dual
equation (11).

VII. THE PERIODIC SOLITON SOLUTION

/' x
8 = arccos sn ~,k

~

(kpp
' )

(21)

The period of this solution is 4d = 4ppkK(k), where k
is the xnodulus of the Jacobian elliptic function sn (sine
axnplitude), and K(k) is the coxnplete elliptic integral of
the first kind. In the limit k ~ 1, as lim K(k) ~ oo,

k-+1
the half period 2d tends to inanity. At the boundaries,
we recover the homogeneous conditions discussed in Sec.
II. Therefore, we get the single twist soliton (Eq. 6).
Note that the soliton lattice (and repulsive solitonic in-
teraction) also arise in the context of doped bond-order-
wave and charge-density-wave materials (e.g. conducting
polymersis), fiuctuations in Josephson junctionsxx and
cholesteric liquid crystals, vortex lines in superconduct-
ing barriers, etc.

The exact magnetic energy per soliton (or the energy
density per half period, 2d; as 8(+d)—:0[7r]) now reads

87rJ k' K(k)
18otroplc ) (22)

where k' is the complementary modulus (k' = 1 —k )
and E(k) is the complete elliptic integral of the second
kind. In the dilute limit, i.e., k ~ 1 [then E(k) ~ 1], we
expaxid the exact solution (22) and find that the energy
per soliton is given by

&isotropic = 8'J + 327' J exp ——+ .

Next, we turn to an exact solution of the second
order differential equation: the periodic solution of
the sine-Gordon equation, more speci6cally the soliton
lattice. ' Note that the Bogomol'nyi argument can be
applied between any two points on the cylinder where
the variation of n, the order parameter, covers the sphere
S an integer number of times. Therefore, when dealing
with a rigid cylinder, the 6rst order self-dual equations
(11) are still valid for this interval. Any function which
satisfies thexn would satisfy the sine-Gordon equation (5)
and gives the minimum energy for this interval. The pe-
riodic solution of the sine-Gordon equation (5) can be
obtained directly using a Poisson sum. It is given by
the following expression:

2d
(20) = 8~3+ 2~3k" + - . .

The first term of the rhs of Eq. (20) is the energy
associated with a soliton belonging to the second homo-
topy class (the magnetic distribution covers the sphere

We get the result of the two-soliton ansatz (Eq. 20).
In addition to the self-energy of a soliton (which corre-
sponds to a topological consideration), there is a repul-
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sive exponential interaction energy between two solitons.
The periodic solution (21) does not reach the minimum
energy per soliton H;, &, „This is because the peri-
odic solution (Eq. 21) does not satisfy the self-duality
equations for the rigid cylinder (11),even though it is an
exact solution of the sine-Gordon equation. The periodic
soliton solution rather satisfies the relation

A.
"2

po (i9~8) = slil 8 + (24)

Equation (24) represents the modified "equipartition"
relation between "kinetic" energy (0 8)2 and "pseudopo-
tential" energy sin 0. For a multisoliton solution, in ad-
dition to the "pseudopotential" energy, there is an ex-

%'
ponential repulsive interaction energy density: ( & ) . In
the limit of a single twist soliton (d -+ oo and k' = 0) the
term ( &

)2 vanishes. We recover the energy H;.i t. .. of
the single twist soliton: the interaction term goes to zero
and "equipartition" holds. As the self-dual equations are
not satisfied, this implies that we can minimize the mag-
netic energy by an elastic deformation of the cylinder.
Indeed, Eq. (14) does not allow p = po as a solution
anymore, since if the self-duality is not satisfied, the rhs
of Eq. (14) does not vanish anymore. This is due to
the soliton-soliton interaction: the width of the lattice
soliton, kpp, is no longer equal to pp, the radius of the
cylinder. Therefore, under the in6uence of the neighbor-
ing solitons, the spin distribution is "squeezed" —there
is a geometrical &ustration. In the case of a single twist
soliton, the width of the soliton (6) appears naturally to
be po (the characteristic length of the problem). In or-
der to recover the original correspondence between the
magnetic length and the characteristic length of the sup-
port, i.e., in order to remove the geometrical &ustration,
we will next introduce a deformation of the geometrical
support.

VIII. THE PERIGDICALLV PINCHED
CY'LINDER

If we relax the constraint p = pp and allow p to be
x dependent, i.e., if we allow elastic deformations of the
cylinder, the Hamiltonian of the nonlinear cr model be-
comes Eq. (16). The modified self-dual equations for
cylindrically symmetric support are then given by Eq.
(»)

We do not solve exactly the highly nonlinear Eq. (17),
but rather show that with an appropriate ansatz for
p = p(x) we can minimize H;, t, ~„+,i. From the ob-
servation that the magnetic width is smaller than pp, we
can expect a pinching of the support in order to locally
reduce the radius of the cylinder. This will eliminate the
geometrical &ustration. We take the following cylindri-
cally symmetric, periodic ansatz for p and for the spin
distribution n:

p = pp —cppcn, k2

and

(H, O) = (srccos so~~, k, y),

where cn is the Jacobian elliptic function, cosine ampli-
tude. The periodic magnetic soliton solution and the
accompanying periodic pinch on the elastic cylinder are
schematically depicted in Fig. 2. Note that the pinch
appears exactly at those positions where spins are per-
pendicular to the cylinder (8 = 2). Assuming that the

Jk' Jk'quantities ", and, are small compared to 1, we
g1 po g2 p()

expand the Hamiltonian density up to the third order in

pV 1 + (~ap) +isatrapic+el = J 2pocn ~
k +

kpo ) k po

Zk"
+E +CPO 2 +~2k'po (k' )

cn, k —e 'R —O(e ),
kpo )

where 'R is a positive function. If we integrate over half a period (2d), we find

8vr J k'2K(k)
Hisotropic+el =

k 2
E(k)— —~po(gi + y2k ) E(k) —e H —O(e ).

8~J 2 3
k

In order to minimize H;, t, p,-„we choose

Then the total energy for the elastic case
2IXi+X~ A."IC o
is smaller than the energy associated with the rigid case.
The ansatz for 8(x) does not correspond to the exact
spin distribution on the periodically deformed cylinder
[defined by p(x)j which would reach the minimum en-

ergy for that given geometry. This particular distribution
corresponds to a higher energy of the magnetic soliton.
Nevertheless, even with this ansatz, we can lower the to-
tal energy, i.e., H,i,t,, ( H„g,.~. Therefore, using the

Po

~~tttx~
ii

P(x)

0 (x)

FIG. 2. Magnetic soliton lattice solution and periodic pinch
on an elastic cylinder.
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model as a function of e, the depth of the
pinch of the support, for the periodic soliton
solution vrhen k=0.5 and J=1.
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Ritz theorem, we can deduce that the exact solution of
lowest energy in the first homotopy class will require a
deformation of the support. This deformation of the sup-
port enables a screening of the repulsive soliton-soliton
interaction. We plot in Fig. 3 the elastic and magnetic
energies as a function of e, the magnitude of the pinch of
the support. Note that there is a minimum in energy for a
value of e g 0. We have verified that this minimum exists
for all k g 1. The periodic deformation of the cylinder is
the magnetoelastic analog of the Peierls efFect. Here the
lowering of magnetic energy is analogous to the gain in
electronic energy in Peierls distorted materials.

In the case k ~ 1 (k' ~ 0), e -+ 0 and we recover
the result of Sec. IV: for a single twist soliton, no elastic
perturbation of the support is able to lower the mag-
netic energy. The one-soliton solution, Eq. (6), satisfies
the self-duality equation for the rigid cylinder, Eq. (11).
However, two solitons on an elastic cylinder will cause
a deformation due to the interaction between the two
solitons.

IX. THE NONLINEAR cr MODEL ON A SPHERE

The above discussion is also valid when dealing with
a cylinder of finite length 2I. Exact solutions of our
problem (i.e., cylindrically symmetric distributions which
are extrema of the Hamiltonian on a finite cylinder) are
lattice solitons where k satisfies L = NpokK(k) (here, N
is the number of solitons). In the case N=l, the period
of the lattice soliton is twice the length of the support
and we recover the single twist soliton (Sec. II), but
on a finite cylinder. The interaction term in the energy
density (Eq. 23) vanishes when L ~ oo.

At +L, the field 8(x) is zero (modulo vr). Hence, at the
boundaries of the finite cylinder, the spins are all oriented
along the x axis, and the order parameter covers the
sphere S an integer number of times. But its derivative
at the boundaries is nonzero, because

&
——

& dn( &, k)
is a strictly positive function. Here dn is the Jacobian el-

(d8 l
IIsphere

p (dtU)

sin 0+ 2 sin tU dtU.
S1D tU

The only condition required for this Hamiltonian to con-
verge is that the smooth field 8(m) goes to 0 when io goes
to 0[m]. The Euler-Lagrange equation for this Hamilto-
DlaIl ls

d28 . do
S1D tO + COS tU = sino cosdj

S1D Ql
(25)

and the self-dual equations are now given by the following
expression:

d8
sinn = + sin8.

dtU
(26)

After integrating once Eq. (25), we get the following
expression:

&d8~' . ,slD QJ = sin 0+ C.
(dzo)

As we have dropped the homogeneous boundary condi-
tions (because we are working on a finite support), the

liptic function, the delta amplitude. As a consequence,
k'the derivative of the field n at +I has the norm " and

A;pp

its orientation is p dependent. We do not get the ho-
mogeneous boundary conditions of Sec. II. In fact, these
conditions are not required anymore because the Hamil-
tonian density is defined on a finite support. It is im-
portant to note that, in the case of a finite support, the
change of variables already used in Eq. (7) is no longer
valid.

Next, we apply the nonlinear o model on a sphere of
radius unity. We look for spin distributions with a rota-
tional symmetry around the z axis (the axis of the two
poles), i.e. , 4 = y and 8 = 8(m), where iU is the colati-
tude and y is the azimuth. The Hamiltonian now reads
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constant C may be nonzero. If it is zero, then the above
expression reduces to the self-dual equation (26).

The simplest nontrivial solution of this first order dif-
ferential equation [and of Eq. (25)] is the "hedgehog"
solution, 5 given by 8 = kur for Eq. (26) with the +
sign and 8 = n + m for Eq. (26) with the —sign. It
belongs to the first homotopy class (Q=l). Therefore,

We now explore a family of approximate solutions of
Eq. (26). If L is a fixed real number, and if k satisfies
kK(k)Q = L, then the solution (21) represents a Q soli-
ton on a rigid cylinder of length 2L, denoted by Pg(x).
The function Eg o J'"i (m) represents a distribution of
spins over the sphere which belongs to the Qth homo-
topy class. It can be written as

t'k.
8(m) = arccos sn —sn (cos to, k'), k

(k ' '

)
(27)

where QkK(k) = k'K(k') = L. Note that when Q=l
(i.e., k = k'), we recover the "hedgehog" solution. 5 If
k g k', the solution (27) does not satisfy either Eq. (25)
or Eq. (26), except in the limit k -+ 1, i.e. , when L -+ oo.
In this case, the interaction term vanishes. Equation (25)
is then satisfied and we recover H,~h„, ——8vr JQ. Only
in this limit do we have at the poles limL, ~~ &

——0,
in accord with the homogeneous boundary conditions of
Sec. II.

X. SPIN ANISOTROPY

The Hamiltonian of our problem is now the easy-axis
Hamiltonian. This anisotropy can physically model the
difference between the radial and the axial Heisenberg
coupling. It forces the alignment of spins with the axis
of the cylinder and tends to "squeeze" the soliton in or-
der to reduce the region of unaligned spins. Therefore,
we will see that the anisotropy introduces a difference
between the width of the magnetic distribution and the
characteristic length of the support.

Here we will show that the geometrical effect dis-
cussed above (Sec. VIII) can also be generated via a
different physical mechanism. Many magnetic materials
with anisotropic spin interaction are known as discussed
below. We will again consider cylindrically symmetric
distributions on a cylinder [Eq. (3)] and we introduce
anisotropy in the spin-spin coupling. This anisotropy is
expressed by the following perturbative Hamiltonian:

2 ' 2'
+anisotropic —~p s&n

If we consider the rigid cylinder case, the Euler-
Lagrange equation is again a sine-Gordon equation:

8~8(x) 1 ( 1
2 2 + tUp Sin 20.

Bx 2 (po

The simplest nontrivial solution is the soliton 0
2arctane~, where B is defined as &, —— ~ + mp.

Pp
Then the new value of the first energy level becomes
+easy- axis

It is important to notice that this result is explicitly
dependent on the geometry of the support. Due to the
anisotropy of the spin-spin coupling, the length of the
soliton, i.e., the magnetic length, is renormalized and be-
comes B. Therefore, the characteristic length of the sys-
tem (the radius of the cylindrical support) is no longer
equal to the length of the magnetic distribution. As a
consequence, the system cannot reach its minimum in
energy anymore; there is a geometrical &ustration. We
will show that a perturbation of the geometry of an elas-
tic cylinder can again lower the energy of the system.

The Euler-Lagrange equations generated by the com-
plete Hamiltonian (easy-axis plus elastic terms), after
elimination of the differential equation for 0, lead to

f 2

yi p p + —2—(p —po) (2p —po) = 4Jioo sin 8.(p) x~
2 p

This equation difFers qualitatively from Eq. (14). Here, if
8(x) is nontrivial, then p = po is not a solution anymore,
even if the spin distribution satisfies the self-duality for
the nonlinear 0 model on a rigid cylinder (Eq. 11). Thus,
the solution which minimizes the energy in any homo-
topy class, different &om the zeroth, requires a defor-
mation of the cylinder. As seen above, the new soliton
length B is smaller than pp. Therefore, we expect a pinch
of the cylinder to locally restore the correspondence be-
tween the magnetic width and the characteristic length
of the support. This will lower the energy. We can still
write Bogomol'nyi's inequality, because both the elastic
Hamiltonian density (12) and the anisotropic perturba-
tive Hamiltonian (28) are positive. Thus, there still exist
nontrivial magnetic distributions.

If we consider the quantities ' and ' as small
X1 X2

compared to 1, we can take as ansatz the following pair
of functions for the magnetic distribution:

0 = 2arctane~ and 4 = p

(i.e., a nontrivial spin distribution belonging to the first
homotopy class) and for p(x) we choose p = po-
eBsech (&). Then, we find that

'R, ,„„;,+,i = 2J sech
~

— + [pot (gi + gq) —Jurors] sech — —e R —O(E ),B)
where 'R is positive. If we integrate over the whole support, we find the following expression:

H~~sy ~~j8+~i S'il' J + [poBe (gi + gg)

J'&DENT]

E H~'0(E )B 3
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FIG. 4. Energy of the elastic easy-axis
model as a function of e, the depth of the
pinch of the support, for the one-soliton so-
lution when mo ——0.7 and J=l.

3P. Q

Q. Q 0. 1 0.2 0. 3 0. 4 0. 5

If we now choose e = JviiiR/[2(yi + y2) po] then we get
~easy-axis+el + 8'7i J(po/R)

We plot in Fig. 4 the energy of the elastic, easy-axis
model as a function of e, the depth of the pinch of the
support, when there is a nontrivial spin distribution (be-
longing to the first homotopy class) on an infinite cylin-
der. Again, note that there is a minimum in energy for
a value of e g 0.

We have shown that in the rigid cylinder case, we can-
not reach the minimum of the total Hamiltonian (easy-
axis plus elastic term). There exists a triplet of nontriv-
ial functions (p, 8, 4) which is a solution of our prob-
lem. Thus we have proved that due to the anisotropy, a
nontrivial magnetic distribution has an inQuence on the
geometry of the cylinder.

This discussion is also valid when the spin distribution
is the soliton lattice 8(x) = arccos[sn(&&, k)], which is
also an exact solution of Eq. (29). We can choose for
p (x) the following ansatz:

Hjsotyop jc J + VR dSy
1 (On)

cylinder c ( t )

+OO

~isotropic 2~p0 J

&O81
'

+l +

1 (O8)
c2 i, Ot y

sin 28
2 dx

PO

and leads to the following Euler-Lagrange equation:

020 1 020 1
Ox2 c~ Ot2 2p2

where c is the characteristic velocity of the spin-support
system. With our notation and when looking for cylin-
drically symmetric solution [4 = y, 8 = 8 (x, t)], this is
written as

x
p(x) = po —eR cn, k(kR'

If now we choose e = Jk' /2[pi + y2k2]p2o, we are able
to lower the total (easy-axis plus elastic) energy of the
cylindrically symmetric support. Note that in both cases,
the pinch appears exactly at those positions where spins
are perpendicular to the cylinder (8—:z [m']).

This is the geometrical form of the sine-Gordon equation
which is Lorentz invariant. The solutions of this problem
are the analytical functions given in the previous sections,

with a I orentzian boost applied, i.e. x vt/ 1 —(—"—
)

p(x —vt) is substituted for x:

2; —Vt
8(x, t) = arccos sn , k

L sp. /i —i"-.)
*

XI. THE MOVING SOLITON ON A RIGID
CYLINDER

In this section, we consider a dynamic solution on an
infinite rigid cylinder, with an isotropic coupling. The
calculation for the easy-axis case is the same, except po
is replaced with R in Eqs. (30) and (31) below. The
continuum limit of the Lagrangian for antiferromagnetic
Heisenberg spins is given by

or, when k=1,

x vE
8(x, t) = 2 arctan exp

' —(-".) &

In addition to the above, an exact moving two-soliton
solution is also known. However, this solution cannot
be obtained by Lorentzian boost and we do not consider
it here. The energy per soliton associated with solutions
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(30) and (31) is H;, t, ~;, = 78m &[E(k) —k'2K(k)/2],
i.e., p times the static energy. In addition, we see that

the width of a soliton has become I po 1 — —,in
agreement with the Lorentzian contraction of the length.
When k=1, the solution (31) does not lead to geometri-
cal &ustration, even if the width of the soliton is smaller
than the radius of the rigid cylinder. Indeed, this dis-
tribution reaches the topological minimum energy in the
first homotopy class, which is p times the energy in rest
kame. The moving soliton sees a cylinder of radius ~
and as a consequence, in this case, the nonlinear o model
is "autotuned". We remark that when e —+ c, this mag-
netic length tends to zero and the functions (30) and (31)
become nonanalytic. Also, when working with an elas-
tic cylinder and when v is equal to the velocity of the
elastic waves, we reach the shock wave regime: there is a
coupling between the moving magnetic solitons and the
elastic waves.

XII. CONCLUSION

We have considered a classical Heisenberg model on
an infinite cylinder and found that both a periodic topo-
logical spin soliton and an anisotropy of the spin-spin
coupling produce a pinch of the cylinder. This is a con-
sequence of the violation of the self-duality equations,
which on the contrary are satisfied in the isotropic sin-
gle soliton case. For the periodic case, violation of self-
duality results &om interaction between the solitons and
generates geometric lustration. Here we note the anal-
ogy with the Peierls instability in low-dimensional, inter-
acting electron-phonon systems, although the origin of
the periodic distortion is quite different. In particular,
the spin-spin coupling constant J in our problem does
not depend on the geometrical deformation.

The sine-Gordon equation also supports an exact dy-
namical solution, namely, the breather. 2i In this case one
would expect temporal (not spatial) pinching of the cylin-
der in the region of the breather. For periodic bound-

ary conditions, the cylinder can be compactified into a
torus. We have also considered the nonlinear o model on
a torus but do not discuss the details here. In this pa-
per we confined ourselves to the cylindrically symmetric
case. Removing this constraint would lead to much richer
magnetoelastic effects including spin domain walls.

The geometrical effect predicted here may be observ-
able with the use of ultrasonic techniques in cylindri-
cally wrapped thin films of magnetic materials, specifi-
cally layered 2D Heisenberg magnets. First measure the
normal modes of an undeformed, nonmagnetic, elastic
cylinder. Then apply a thin coating of a magnetic ma-
terial on the cylinder. The change in normal modes of
the cylinder caused by magnetoelastic pinching can be
measured by resonant ultrasound and compared to cal-
culated values. Similarly, attenuation and phase shift
associated with a solitonic deformation can also be mea-
sured. This is accomplished by measuring the change
in travel time of an ultrasonic wave passing through the
cylinder using interferometry.

Some specific examples of layered 2D Heisen-
berg magnetic materials are (C„H2„+iNHs)qMX4 and
[NHs(CH2)NHs]MX4 for n &16, where M = Cr, Mn,
Fe, Cu, Cd and X = Cl, Br. Other examples, including
easy-axis anisotropy, are K2CuF4, Ca2Mn04, Rb2FeF4,
etc. , magnetic Langmuir-Blodgett films of manganese
stearate Mn(CisHss02)2, and possibly, recently syn-
thesized carbon nanotubules ' with appropriate mag-
netic coatings. Interestingly, periodic shrinking (a stable,
finite amplitude, peristaltic state) of tubular fiuid mem-
branes was recently observed, although for a different
physical reason.

ACKNOWLEDGMENTS

R.D. and S.V.-G. acknowledge the hospitality of the
Theoretical Division and the Center for Nonlinear Stud-
ies at Los Alamos National Laboratory. This work was
supported in part by the U.S. DOE.

A.A. Belavin and A.M. Polyakov, JETP Lett. 22, 245
(1975).
S. Trimper, Phys. Lett. 70A, 114 (1979).
S. Chakravarty, B. Halperin, and D. Nelson, Phys. Rev.
Lett. 60, 1057 (1988).
F.D.M. Haldane, Phys. Rev. Lett. 50, 1153 (1983); Phys.
Lett. 98A, 464 (1983).
E. Fradkin, Field Theories of Condensed Matter Systems
(Addison-Wesley, New York, 1991).
E.B. Bogomol'nyi, Sov. J. Nucl. Phys. 24, 449 (1976).
S. Villain-Guillot, R. Dandoloff, and A. Saxena, Phys. Lett.
A 188, 343 (1994).

s R. Shankar, J. Phys. (Paris) 88, 1405 (1977).
s M. Qieplak and L.A. Turski, J. Phys. C 18, L777 (1980)

ioR. Percacci, Geometry of Non-Linear Field Theories
(World Scientific, Singapore, 1986).

P. B. Burt, Proc. R. Soc. London A 859, 479 (1978).
B. Felsager, Geometry, Particles and Fields (Odense Uni-
versity Press, Odense, 1981).
B. Horovitz, Phys. Rev. Lett. 4B, 742 (1981); Phys. Rev.
B $5, 734 (1987).
J. Rubinstein, J. Math. Phys. ll, 258 (1970).
R. Dandoloff, S. Villain-cuillot, A. Saxena, and A. R.
Bishop, Phys. Rev. Lett. 74, 813 (1995).
A. Saxena and A. R. Bishop, Phys. Rev. A 44, R2251
(1991).
A. L. Fetter and M. J. Stephen, Phys. Rev. 1B8, 475 (1968).
J.D. Parsons and C. F. Hayes, Phys. Rev. A 9, 2652 (19?4).
P. Lebwohl and M. J. Stephen, Phys. Rev. 163, 376 (1967).
I. A. Kunin, Theory of Elasticity in Media with Microstruc
ture (Moscow Science, Moscow, 1975).
V. E. Korepin and L. D. Fadeev, Teor. Mat. Fiz. 25, 1039



6722 VILLAIN-GUILLOT, DANDOLOFF, SAXENA, AND BISHOP 52

(1975); Phys. Rep. C 42, 1 (1978).
R. Truell, C. Elbaum, and B.B. Chick, Ultrasonic Methods
in Solid State Physics (Academic Press, New York, 1969).
W. M. Wisscher, A. Migliori, T. M. Bell, and R. A. Reinert,
J. Acoust. Soc. Am. 90, 2154 (1991).
L. J. de Jongh, Magnetic Properties of Layered Transition
Metal Compounds (Kluwer Academic, Dordrecht, 1990).
M. Pomerantz, Surf. Sci. 142, 556 (1984).

S.C. Tsang, P.J.F. Harris, and M.L.H. Green, Nature (Lon-
don) 862, 520 (1993).
P.M. Ajayan, T.W. Ebbesen, T. Ichihashi, S. Iijima, K.
Tanigaki, and H. Hiura, Nature (London) 862, 522 (1993).
R. Bar-Ziv and E. Moses, Phys. Rev. Lett. 78, 1392 (1994).
P. Nelson, T. Powers, and U. Seifert, Phys. Rev. Lett. 'F4,
3384 (1995).


