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The relaxation of single probe spins was investigated for simple models of systems with quenched
disorder. The spin relaxation was calculated for a two-site model with arbitrarily oriented magnetic
fields and the result was averaged over various distributions of the fields, and of the hopping rates
of the spin. On an intermediate time scale, a modified Kubo-Toyabe behavior is obtained for
large hopping rates, in agreement with recent @SR experiments. A stretched-exponential decay of
the spin polarization is obtained at longer times. The Kohlrausch exponent is found to be field
and hopping-rate dependent, in qualitative agreement with recent NMR and P-NMR experiments.
The resulting longitudinal relaxation rate still does not show the significant deviations from the
Bloembergen-Purcell-Pound (BPP) behavior that are typical for glassy systems. Therefore, the
random two-frequency model was extended to include time-dependent renewals of the environment.
This modification may yield asymmetric peaks for the longitudinal relaxation rate in the BPP plot
for very large renewal rates.

I. INTRODUCTION

Disordered systems have found much interest in the
last decades. Of particular interest are transport and re-
laxation processes in disordered materials. One aim of
current research is to understand these time-dependent
phenomena from the motional processes on atomic scales.
Time-dependent processes can be investigated by many
spectroscopic methods, such as nuclear magnetic reso-
nance (NMR), electron spin resonance, quasielastic neu-
tron scattering, Mossbauer effect, perturbed angular cor-
relations, etc. To interpret the data it is necessary to
know how the microscopic motional processes determine
the measured signals in disordered systems, where aver-
aging over many different events occurs. In this paper we
develop a stochastic theory of spin relaxation in simple
models for disordered systems. We consider relaxation of
single spins; hence our theory is directly applicable to P-
radiation-detected nuclear magnetic relaxation (P-NMR)
or muon spin relaxation (@SR) experiments, respectively,
where polarized P-active nuclei or muons are used in ex-
tremely low concentrations as probe spins in condensed
matter.

The phenomenological description of spin relaxation
was introduced by Bloch (see, e.g. , Ref. 4 or 5) and
the connection with microscopic Huctuation times was
pointed out by Bloembergen, Purcell, and Pound
(BPP). The theoretical basis of the BPP description
was established by Wangsness and Bloch and Redfield
(WBR). They related the longitudinal and transverse
spin relaxation times Tq and T2, respectively, to corre-
lation functions of the Huctuations that are acting on the
spins. Essentially they used second-order time-dependent
perturbation theory ' for the calculation of the expec-
tation values of the spin components, whereby one pre-
sumes that the Huctuating spin-lattice interactions are

small compared to the static interactions, which are due
to the external field. One main assumption made in the
derivations is that the correlation times of the Huctua-
tions be short compared to all other relevant time scales.
The BPP theory has been extremely successful for liquids
and ordered solids, but the experimental results for de-
fective and glassy solids do not fit into the frame provided
by this theory. In this situation, many authors tried to
modify the correlation functions of the WBR theory in
ways that seem to be appropriate for disordered mate-
rials. However, this procedure is generally questionable,
the reason being that in systems with static disorder the
basic assumption of short correlation times is likely to be
violated.

At low temperatures, disordered systems such as
glasses are frozen in configurations with structural dis-
order. Different, isolated probe spins "feel" quite dif-
ferent local environments. A spin that is trapped in a
local environment cannot, or only very rarely, make a
transition to a completely difFerent environment. Conse-
quently, the correlation times for probing different field
Huctuations become large, or even infinite. The proce-
dure of using suitable correlation functions for disordered
systems in evaluating the WBR expressions for Tz and
T2 amounts to performing the homogeneous average
(Tz ) or {T2 ) of the longitudinal or transverse relax-
ation rates. Here the braces designate the configurational
average over different realizations of the disorder.

Several researchers realized that one should in-
stead. evaluate inhomogeneous averages in systems
where the probe spins are &ozen in difFerent local
configurations. Specifically they calculated the inho-
mogeneous average (exp( —t/Tq 2) ) where the disorder is
expressed by a distribution of Ti 2 values or, equivalently,
by a distribution of correlation times. We agree fully with
the basic idea of this approach, but we emphasize that
restrictive assumptions have been made in the previous
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work. The essential assumption is that the local motion
of the probe spin is so rapid that it leads to exponential
relaxation, exp( —t/Tq 2). In disordered systems, the lo-
cal motions may occur at quite difFerent time scales and
be even frozen at very low temperatures. In this paper
we propose to consider the individual spin motions on a
more microscopic scale. Instead of assuming exponential
relaxation, we consider simple models for the motion of
the probe spin in local environments. We average the re-
sulting polarization decay over the disorder, which is ex-
pressed by distributions of the local rotation frequencies
and hopping rates. Our approach might be considered as
an extension of the classic stochastic theory of spin re-
laxation, which was originally developed by Anderson,
Kubo and Tomita, zs and Kubo and Toyabe, i6 to mod-
els of disordered systems. For instance, one well-known
model for transverse spin relaxation is the one where a
spin makes transitions with variable transition rates be-
tween two rotation frequencies. The three-dimensional
extension of this model will be the basis for our aver-
aging procedures. The models are rather simple; hence
they can be treated more or less explicitly.

The relation of our work to the stochastic theory of
spin relaxation by the authors of Refs. 14—16 has already
been indicated. Spin relaxation where the Markov ap-
proximation of short correlation times is avoided has also
been treated by other methods. In the work of Celio a
microscopic solution of the Schrodinger equation for the
motion of a probe spin that interacts with the host spins
is made by Trotter formula techniques. Stoeckmann
developed a stochastic theory of spin relaxation where
the dipolar interactions between the probe and the host
spins are explicitly taken into account. In his work
the motion of the probe spin in a lattice is treated by
the efFective-medium approximation and expressions that
are appropriate for slow and fast motion are obtained.
Diezemann and Schirmacher studied spin relaxation
in high external fields by memory function techniques.
The perturbation-theory approach of Ref. 19 is restricted
to relatively strong external magnetic fields; hence it is
not adequate for the experimental techniques we have in
mind. Namely, in P-NMR and p, SR the polarization of
the probes does not depend on a Boltzmann factor as in
conventional NMR and low magnetic fields can be applied
without reduction in sensitivity. All papers mentioned do
not include the characteristic dynamics of systems with
frozen disorder that was described above. However, these
papers might well serve as a basis for an extension of the
present work.

The model that will be introduced in the subsequent
section is a very simple two-site model. We find it worth-
while to relate the results for the model considered here
as far as possible to concrete experimental realizations,
which have been studied by @SR or P-NMR. Some re-
marks concerning the simplifications of the model are in
order. We consider mainly the motion of single probe
spins in static environments, and the interaction of the
spin is assumed to be with the local environment. For
example, in the lithium oxide glasses which are investi-
gated by P-NMR (Ref. 2) there exists an approximately
static structure which contains the mobile Li atoms. The

Li nuclei which serve as probes are dilute; hence their
mutual interactions can be neglected. There is additional
relaxation by the (unlike-spin) interaction of the sLi spins
with the majority Li spins. It amount to a modifica-
tion of the correlation time of the Li spins, in analogy
to the pure Li system. Our models are so crude that we
disregard all these details; we work with an efFective cor-
relation time or inverse hopping rate which is considered
as a parameter.

In the next section we investigate the two-frequency
model for spin relaxation and we describe the various
averaging procedures to be performed. In the third sec-
tion we study the spin relaxation for the random two-
frequency model on an intermediate time scale and com-
pare the results with recent @SRexperiments. The fourth
section is devoted to an analysis of the long-time spin
relaxation for the random two-frequency model. We in-
troduce an efFective longitudinal spin relaxation rate and
examine whether its behavior as a function of the hop-
ping rate can explain the features that were observed
in glassy systems. In Sec. V we extend the random two-
frequency model by admitting the possibility of temporal
changes of the environment. Also transition processes of
the probe spins between difFerent environments may be
incorporated in this way. The results of the stochastic
modeling are not entirely satisfactory, as will be discussed
in Sec. VI.

II. RANDOM TWO-FREQUENCY MODELS

The starting point of the stochastic theory of spin re-
laxation is the equation of motion for individual, classical
spins S,

The spins are assumed to have unit lengths ~S~ = I and
2(t) is the rotation frequency corresponding to the mag-
netic field experienced by the spin at time t. We will
use the terms "rotation frequency" and "magnetic Geld"
interchangeably. The rotation frequency ur(t) may be de-
composed into an external static Geld do and a local,
fluctuating part 2'(t). The spin rotation may be alter-
natively described by the corresponding antisymmetric
matrix g(t). We assume complete polarization of the
ensemble of spins at time t = 0, expressed by the initial
condition S(t = 0) = So. The solution of Eq. (I) is trivial
for fixed rotation frequency u,

S(t) = exp(gt) . So.

A. Two-frequency model

The basis of the derivations in this paper is the rather
simple "two-&equency" (TF) model. In this model which
was introduced previously two sites with difFerent mag-
netic fields di and d2 are considered and the spin jumps
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between the two &equencies according to a Poisson pro-
cess with the hopping rate p = 1/~. A pictorial represen-
tation of this process is given in Fig. 1. The quantities 21
and cV2 may have arbitrary orientations with respect to
So, and the corresponding matrices O, O do not com-

mute. Because of this noncommutativity the problem is
more difBcult to treat than the textbook case of the trans-
verse spin rotation. 5 Nonetheless, the case of transitions
between two arbitrarily oriented rotation &equencies can
be solved analytically, as will be sketched below.

To obtain the average polarization P = (S(t)) of an
ensemble of spins, which are subjected to this hopping
process in a single TF system, it is advantageous to make

a decomposition of the polarization into the contributions
of difFerent numbers of state changes,

P(t) = ).P~(t) .
L=O

The quantity P~(t) contains the contributions of all spins
of the ensemble that have performed l jumps until time t.
It is a convolution of l + 1 rotations exp(QAt), combined
with the probabilities of performing a transition after the
time interval At, which is given by pexp( —pAt). (At
denotes arbitrary time intervals whose sum is the time
t.) The result of the resummation of the series (3) in the
Laplace domain is

1 1 1
P(s) = — (D, + & 1)D D, + (D, + Y 1)D D=1=2 ~ = =2=1

so, (4)

where the definition D = (s + p) 1 —g has been introduced. Also the operators D and D do not commute.=1,2 =12 =1 =2
Before discussing further the analytical solution Eq. (4) we point out the main features of the spin dynamics

according to Eq. (4) in the two limiting cases of slow and rapid frequency chances compared to the rotation frequencies.
In the former case it is easy to see from the series Eq. (3) that the spins will precess with their respective starting
frequencies, nearly independently of the other frequency. In contrast, in the case of rapid transitions (p )) ~urq ~, )22~)
we find rotation of the spins that corresponds to static spins which perform Larmor precession with the rotation
frequency (urq + 22)/2, the rotation being weakly damped. This feature can be made plausible by appeal to the
Trotter formula; see Ref. 21. That is, for rapid state changes we may disregard the noncommutability of 0, 0 or=1' =2
of D, D, respectively. Then Eq. (4) reduces to

1 —1
P(s) =

i
[s+ 2pjl ——(g, + Q, ) i

(s'+ 2ps)1 —(s+ p)(g, + Q, ) + g, . Q, So .

For large p, the rotation is damped corresponding to the
usual motional-narrowing process.

In Ref. 21 two special zero-field cases do ——0 were
considered, namely, oui ——cu e, d2 = u, e, and dz ——

cu e, d2 ——u„e„, respectively. The initial condition was

So ——e, and the longitudinal polarization P, (t) was de-
rived. We use the same initial conditions and restrict
ourselves to the longitudinal polarization also in the gen-
eral case. The derivation given below can be extended to
the other components of the polarization. Since the rota-
tion matrices are three dimensional, the denominators of
Eq. (4) are polynomials of order 6 in the Laplace variable
s, and the z component of Eq. (4) can be represented in
the form

5

P, (s) = — = — ) a;s'1 a(s)
2 b(s) 2 ) b, s'

The coefficients a,. and b~ were determined f'rom Eq. (4)
by algebraic formula manipulation with REDUcE. They
are explicitly given in the Appendix.

In principle, the solution (6) can be transformed
into the time domain using the Heaviside expansion
theorem. One obtains

1
l

I
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I

I

I I

I I

I I

I I

I

FIG. 1. Schematic representation of the
jump process as a function of time between

t two sites which are characterized by the ro-
tation frequencies dq and dq. The mean time
between two frequency changes is 1/p.
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In this equation s„(n = 1, . . . , 6) denote the different
nondegenerate roots of the polynomial b(s). The case of
degenerate roots requires special attention. The quan-
tity P, (t) represents then the z component of the spin
polarization, averaged over the hopping processes of the
spin.

Since the polynomial b(s) in Eq. (6) is of order 6, it

is not possible to calculate its roots in general. Never-
theless, by considering the limiting case of rapid Buctua-
tions, we are able to determine approximately the roots
of b(s) by expanding the denominator of Eq. (6) up to
second order in

luteal/p

or ld2l/p, respectively. This pro-
cedure which is described in detail in Ref. 24 leads then
in lowest order to the longitudinal polarization

P.(t) = "," exp f—i(—~i, ~2) + cos(l~:.It) "', "" +»n(l~-. lt) &
I

—
I

~res (dres E&) E&)

with the function fq(dq, d2) = dfurz —(urq . ur2) / (8d„,) and the averaged frequency 2„,= (pDq+d2)/2. Evidently
this solution corresponds to the polarization decay that would follow from Eq. (5).

In the derivation of Eqs. (7) and (8) it was assumed that the roots of the denominator of Eq. (6) are not degenerate.
They are degenerate, for example, if the condition ld„, l

= 0 holds. This condition means urq
———d2, and we assume

id& 2l g 0 (otherwise the solution is trivial). Under this condition, the poles of Eq. (6) can be determined, and one
obtains the following polarization decay which depends on the sign of the root gp2 —u~:

p2 —212t +cosh
2 ~2 2

2 —u)~2t ~ "exp( —pt) +
1 1

Cd (d —4)
(b) p = 2, : P, (t) = '; + '

2
' exp( —pt) (pt+ 1);

(c) pc (tccc: p (t) =
( . cin

f2
(d~ —p t + cos

2 ~2 ~2

A&2 —p2t 2
' exp( —pt) +

1 1

The case d1 ———~2 is somewhat more general than the transverse case with zero mean &equency, since d1 may form
an arbitrary angle with So. We refer to Ref. 24 for further details about the treatment of Eq. (6) and the resulting
polarization decay.

B. Configurational averages: Averages over the hopping rates

The disorder of the systems under consideration is taken into account by averaging the polarization decay P, (t)
of a single subsystem over the ensemble of subsystems, assuming that the rotation &equencies u1, ~2 are random
variables. The problem is to specify appropriate distributions of the rotation &equencies. The most commonly used
distribution. is the Gaussian one. If we assume that the components of the frequencies d1, d2 are distributed around
4Jp with the variance 0, we have to evaluate

(P (t))-„-, = ((dy —Lds) + ((32 —(do)
du)1d(02 P t'tj exp

(2mo 2) 2' (10)

Either the inverse Laplace transform of Eq. (6) or the result of Eq. (7) for P, (t) has to be used in the integral. The
average over the quenched disorder is generally indicated by the braces ( ).

The ansatz of a Gaussian distribution of rotation &equencies can also re8ect the &equency distributions in crystalline
systems that are caused by dipolar interactions between nuclear spins. As discussed in the Introduction, we argue
that the characteristic spin relaxation of glassy systems is due to structural disorder. The Gaussian distribution
used in Eq. (10) may not be appropriate to represent structural disorder. Therefore we examined also two other
distributions, namely, the rectangular distribution where

o+~3 „
(P (t))-, -, = s ddgdd2 P, (t)

(2~30.„) ~0 —v s~.

and the symmetric exponential distribution where

(P (t))-„-,= 1
ddgdd2 P (t) exp

(~2a, )

~~(l~~ —~ol + l~z —~ol)
Oe
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2~3o ~„
dp(P, (t)} -, (13)

We do not expect significant difFerences between the
Gaussian and the rectangular distributions, but the ex-
ponential distribution is difFerent in that it contains small
and large &equency deviations from the value cVp with a
completely different weighting than in the Gaussian dis-
tribution.

I'urther, we also investigate the inHuence of distribu-
tions of the hopping rate p; i.e. , we assume that this
rate is a random variable, too. The physical picture be-
hind this assumption is that the jump rates of spins in
subsystems of the disordered medium may be very dif-
ferent. Explicitly, we studied rectangular distributions of
the rate p, expressed by

~, u2 are averaged over Gaussian distributions in three-
dimensional spaces; cf. Eq. (10).

A. Results for the RTF model

We average the polarization decay P, (t) for the basic
TF model over a Gaussian frequency distribution of unit
width o and external zero field, for various values of the
hopping rate p. For this purpose, the result Eq. (6) in the
Laplace domain is transformed numerically to the time
domain by the fast inversion routine described in Ref. 26.
The disorder average is then performed numerically, as
described in Sec. IIB. The resulting spin relaxation is
shown in Fig. 2. For p —+ 0 the longitudinal polarization
is characterized by the static Kubo-Toyabe function

and exponential d.istributions, which lead to

(P, (t)} = dpexp ]

—
)
(P, (t)}-1 (

tTpe p Ope

(14)

(P, (t)} = —+ —(1 —o. t ) exp
~

——o t
1 2 2 2 f 1

~l ~~2

= gKT(~' o, ~0 = 0).

The average polarization decay jP, (t)} to be used~1 )~2
in the integrals is determined by the Gaussian average
(10). Since we want to examine the influence of lower
jump rates on the time development of the relaxation, the
integration starts at the lower limit p = 0. In particular,
the exponential distribution Eq. (14) includes a wide
span of different jump rates.

In most cases, the averages expressed by Eqs. (10)—
(14) cannot be calculated analytically. Hence we have to
resort to numerical procedures to perform the required
integrations. It is advisable to use different quadrature
rules for the integrations which are adapted to the re-
spective frequency or hopping-rate distributions. Un-
fortunately, the integrand P, (t) does not behave like a
polynomial for which the quadrature rules may become
exact from a certain order on. Since generally sixfold in-
tegrations are involved, the choice of the order n of the
quadrature rule is of concern, where a compromise has to
be made between accuracy of the results for (P, (t)}and
required CPU time. The inaccuracy of the integration
becomes large when the value of the rotation frequency
is approximately equal to the hopping rate and it in-
creases with increasing time coordinate t (see Ref. 24 for
details) .

III. LONCITUDINAL SPIN RELAXATION
IN THE RANDOM TF MODEL

AT INTERMEDIATE TIME SCALES

This section gives results on the longitudinal spin re-
laxation for the random two-frequency model at interme-
diate time scales. It is the strength of stochastic models
of spin relaxation that they yield information on the line
shape, or, in the time domain, on the transients of the
polarization decay. We will present results for the ran-
dom TF (RTF) model, where the rotation frequencies

The minimum of the polarization decay is located att;„= ~3/o. The increase of the jump rate p leads
to a shift of the minimum to larger times. In addition,
the recovery of the polarization to the asymptotic value
1/3 is no longer observed. Whereas these features resem-
ble qualitatively the results of the strong-collision model
of Hayano et al.2~ (see the inset in Fig. 2), the polar-
ization transients of both models behave completely dif-
ferently in the parameter region p & 0. There, the lon-
gitudinal polarization of the RTF model increases again
for t & t;„and furthermore, for p ~ oo, the polariza-
tion approaches a limiting curve, namely, a static Kubo-
Toyabe function according to Eq. (15) where the parame-
ter o is reduced by a factor of ~2. Nevertheless, it should
be noted. that all polarization transients decay down to
zero for larger time (a fact which cannot be made visi-
ble in Fig. 2) apart from the limiting cases p = 0 and
p ~ oo. This point will be further investigated in Sec. V.

The results for p )) o are in agreement with Eq. (5)
and the qualitative discussion in Sec. IIA. Namely, for
large hopping rates, one has an effective spin precession
around the resulting frequency (dq+22)/2 and the width
of the corresponding distribution is reduced. by a factor of
~2. It is instructive to contrast this behavior with that of
the strong-collision model, where at each transition a new
frequency is selected. This leads to the disappearance of
the minimum and the polarization decays monotonically
for large p; cf. the inset in Fig. 2.

Finally, also a longitudinal external field cop = cope

can be considered. The Kubo-Toyabe function is well
known for this case; the minimum is less pronounced
for finite wp. For this situation, the RTF model shows
a behavior whose qualitative features correspond to the
behavior for (up = 0. That is, for intermediate p the
Kubo-Toyabe function is smoothed out, and for large p
the minimum is again shifted to larger times by the factor
v 2. More details are given in Refs. 21, 24.
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B. Qualitative experimental confirmation
of the RTF model

The behavior of the spin relaxation on intermediate
time scales that was analyzed in the last subsection can
be observed in muon spin rotation (@SR) experiments. s

The width parameter cr of several substances its to the
inverse of the lifetime of the muons, such that the eKects
addressed in Sec. III A are in a suitable time window. Fell
et al. studied the longitudinal muon spin relaxation in
niobium doped with titanium for the zero-Geld case. Fig-
ure 3 shows the measured polarization transients at three
difFerent temperatures. At Iovr temperatures (T = 13

K) one recognizes Kubo-Toyabe behavior of the polar-
ization decay. For increasing temperatures (T = 22 K)
a stronger polarization decay is observed and the Kubo-
Toyabe minimum no longer exists. A further increase of
the temperature (up to T = 57 K) leads to a recovery of
the Kubo-Toyabe behavior, where the region of the min-
imum is shifted to longer times. In experimental paper
the occurrence of minima in the polarization decay func-
tions was interpreted as an indication of localization of'
the muons at the corresponding temperatures. The de-
localization of the muons over four or six sites at the
higher temperature of 57 K was inferred &om the decay
constants of the transverse polarization. An interpreta-
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tion of the difference of the minimum positions in the
longitudinal polarization decay at the two temperatures
of 13 K and 57 K was not given.

The disappearance of the minimum and its reappear-
ance at a shifted position with increasing temperature are
readily explained by the following picture. At the low-
est temperature, the muons are localized at the tetrahe-
dral interstitial sites in the Nb lattice and exhibit Kubo-
Toyabe behavior in zero external field, which reflects the
approximate Gaussian distribution of the dipolar mag-
netic fields due to the surrounding Nb nuclei. At the in-
termediate temperature the muon performs jumps; this
leads to the disappearance of the Kubo-Toyabe behav-
ior, as expected from the strong-collision model. At still
higher temperatures, the muons will be trapped near the
Ti impurities, but they can still perform local motion over
several sites. Candidates for groups of sites over which
local motion takes place are rings of four or six sites; see
the inset in Fig. 3. Delocalization of light particles over
several sites has been observed, e.g, for hydrogen in Nb
with impurities. If the muons perform rapid local mo-
tion over several sites, they experience effectively the av-
erage of the local magnetic fields over the sites involved;
this leads to a Kubo-Toyabe behavior analogous to the
one derived for the RTF model. We emphasize that only
two theories yield minima in the longitudinal polarization
function as a function of time, the Kubo-Toyabe theory
and the (more microscopic) theory of Celio. Our exten-
sion of the Kubo-Toyabe theory readily explains the oc-
currence of minima at different positions, depending on
the magnitude of the transition rate.

There remains the task of a quantitative interpreta-
tion. While the RTF model predicts a shift of the max-
imum by the factor 1.414, an apparent shift by a factor
1.85 can be taken &om Fig. 3. One expects that the
extension of the random two-frequency model to an n-
frequency model yields a shift of the minimum position
to ~nt;„ for large transition rates, if all frequencies are
uncorrelated. An analogous reduction of the width pa-
rameter appears in the inhomogeneous static polarization
decay in the transverse case, if the muons are delocalized
over several sites. Thus the extension of the arguments
of the RTF model to four or six sites would give shift
factors of 2 or 2.45, respectively, if all frequencies were
uncorrelated. The dipolar field. s at the rings of four or
six sites are evidently correlated, since these sites have
common neighbor nuclei. Calculations for the average
dipolar fields on rings of four and six sites were reported
by Lankford et al. If we average their results over the
field orientations, we obtain a reduction factor of 1.36
or 2.10, respectively. Hence the observed value would
suggest a delocalization of the muons over six sites. Of
course, for a more detailed interpretation of the previ-
ous work, or of possible future investigations, random
models with four or six sites including correlated Lar-
mor frequencies should be explicitly treated. In Ref. 24
a model was introduced where correlations between the
rotation frequencies at neighboring sites were taken into
account. The results could be described by the introduc-
tion of an effective width which enters the Kubo-Toyabe
function.

IV. RELAXATION RATES
OF THE ASYMPTOTIC

POLARIZATION DECAY

A. Determination of the asymptotic decay

P, (t) exp (
—[T~ t ) . (16)

In Ref. 13 the longitudinal relaxation time is defined by
the time integral over the polarization decay function.
We will use Eq. (16) in our work since it has been em-
ployed in many papers to parametrize the polarization
decay observed experimentally in finite time windows.
In the following, the calculation of the polarization de-
cay of the investigated models is performed for parameter
values which are typical for P-NMR measurements with
the probe nucleus Li. In detail, we choose a Larmor
frequency ~0 10 s and a variance of the distribu-
tion o = 10 s . Furthermore, the hopping rates are
within the region p & 10 —10 s and the investiga-
tions are restricted to the time window [0.01—0.1] s. For
these parameter values we are clearly in the long-time
limit which is determined by the condition t &) 1/p or
8 « p in Laplace space, respectively.

The expression (6) for the spin polarization of the TF
model derived in Sec. IIA has four complex conjugate
and two real roots. The complex conjugate roots in the
Laplace domain represent damped spin rotation in the
time domain. These spin rotations lead to Gaussian de-
cay of that part of the polarization when the average over
different rotation frequencies is performed. This means
that the contributions of the corresponding poles is negli-

The stochastic theory of spin relaxation is apparently
successful in describing longitudinal spin relaxation in
disordered situations at the intermediate time scales
that are used in @SR experiments. The question arises
whether it is also possible to obtain useful results for the
long-time behavior of the longitudinal spin relaxation,
such as it is observed on the typical time scales of NMR
or P-NMR experiments. Is it possible to resolve the prob-
lems that appeared when these experiments were ana-
lyzed in terms of the standard NMR theory? We will
address this problem from an applied point of view by
evaluating the longitudinal spin relaxation for the RTF
model with typical experimental parameters.

The configurational average over disordered frequen-
cies naturally leads to nonexponential polarization de-
cay. Ideally one should compare theory and experiment
over extended time scales, spanning many orders of mag-
nitude. In practice, experiments often are restricted to
rather small time windows; in addition the data are noisy.
It is common practice to reduce the data by introducing
relaxation rates, but this already can be done in different
ways. A rough estimate is provided. by the inverse time of
decay of the signal to e; a better procedure is to fit an
exponential decay to the data within the time window. A
popular procedure is to employ the Kohlrausch-Williams-
Watts (KWW) function (see, e.g. , Refs. 32 and 33 for the
use of this function in a different context)
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with the coefficients &om Eq. (Al). This expression
has two real roots of which the smaller one coincides
practically with the one of the complete expression. We
coiivinced ourselves that the use of Eq. (17) leads to
deviations from P, (t) that would follow from Eq. (6)
of at most 3%. On the other hand a considerable reduc-
tion of computing time is achieved, since now an analytic
form can be used when performing averages. Namely, Eq.
(17) reads in the time domain (with the initial condition
S() —e, )

1 aoP, (t) = [exp (sit) —exp (s2t)]
2b2 sg —s2

aq+ [ss exp (sse) —se exp (set)]) .
sy —s2

(18)

gible in the long-time limit. There remain two real roots
of Eq. (6); only one of them is small and deterinines the
long-time behavior.

For computational convenience we made an expansion
of the numerator of Eq. (6) up to first order in s and of
the denominator up to second order,

1 aq+ ass (»)

The quantities s~ 2 denote the roots of the denominator,

1
4bob2

2b2 1 (19)

whereby the coefficients are given by Eq. (A1). ln the
special case of b2 ——0 where the roots are manifold de-
generate Eq. (18) reduces to P, (t) = 1, Vt.

B. Results for the RTF model

We calculate numerically the long-time behavior of the
polarization decay using Eq. (18) and perforining aver-
ages over Gaussian distributions of the rotation &equen-
cies; cf. Eq. (10). By fitting each transient with the
KWW function (16) we obtain the quantities Ti and cr,
respectively, which are plotted in Figs. 4(a) and 4(b) ver-
sus the hopping rates p for four diferent Larmor frequen-
cies. The typical BPP shape of this double-logarithmic
plot illustrates generally that the applied procedure and
the discussed model yield reasonable results; i.e., the ob-
tained values of the relaxation rate are at least qualita-
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tively comparable to the rates measured, e.g. , in LiCl - n-
D20 with the p-NMR method. s4

We now examine the quantitative features of Fig. 4.
(i) The relaxation rate Tz shows quite similar behav-

ior as a function of the hopping rate as in standard NMR
theory in that it has a symmetric maximum with the
same slopes on both sides.

(ii) The relaxation rates are independent of the Larmor
frequency in the regime of large hopping rates ("high-
temperature side"), whereas the rates show such a de-
pendence for small hopping rates with the behavior (for
p=10ss ')

(20)

This behavior is similar to the BPP theory which gives
T&

(iii) Obviously, the curves in Fig. 4(a) show a signif-
icant hump for low Larmor frequencies which has not
yet been observed in experiment. Up to now it is not
clear whether this feature describes a real physical prop-
erty or whether it reQects an artifact of the model; see
also the discussion in Sec. VD. A greater accuracy of
the integration procedures does not change this hump
significantly.

(iv) Finally, a Kohlrausch exponent n is observed
which is significantly difFerent from one for large ranges
of the parameters. The exponent o. depends on both the
magnetic field and the hopping rate as is shown in Fig.
4(b). Generally o. decreases down to a minimum value at

wo, whereas it reaches the value one in the limiting
cases of slow and rapid fluctuations. Analogous to the
behavior of the relaxation rate, an increase of the Lar-
mor frequency leads to a shift of the minimum regime
to larger hopping rates p; simultaneously the deviation
from the simple-exponential decay (n = 1) decreases.

A dependence of the Kohlrausch exponent o on mag-
netic field and temperature has experimentally been ver-
ified by measurements of the nuclear spin-lattice re-
laxation in several glasses. For example, Schnauss et
al. observed o, ( 1 in orthoterphenyl and glycerol
around and below the glass transition temperature by
H-NMR spin-lattice experiments. In analogous experi-

ments on toluol it was found that n depends on wo in
a way which qualitatively agrees with that observed on
the low-temperature side of the dip in Fig. 4. There
is also some indication for a field" and temperature-
dependent Kohlrausch exponent in the inorganic glass
Li2O. A1203 4Si02.3

To summarize the results up to this point, we may
say that the RTF model with a Gaussian distribution of
the rotation frequencies seems to be supported by exper-
iments as far as the results for the Kohlrausch exponent
are concerned. On the other hand this model cannot
explain the significant deviations from the BPP behav-
ior that were observed for the NMR relaxation rates of

disordered materials.
It was already pointed out in Sec. II B that the

Gaussian frequency distribution may not describe the
dynamical behavior of disordered systems in an adequate
way. Therefore, we investigated alternatively the average
of the polarization decay in each subsystem over the rect-
angular frequency distribution (ll) and the symmetrical
exponential distribution (12), respectively. However, the
plots of the relaxation rate Ti and of the exponent o;

exhibit qualitatively the same results as for the Gaussian
frequency distribution. The difFerent frequency weights
in the various distributions cause only slight modifica-
tions of the shape and of the extreme values. Evidently
the symmetric exponential distribution leads to larger de-
viations from the Gaussian case since in this distribution
the smaller frequencies which speed up the polarization
decay are less weighted than in the other ones.

C. RTF model including an average
over the hopping rates

The last subsection has shown that an average over
distributions of rotation frequencies is not sufIicient to
reproduce, for the two-&equency model under study,
most of the observed anomalies in the longitudinal re-
laxation rates of glassy systems. We pointed out already
in Sec. IIIB that also an average over difI'erent hopping
rates should be considered. Namely, the local environ-
ments of substances with frozen-in disorder may also be
quite difFerent with regard to the dynamics of hopping
processes. Therefore, we have performed averages of the
depolarization function of the RTF model over rectan-
gular and exponential distributions of the hopping rates,
according to Eqs. (13) and (14), respectively. Figure 5
shows the results which we obtained by a fit of the po-
larization transients with the KWW function (16). The
quantities T» and n are given as functions of the typical
p values, i.e. , p = y 3o'~„ in the case of the rectangular
and p = 0~, for the exponential distribution. The fol-
lowing features can be recognized.

(i) Generally, the behavior of the relaxation rates as
functions of the efFective hopping rate is quite similar
for both distributions and similar to the behavior of the
relaxation where no average over the hopping rates was
performed.

(ii) The extra hump in the relaxation rate which is
present for the nonaveraged quantity for smaller Larmor
frequencies is reduced for the rectangular distribution
and almost absent for the exponential distribution.

(iii) The curves are slightly shifted to larger values
of the hopping rate and the minimum of o, is less pro-
nounced.

(iv) The following frequency dependence can be ex-
tracted &om the data of Fig. 5 and additional data:

rectangular distribution: p=3~3x 10s s

exponential distribution: p=l04s '
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(v) Also the curves for the Kohlrausch exponent o, are
slightly asymmetric in contrast to the case where the hop-
ping rate is not averaged.

In summary, we have to conclude that the additional
average over the jump rates only yields a slight modifi-
cation of the results for the longitudinal relaxation rate
and the Kohlrausch exponent which were obtained by the
pure &equency average. Accordingly, this average also
cannot explain the behavior of the polarization decay in
glassy systems.

V. TIME-DEPENDENT
RANDOM TWO-FREQUENCY MODEL

In this section we introduce an extension of the ran-
dom two-&equency model. We assume that a spin per-
forms the TF process as described in Sec. IIA with the
event rate p. In addition, we assume that the rotation
&equencies of the TF process change according to a Pois-
son process with the transition rate A. Whereas the TF
model describes local motion of the spins, the additional
renewal process is intended to model possible changes of

the environment or transitions of the spins to different
local environments. Finally we average over many differ-
ent realizations of the TF process, including the renewal
process. This leads to the "time-dependent" random two-
frequency model.

A. Introduction of the model

While the frequency changes in real systems may occur
more or less gradually, we make the simplifying assump-
tion of the strong-collision model that completely new
frequencies are selected at each transition. In detail, the
model contains the following assumptions.

(i) In a subsystem (i) the spin motion is described by
the TF model which is determined by the jump rate p
and the rotation frequencies cu&', 22' .

(ii) The spin may change into a new subsystem (j)
with the transition rate A. The spin motion that takes
place there is again given by the TF model with the ro-

tation frequencies dz, 22, and the same jump rate p.
A pictorial representation of the process is given in Fig.
6.
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FIG. 6. Schematic representation of the
"time-dependent" RTF model. With a tran-
sition rate A, the hopping process between
two sites which are characterized by the ro-
tation frequencies u~, cu2 may change into
a hopping process with the frequencies clJy

The hopping rate p of the TF process
is not changed by this transition.

(iii) The transitions to the other subsystems occur cor-
responding to the strong-collison model; i.e. , the fre-

quencies w&, 22' and 47j, (Z2 are completely uncor-
related.

To derive the spin polarization according to this model,
we make a decomposition into the number of transition
events, similar to the decomposition into the number of

jumps for the TF model,

(21)

As an example, we give explicitly the term with two tran-
sitions,

t
P2" (t) = A dt' dt"P~"l (t —t') exp[ —A(t —t')]P ~ (t' —t") exp[ —A(t' —t")] P ' (t")exp( —At" ) So . (22)

Here the quantity P~'~ (t) is the solution of the TF model for a given pair of frequencies cVi', 2z', i.e. , the result of
Sec. IIA. By making this identification we assume that we have already replaced particular two-&equency processes
within the sojourn at fixed frequencies by the ensemble average over all processes for given frequency pairs. This is
justified by the following consideration: We consider large systems which comprise many different subsystems with
fixed frequencies and. the ensemble average over many transition processes of the spins, both within the subsystems
and between the subsystems. The average over the processes within the subsystems justifies the use of the P '

(t) in
Eq. (22) and all other terms, averaging over the transitions between subsystems leads to an ensemble average over
many different realizations of the disorder. If we assume that all pairs of rotation frequencies cV~', dz' are statistically
independent, and taken from the same probability distribution, we can replace the P '

(t) in the terms of the series

(21) by the average, (P )-, -, , i.e. , by the result for the RTF model.
After the replacement, the term that describes two transitions between different frequencies reads

t
(P"(t)}-, -, = A dt' dt"(P )-, -, (t —t') exp[ —A(t —t')]

0 0

x(P ) -, -, (t' —t") exp[ —A(t' —t")](P j-, -, (t"') exp( —At" ) S~ .

In the Laplace domain, one has a triple product of terms, with a shifted Laplace variable s+A. After this transformation
a geometric series is found which is easily summed up. The result is

—1

(P "(8))-, -, = (P (8+1))
~
I —A(P (8+1))

~

. SD.

As can be shown explicitly the longitudinal polarization develops independently of the polarization components in
the x-y subspace; provided that the x and y components of the frequencies dq and d2 are equally distributed around
zero. This condition is fulfilled, for instance, for the Gaussian distribution (10) with a longitudinal Zeeman field
((tu ) = (cu„) = 0 & (u, ))., In view of the decoupling of the longitudinal and transverse components the longitudinal
polarization, (P"(s))-, -, , reduces to

(25)

with the initial condition So ——e, .
A further analytical investigation of Eq. (25) seems not possible since no explicit solution of the averaged polarization
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polarization decay in the time-dependent RTF model. Corresponding to Eq. (7) the relevant term P (s+ A) in (25)
can be represented in the form

5

P (s+ A) = — ) a;((Di, urz, p, A)s*
i=O

6

) 6& ((di, (d2', '7, A)8
j=O

with A-dependent coeFicients that are listed in the Appendix.

B. Behavior at intermediate time scales

Corresponding to the discussion of the simple RTF
model we investigate the behavior of the "time-
dependent" RTF model on intermediate time scales. Fig-
ure 7 presents the results of the numerical evaluation of
Eq. (25) where the matrix term P (s+ A) (26) is aver-

aged over a Gaussian frequency distribution (cr = 1 and
do ——0) with fixed hopping rate p = 50.

Obviously, and as expected, the polarization decay of
the extended model corresponds to the one found for the
RTF model in the limit of small transition rates A be-
tween diHerent subsystems. An increase of this quantity
subsequently leads to the vanishing of the characteristic
minimum of the Kubo-Toyabe function. The resulting
behavior resembles more and more the polarization de-
cay of the "strong-collision" model in the case of A & p,
as it is seen by comparison with the results &om Ref. 27
which are also plotted in Fig. 7.

By comparing Fig. 2 and Fig. 7 we can recognize
a "competition" between the motional-narrowing efFect
of the RTF model for large hopping rates p and the
motional-narrowing eKect of the strong-collision model
caused by rapid transitions between distinct subsystems.

C. Asymptotic polarization decay
for the "time-dependent" RTF model

Finally, we investigate this extension with regard to its
long-time decay characteristic. As in Sec. IV A we utilize

the approximation (17) where now the quantity (P (s+
A)) is expressed in terms of the A-dependent coefFicients

a;, b~; see the Appendix. The expression is then averaged
over a Gaussian distribution of the frequencies ui, 22.
Now we have to deal with two event rates; we regard the
processes to be thermally activated, and described by an
Arrhenius ansatz,

z, 5 ( z, )
p = po exp

~

— ~, A = Ao exp
~

—
~

. (27)) & "~ )
Here Ep ~ designate the activation energies of the pro-
cesses and po, Ao are usually called attempt frequencies.
Relating the parameters of the transition rate A to the
ones of the hopping rate p by Ao ——bpo and Ep ——aE»
we have the scaling relation

6
(28)

VO

At this point we have to keep in mind that p & po and
A&AO.

In a first run, we started with hopping rates p that
are suggested by typical experiments, namely, E~ = 1
eV, and an attempt frequency which lies in the range
po

——10 —10 s . We then assumed that the activa-
tion energy Ep of the transition process is 2E~ or 1.5E~,
corresponding to a = 2 or a = 1.5, respectively. We fur-
ther assumed that Ao ——po or 6 = 1. We selected three
combinations of parameters for a fixed value of the Lar-
mor frequency uo ——5 x 106 s ~. The results for the
longitudinal relaxation rates Tz and for the Kohlrausch
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exponent o. are given in Fig. 8, together with the re-
sult for zero transition rate. The following features are
recognized.

(i) The curves for Ti exhibit now two maxima, in-
stead of one.

(ii) Two of the curves for the exponent n show a less
pronounced minimum than in the case A = 0.

If one regards the actual values of A as a function of the
hopping rate p, one sees that A, for smaller p, is generally
much smaller than p. This explains that the behavior
of T~ in the region of the erst maximum is similar to
the case A = 0. The second maximum corresponds to
rates A of the order of the Larmor frequency. This means
that the transition process leads to a second, independent
maximum in the relaxation rate, for the time-dependent
RTF model. The behavior of the exponent o, for the
parameter choice (A) is similar to the case A = 0. For
this choice of parameters, A is very small, except at the
right end of the abscissa. Evidently an increase of the
transition rate A leads to a smoothing out of the behavior
of o. as a function of the hopping rate p.

In a second run, we avoided the appearance of two
distinct maxima which are caused by the independence
of the hopping from the transition process. For this
purpose we choose the parameters in such a way that

both maxima coincide. This will occur when A becomes
approximately equal to p at the Larmor frequency Q)p,

A p Mp. For this purpose one has to assume a large
attempt frequency Ap, i.e. , 6 )) 1. We leave the question
open whether such a choice is physically reasonable. We
took the scale factor a = 1.5 or a = 2, 6 = 10, and stud-
ied three sets of parameters; see Fig. 9. Two diferent
values of the Larmor frequency were taken, to fulfill the
condition A p ~p near the maximum.

The results for the longitudinal relaxation rate Tz
in Fig. 9 show the expected single maximum, but this
has been achieved by force. Not expected is the rise of
T& for large values of p. The interpretation of this rise
is unclear; however, it occurs for values of A which are
unphysically large. The slopes of the curves for Tz as
functions of p difFer on both sides of the maxima. At the
low-temperature side, the slope is essentially determined
by the activation energy of the hopping process, while the
slope on the high-temperature side is determined by the
(higher) activation energy of the transition process. This
leads to an asymmetry of the T curves showing quali-
tatively the same trend as observed in most experiments.
The frequency dependence on the low-temperature side
is quite similar to the usual frequency dependence of the
BPP theory; for instance, for case (D)
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In this respect the result of the time-dependent RTF
model is somewhat disappointing.

No results for the Kohlrausch exponent are given in
Fig. 9. In fact, this exponent is now practically one
for all values of p and uo. This is a consequence of the
large transition rates A; cf. the disappearance of the
minimum for larger A in Fig. 7. To summarize, the ac-
complishment of the time-dependent RTF model seems
to be a potential explanation of asymmetric rate maxima.
However, this is achieved at the expense of parameters
with the undesirable property that now the transition
rates exceed the values of the hopping rates, on the high-
temperature side. This is in contradiction to the underly-
ing idea that spin motion within each subsystem shall be
faster than the transition processes between the difFerent
subsystems. Further comments on this problem will be
given in the Conclusion.

VI. CONCLUSION

In this paper we were concerned with a derivation of
spin relaxation in disordered systems. The underlying
postulate of our theory is that one should perform an
inhomogeneous average also for dynamical situations in
systems with quenched disorder. In such systems one
has very difFerent local environments where probe spins
may behave quite difFerently. The dynamics of these
probe spins has to be treated first for these local envi-
ronments; thereafter, the result has to be averaged. over
the difFerent configurations. Previous work did imple-
ment this program by averaging exponential decay func-
tions, exp( —t/Tq 2), over distributions of the relaxation
times. Our intention was to use models for the local mo-
tions that are applicable at all times scales. Hence we
exemplified our approach on simple stochastic models,
in particular on a two-frequency model which involves
motion of the probe spins over two sites. We also in-
troduced a time-dependent two-&equency model which
takes time-dependent changes of the local environment

into account.
Our efForts were only partially successful. The random

two-frequency model yields a behavior on intermediate
time scales which is in qualitative agreement with recent
pSR experiments in NbTi. In this case the local dis-
order is relatively well understood. The spin relaxation
of the random two-frequency model shows nonexponen-
tial relaxation at long times, which may be fitted by the
Kohlrausch-Williams-Wat ts function. One interesting re-
sult is a temperature- and field-dependent Kohlrausch
exponent; such a behavior has been observed in recent
experiments. The behavior of the associated longitudi-
nal spin relaxation rate does not exhibit the characteris-
tic features of glassy systems. That is, a BPP plot of the
relaxation rate does not show asymmetry or modified ex-
ponents of the frequency dependence. An asymmetry of
the BPP plot could. be achieved for the time-dependent
extension of the random two-frequency model; however,
at high temperatures the required renewal rate becomes
larger than the rates of the motional processes within
each subsystem.

The conclusion is that the models which were con-
sidered in this paper are still too naive in comparison
with actual glassy substances. The restriction of the mo-
tion of probe spins to two sites may be too simple, and
one should consider more complicated local motional pro-
cesses. There are several other possibilities to extend the
present approach. For instance, one may take dipolar
or other interactions into account by treating the local
dynamics by the methods of Ref. 18 and then perform-
ing inhomogeneous averages. Also the extension of the
"time-dependent" two-frequency model should be further
elaborated, since it contains, in principle, the transition
from restricted to spatially unrestricted dynamics.
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APPENDIX

First we list the coefficients a, and bJ as they are obtained from Eq. (4) by algebraic formula manipulation:

ao(~1, ~2, z)
al(cdl& cd2&'Y) &

a2 (cd 1, cd2, 'Y)

a3(Cd„Cd2, p)
a4(cd„cd2, p)
a5(cdl& cd2&'Y)

bo(cdl & cd2& 'Y)

bl (Cd» Cd2& P)
b2(Cdl& Cd2& Y)

b3(Cd 1 & Cd2& P)
b4(Cdl & Cd2& "Y)

b5(Cdl& Cd2& 7)
bs (cd 1, cd2, f)

4Y (Cdlz + Cd2z) + Y(CdlzCd2 + Cd2zCdl)

2 ~ ~ 2 2 2 2 2 +2 2 ~2
(Cd 1 ~2) + 8'Y (Cd lz + Cd2z) 8 f ~lz~2z + ~lz~2 + ~

16 Y + 5'Y (Cd 1z + Cd 2z ) 8'YCd 1z Cd 2z + 2 Y (Cd 1 + Cd 2 ) + Y (Cd 1 Cd 2 )
24+ + (d~ + CO2 + M~ + (d2

127
2

'Y Cd 1Cd2 —(Cd 1 Cd2)

2P& CdlCd& + 2 Y (Cdl + Cd2)

CdlCd2 + 2Y Cdl Cd2 + O'Y (Cdl + Cd2),

8'Y + 4'Y(Cd2 + Cd 1)
12+ + chal + (d2)

6p,
1.

(A1)

The A-dependent coefficients a, and b~ that a.re needed in Eq. (26) are given by

Gp (dy )

G]

G2 (d] )

Q3 (dy -,

G4 (dy )

G5 CtJy )

bo(cd 1 &

Cd3& 'Y& &)

Cd2 & p& A)

Cd 2 &
'Y

&
A )

Cd2, 'Y& A)

Cd2, p& A)

Cd 2 &
'Y

&
A )

Cd2& p& A)

bl(Cdl& Cd2& 'Y& ~)

gP + E'gy + E: g2 + 8 g3 + E' g4 + 8 g5)
2 3 4 5

gy + 2Fg2 + 38' g3 + 46' g4 + 5F g5,

g2 + 3Fg3 + 6e g4 + 10' g5,

g3 + 48'g4 + 108' g5,

g4 + 5Gg5)

g5)

hP+ C 62+ ~ h4+ ~

(s —'Y ) +5' cdlcd2 —7 (cdl —cd2) +5 (cdl+cd2) —& (cdl cd2)

25[h2 + 2s h4 + 3s ]

25 Cd, Cd2 —p (Cdl —Cd3) + 3(5 —p ) + 25 (Cd, + Cd2)

b2(Cdl&

b3 (&1 &

b4(~»

b5(Cdl&

bs (Cd 1,

Cd2, 'Y, A)

Cd2& 'Y& ~)

Cd2& 'Y& A)

Cd2& 7& &)

Cd2, p& A)

h,2+ 6e264+ 15c4,

4ch4 + 20',
64+ 15',
6e,

where we have defined c = p + A. The coeKcients g;, h~ are given by

9o(cd» cd» 'Y)

gl (Cdl & Cd3& 'Y)

e2(~1, ~2; V)

93(Cdl& Cd2& 'Y)

94(Cdl& Cd3& 7)
g5(Cd» Cd2& '7)

b, o(cdl cd2, 'Y)

h2(Cdl& Cd2& 'Y)

h4(Cdl& Cd2, P)
hs(Cdl & Cd2 & Y)

2P + 2P (Cdl . Cd2 + CdlzCd2z) + 2 Y Cdl Cd2 CdlzCd2z&

27 7 [~1 + ~2 (Cdlz + Cd2z) 2~lz~2z] + ~1~2z + Cd3~1z &

4Q 2 Y [Cdl Cd2 (Cdlz + Cd2z) + CdlzCd2z]&

—4P + M~ +(d2 +(d~ + 422

27
2
—'Y h' + Cdl Cd2)

3'Y —P (Cd2 —Cdl) + Cdl Cd2 &

—3+ + CtJg + (d2)

1.

(A3)



52 LONGITUDINAL SPIN RELAXATION IN SIMPLE. . . 6683

H. Ackermann, P. Heitjans, and H.-J. Stockmann, in Hy-
perfine Interactions of Radioactive Nuclei, edited by J.
Christiansen, Topics in Current Physics Vol. 31 (Springer,
Berlin, 1983), p. 291.
P. Heitjans, Solid State Ion. 18 gc 19, 50 (1986).
A. Schenck, Muon Spin Rotation Spectroscopy: Principlea
and Applications in Solid State Physics (Hilger, Bristol,
1985).
C.P. Slichter, Principles of Magnetic Resonance, 3rd ed.
(Springer, Berlin, 1990).
A. Abragam, Principles of Nuclear Magnetism (Oxford
University Press, London, 1961).
N. Bloembergen, E.M. Purcell, and R.V. Pound, Phys.
Rev. 73, 679 (1948).
R.K. Wangsness and F. Bloch, Phys. Rev. 89, 728 (1953);
F. Bloch, ibid 102, 1.04 (1956).
A.G. Redfield, IBM J. Res. Dev. 1, 19 (1957).
H.-J. Stockmann and P. Heitjans, J. Non-Cryst. Solids 66,
501 (1984).
E. Roessler, M. Taupitz, and H.M. Vieth, J. Phys. Chem.
94, 6879 (1990).
W. Schnauss, F. Fujara, K. Hartmann, and H. Sillescu,
Chem. Phys. Lett. 166, 381 (1990).
W. Schnauss, F. Fujara, and H. Sillescu, J. Chem. Phys.
97, 1378 (1992).
R. Geil and G. Hinze, Chem. Phys. Lett. 216, 51 (1993).
P.W. Anderson, J. Phys. Soc. Jpn. 9, 316 (1954).
R. Kubo and K. Tomita, J. Phys. Soc. Jpn. 9, 888 (1954).
R. Kubo and T. Toyabe, in Magnetic Re8onance and Relax-
ation, Proceedings of the XIVth Colloque Ampere, Ljubl-
jana, 1966, edited by R. Blinc (North-Holland, Amsterdam,
1967), p. 810.
M. Celio, Phys. Rev. Lett. 56, 2720 (1986).

~s H.-J. Stockmann, J. Phys. Condens. Matter 1, 5101 (1989).
G. Diezemann and W. Schirmacher, J. Phys. Condens.

Matter 2, 6681 (1990).
P. Heitjans, A. Korblein, H. Ackermann, D. Dubbers, F.
Fujara, and H.J. Stockmann, J. Phys. F 15, 41 (1985).
P. Borgs, K.W. Kehr, and P. Heitjans, Phys. Lett. A 1551
429 (1991).
K.W. Kehr, G. Honig, and D. Richter, Z. Phys. B 32, 49
(1978).
Handbook of Mathematical Functions& 9th ed , ed.ited by M.
Abramowitz and I.A. Stegun (Dover, New York, 1970).
P. Borgs, Ph. D. thesis, Universitat Hannover, 1993.
J.H. Van Vleck, Phys. Rev. 74, 1168 (1948).
G. Honig and U. Hirdes, J. Comput. Appl. Math. 10, 113
(1984).
R.S. Hayano, Y.J. Uemura, J. Imazato, N. Nishida, T. Ya-
mazaki, and R. Kubo, Phys. Rev. B 20, 850 (1979).
H.-J. Fell, R. Hempelmann, O. Hartmann, S. Harris, and R.
Wappling, Ber. Bunsenges. Phys. Chem. 95, 1091 (1991).
A. Magerl, A.J. Dianoux, H. Wipf, K. Neumaier, and I.S.
Anderson, Phys. Rev. Lett. 56, 159 (1986).
A.M. Stoneham, Phys. Lett. 94A, 353 (1983).
W.F. Lankford, H.K. Birnbaum, A.T. Fiory, R.P. Minnich,
K.G. Lynn, C.E. Stronach, L.H. Bieman, W.J. Kossler, and
J. Lindemuth, Hyperfine Interact. 4, 833 (1978).
K.L. Ngai, Solid State Ion. 5, 27 (1981).
K. Funke and R. Hoppe, Solid State Ion. 40 & 41, 200
(1990).
P. Heitjans, W. Faber, and A. Schirmer, J. Non-Cryst.
Solids 131-133,1053 (1991).
The appearance of two real roots is associated with the
eventual exponential decay of the plateau value (1/3) of
the Kubo-Toyabe behavior for finite transition rates.
In this context we remark that the Larmor frequencies in
NMR measurements typically exceed the value 10 s
G. Hinze, Ph. D. thesis, Universitat Mainz, 1993.
W. Franke, Diploma thesis, Universitat Hannover, 1990.


