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We develop a microscopic analysis of superconducting and dissipative currents in junctions be-
tween superconductors with d-wave symmetry of the order parameter. We study the proximity effect
in such superconductors and show that for certain crystal orientations the superconducting order
parameter can be essentially suppressed in the vicinity of a nontransparent specularly re8ecting
boundary. This effect strongly inBuences the value and the angular dependence of the dc Josephson
current j s A. t T T, it leads to a crossover between j s oc T, —T and js oc (T, —T), respectively,
for homogeneous and nonhomogeneous distribution of the order parameter in the vicinity of a tunnel
junction. We show that at low temperatures the current-phase relation js(y) for superconductor—
normal-metal —superconductor junctions and short weak links between d-wave superconductors is
essentially nonharmonic and contains a discontinuity at y = 0. This leads to further interesting fea-
tures of such systems which can be used for pairing symmetry tests in high-temperature superconduc-
tors (HTSC). We also investigated the low-temperature I Vcurves -of normal-metal —superconductor
and superconductor-superconductor tunnel junctions and demonstrated that depending on the junc-
tion type and crystal orientation these curves show zero-bias anomalies I oc V, I oc V ln(liV), and
I oc V caused by the gapless behavior of the order parameter in d-wave superconductors. Many of
our results agree well with recent experimental 6ndings for HTSC compounds.

I. INTRODUCTION

In spite of enormous efforts made to understand
the physical mechanisms of pairing in various high-
temperature superconductors (HTSC) the situation still
remains unclear. A key role in understanding of this
phenomenon belongs to the question about the symme-
try of the order parameter. Quite early after the original
discovery of Bednorz and Muller the symmetry of the
d&2 y2 type was suggested for HTSC materials. Since
then plenty of experiments have been designed to probe
the symmetry of the order-parameter in HTSC (see, e.g. ,
Ref. 6 for a review). Although many experimental results
are consistent with the picture of d-wave pairing (e.g. ,
the temperature dependence of the penetration depth,
NMR and NQR studies, etc.) they still do not allow to
rule out other possibilities, like anisotropic 8-wave pair-
ing. Moreover the results of some other experiments (see,
e.g. , Ref. 9) may indicate s-wave rather than d-wave sym-
metry of the order parameter in HTSC. Therefore it is
quite likely that only a set of different and independent
experimental tests would allow to make an unambigu-
ous conclusion about the order-parameter symmetry in
HTSC compounds.

Important information about the symmetry of super-
conducting pairing can be obtained &om the measure-
ments of both the dc Josephson effect and the quasi-
particle current in tunnel junctions between two HTSC.

The dc Josephson effect in unconventional superconduc-
tors has been discussed by Geshkenbein, Larkin, and
Barone and by Sigrist and Rice who demonstrated
that the d-wave symmetry of the order parameter may
lead to the sign inversion of the Josephson critical current
for certain crystal orientations. Under these conditions
the tunnel junction becomes the so-called vr junction.
Being closed by a m junction a superconducting loop with
a not very small inductance develops a spontaneous cir-
culating current. As a result the magnetic Aux equal to
a half of the Aux quantum occurs inside a ring and can be
easily measured. Measurements of that kind have been
carried out for HTSC samples and indeed demon-
strated the results fully consistent with the above picture.
These results in combination with the paramagnetic be-
havior of granular HTSC compounds and its theoretical
interpretation ' ' serve as a serious argument in favor
of d-wave pairing symmetry in HTSC.

In contrast to the Josephson effect which is sensitive to
the order-parameter phase difference across the junction,
low-temperature measurements of the quasiparticle cur-
rent in tunnel junctions provide information about the
quasiparticle density of states in superconducting banks
and allow us to distinguish gapless superconductivity
from that with a 6nite gap. The results of numerous
experiments vary kom a nearly BCS-like to a clear gap-
less behavior for different HTSC materials (see, e.g. , Ref.
6 and references therein). The results of recent tunneling
experiments with Bi2Sr2CaCu208 samples ' indicate
a gapless behavior of the I-V curve at low voltages and
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temperatures (e.g. , the dependence I oc V at low V was
reported in Ref. 19).

A growing number of experimental data makes it nec-
essary to develop a detailed analysis and specify theoret-
ical predictions concerning both dc 3osephson effect and
quasiparticle tunneling between d-wave superconductors.
Several phenomenological calculations assuming d-wave
pairing have been already done (see below) attempting
partial understanding of some experimental results. Nev-
ertheless a number of important questions still have to be
adressed in this context. E.g. , a uniform distribution of
the superconducting order parameter on both sides of a
tunnel barrier was assumed in many calculations. Being
obviously correct for isotropic s-wave superconductors,
this assumption may fail for d-wave superconductors de-
pending on their orientation relative to the tunnel barrier
plane. Below we will show that the spatial dependence of
the order parameter due to the proximity effect becomes
particularly important close to the superconducting crit-
ical temperature T having a strong impact on the dc
Josephson effect in d-wave superconductors.

Another problem appears if one applies the tunneling
Hamiltonian method to investigation of the charge trans-
port through tunnel junctions in the d-wave case. The
momentum dependence of the matrix elements describ-
ing tunneling between superconductors becomes partic-
ularly important in this case. It is easy to show that the
choice of the tunneling matrix elements as being inde-
pendent on the momentum direction (standard for the
s-wave case) leads to confusing results for d-wave super-
conductors. Furthermore, an unambiguous choice of this
dependence cannot be done within this method. This em-
phasizes the necessity to provide a microscopic descrip-
tion of tunneling between such superconductors based on
matching of the electron propagators at the tunnel bar-
rier. This approach leaves no space for ambiguity and,
on top of that, it is not con6ned to the case of low trans-
parency barriers but allows us to study other types of
weak links with highly transparent interfaces.

In this paper we will provide an extensive microscopic
study of the charge transport in various types of junc-
tions between d-wave superconductors with BCS-like be-
havior of the density of states. The paper is organized
as follows. In Sec. II we develop a detailed study of the
proximity effect for d-wave superconductor-insulator and
d-wave superconductor —normal-metal structures. We in-
vestigate the spatial dependence of the superconduct-
ing gap function for various crystal orientations and
temperatures and show that for particular orientations
the gap at the superconductor-insulator interface can
be completely suppressed. The dc 3osephson cur-
rent through tunnel junctions, superconductor —normal-
metal —superconductor (SNS) junctions and short weak
links between d-wave superconductors is examined in Sec.
III. Our analysis allows us to discover several qualitative
features of the Josephson effect in such systems which can
be used for further experimental tests of the pairing sym-
metry in HTSC. In Sec. IV we investigate the I-V curves
for superconductor-superconductor (SS) and normal-
metal —superconductor (NS) tunnel junctions. For most
of crystal orientations we found gapless non-Ohmic be-

havior in the limit of small voltages and T = O. Discus-
sion of our results is presented in Sec. V.

II. PROXIMITY EFFECT
IN cE-VIVE SUPERCONDUCTQRS

The order parameter in bulk superconductors with
unconventional pairing depends on the direction of the
Fermi momentum p~. ' Beyond that close to the edges
of a superconducting piece of metal the order parameter
acquires a spatial dependence due to the proximity ef-
fect. In this section we present a detailed investigation
of this effect for superconductors with d-wave symmetry
of the order parameter. We show that the spatial de-
pendence of the order parameter in the vicinity of a low
transparency insulating barrier may essentially depend
on the crystal orientation relative to the barrier plane.
Similar —although quantitatively different results hold
provided a superconductor is in a good electric contact
with a normal metal.

In order to describe the proximity effect in d-wave
superconductors we make use of the Eilenberger equa-
tions for the quasiclassical Green functions. In the case
of superconductors with singlet pairing these equations
read23) 24

(2(u + eJ;V'~) f(p, R, ur )
—24(p, R)g(p, R, ur ) = 0,

(2(u —+~V'~) f+(p, R, (u )
—2A*(p, R)g(p, R, (u ) = 0,

epV'~ g(p, R, (u ) + A(p, R)f (+p, R, (u )
—A*(p, R)f (p, R, (u ) = 0.

Here w = (2m+ l))rT is the Matsubara frequency, p =
p~/~p~~, e~(p) = py /m is the Fermi velocity, A(p, R) is
the order parameter or the gap function. Anomalous and
normal Green functions f(p, R, tu ) = f+*(—p, R, cu )
andg(p, R, tu ) = g*(—p, R, ur ) obey the normalization
condition

g'(p, R, (u )+ f(p, R, u) )f+(p, R, (u ) = 1. (2)

The order parameter L is linked to the anomalous Green
function by means of the standard self-consistency equa-
tion

d2S'
V(p p')f(p', R ~ ),

where V(p, p') is the anisotropic pairing potential and
the integration is carried out over the Fermi surface. The
quasiclassical equations (1) are valid at the scale much
larger than the interatomic distance 1/p~ and do not
keep track of rapid changes of the system parameters
very close to the metal-metal or metal-insulator bound-
aries. In order to take these boundary effects into account
the system of Eqs. (1)—(3) should be supplemented by
the boundary conditions matching the quasiclassical
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electron propagators g and f on both sides of the bound-
ary. These boundary conditions may essentially depend
on the quality of the interface. In the case of a nonmag-
netic specularly reflecting boundary between two metals
these conditions read

d-(p-) = d+(p+)

d-( )"(p )= l1+
1 "(p.) -(p ) (4)

d+(p+) &

2

1 —R(p )
1+A(p )'

Here [a, b] denotes the commutator of matrices a and b,

R(p) is the reflectivity coefFicient and the index +(—)
labels the electron momentum in the right (left) half
space with respect to the boundary plane. The 2 x 2
matrices d and s are defined by the equations d(p)
g(p) —g(p), s(p) = g(p) + g(p), where p(p) denotes the
incident (reflected) electron momentum and

g(p) if(p) &

Provided the transparency of the tunnel barrier is equal
to zero D = 1 —B = 0 the equations (4) yield

g+(p) = g+(p) f+(p) = f+(p) f++(p) = f++(p) (6)

Let us first consider the case of an impenetrable bound-
ary situated at the plane x = 0. Then the spatial depen-
dence of the gap function A(z) is defined by the combina-
tion of Eqs. (1) and (3) with the boundary conditions (6)
at x = 0 and fi(x ~ oo) = f, A(z ~ oo) = A, where
f and 4 are the equilibrium values for the anomalous
Green function and the order parameter in the bulk su-
perconductor. Provided the order parameter obeys the
condition

A(p, R) = A(p, R,)

the solution of the above equations does not depend on
x and thus the functions fi and A coincide with their
equilibrium values far from the boundary. For supercon-
ductors with d-wave symmetry of the order parameter
A(p~) of the (p —p„,) type the condition (8) is sat-
isfied if one of the principal crystal axes xo, yo or zo is
perpendicular to the boundary plane.

For other crystal orientations the order parameter
A(p, x) turns out to be spacially inhomogeneous. To
proceed further let us assume that one can express the
value 4 in the form A(p, x) = g(p)g(z). At tempera-
tures close to T and distances larger than the correlation
length (o from the boundary the function g(z) obeys the
Ginzburg-Landau equations which have a well known so-
lution

where the Green functions are taken at the metal-
insulator boundary. In the opposite limiting case of a
transparent boundary between two metals D = 1 the
equations (4) reduce to a simple continuity conditions
for the Green functions g+ ——g and f+ ——f at the
boundary plane.

For the sake of definiteness let us assume that a d-wave
superconductor occupies a half space x & 0. Provided
there is no current flow in this superconductor one can
choose the gap function L to be real there and define
fi ——(f + f+)/2, fz ——(f —f+)/2. Then with the aid
of (1) we Find

qci, (z) = )7 tanh[(z + p)/V 2((T)],

is the equilibrium value of g(z) far from the boundary
and ((T) is the temperature-dependent superconducting
coherence length. In the case of uniaxial symmetry we
have ((T) = [~II(T) cos n +( ~(T) sin o.'] ~, where ~II(T)
and (~(T) are the values of the coherence length, respec-
tively, in the basal plane and the transversal direction, o,

is the angle between the vector normal to the boundary
and the basal plane. The value of P is defined by the
boundary condition

&(p *) 1+ *, [8 fi(p, z, (u )]

1/2

f (p,i~z—) = 0, (7)

qg'(0) = g(0)

and the parameter q has to be derived from the micro-
scopic theory [Eqs. (3), (6), and (7)].

In the vicinity of the critical temperature T T one
can linearize Eq. (7) neglecting higher powers of fi
Then combining (6) and (7) one gets

1 f 2'
fi(p, x, a) ) = exp

~

— (x —x')
~

b, (p, x') + exp
o v*

(x + x') a(p, z')
)

dx'.
V~

Substituting (10) into (3) and setting A(p, x) = @(p)q(z) we arrive at the integral equation

q(z) =, , ) d'Sq(z')g(p) exp
~

— (x —x')~TA . z, g (p) (' 2cu

f &'(p)d'S -
o

exp
~

— (x+ x')
~

dx'.g(p) (
)
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The effective coupling constant for an anisotropic super-
conductor A is defined by the equation

Ag(p) =— d2S'
V(p, p')0(p')

(
(12)

~(p) + ~(p)

( 2(u
exp

(

— x
/

rg(x)dx,
v )

f2(p, ~ ) = sgnu0(p) —0(p)
V~

(13)

2~
x exp

~

— x
~
g(x)dx

o ( v )

0(p) —4 (p)
) @( )

Sgn (Vz+m) fl (p&1+m)'

The exact solution of (ll) can be easily found for the
case g(p) = —@(p). Then we have

g(x) = Cx,

i.e., for this particular crystal orientation the gap func-
tion vanishes at the boundary x = 0 and for any x ) 0
it is described by the function

g(x) = rj tanh[x/~2((T)].

which yields mT, A P ~wm~ = 1. Equation (ll) de-
scribes the behavior of q(x) at distances x & ((T) from
the boundary. This equation coincides with that derived
in Ref. 30 within the &amework of a different technique
for the case of a small gap anisotropy.

A trivial combination of the above equations also al-
lows us to evaluate the Green functions at T close to
T, . E.g. , the functions fl and f2 at the superconductor-
insulator boundary z = 0 and T ~ T read

7r3
W (p) + @(p)l'

7((3) (f. ..[@(p) + 4(p)]'v.'d'~)' i
4~'T f,.(&(p) —&(p)]2v*d'~ )

l
x

I
@'(p)v'd'S

where integration over the Fermi surface is confined to
its part with v ) 0.

Note that with the aid of general symmetry arguments
one can unambiguously fix only those crystal orientations
for which the parameter q is equal to zero and infin-
ity. The detailed form of q as a function of a crystal
orientation relative to the boundary plane for a given
pairing symmetry type essentially depends on the par-
ticular choice of the basis function g(p). E.g. , for the
pairing symmetry of the type (p2 —p2 ) for the sake of
definiteness one can choose the simplest basis function
g(p) = Ao(p —p2 ) and after an explicit integration in
(15) get

4((3)v p.

57I T~(1 + 2'sill Oo)

(
(cos 0O + 3 sill 8O cos 2/0)

X . 2 . 2sin eo (1 —sin 90 cos2 2/0)
6

(4 cos go + 19 sio go cos 2g4) ).
(~l ~ 4 2

6 ' 3 q4)
(16)

Here Oo, Po are the polar and the azimuthal angles of
the normal n to the boundary (see Fig. 1). The function
q(eo, po) is presented in Fig. 2. We see that the parame-
ter q varies from q = 0 (or g = 0) for 00 ——7r/2, Po ——m. /4
[vP(p) = —g(p)] to q = oo [i.e. , g'(0) = 0] if one of the
main crystal axes xo, yo or zo has the angle m/2 with the
interface plane.

Our analysis can be easily modified to take into ac-
count the effect of nonmagnetic impurities. In the pres-
ence of such impurities close to T„Eq. (11)remains valid

Combining the equation g(p) = —g(p) with the symme-
try condition for the order parameter of the (p2 —p2, )
type we come to the conclusion that the gap function
vanishes at the superconductor-insulator interface pro-
vided the principal crystal axes xo and yo constitutes
the angle m/4 with this interface. Note that this con-
clusion is essentially based on the symmetry arguments
and thus remains valid at any temperature below T . In-
deed, for a pairing potential with the symmetry prop-
erty V(p, p') = —V(p, p') and the boundary condition
f (p) = f (p) we obtain g(0) = 0 from the self-consistency
equation (3) at ally T.

At distances x )) (o from the boundary the integral
equation (11) has a general solution

Zp

yp

g(x) = C(x + q). (i4)

The parameter q can be easily found from a simple vari-
ational procedure which yields

FIG. 1. The relative orientation of the principal crystal
axes xp, yp, zp and the vector n normal to the boundary
plane.
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l5-

gets

~(*)@(~) &(0)[@(&)—&(&)]

f 2(u
xexp/ — x /.

v
(17)

Taking (17) as an approximate form for fq in the
whole frequency interval u Ap, setting g(x) =const
and expanding in powers of the anisotropy parameter
j' [@(p) —Q(p)]2d2S/ f $2(p)d2S we find

FIG. 2. The parameter q (in units of v~/T, ) as a function
of crystal orientation relative to the boundary plane.

if one substitutes u -+ ~ = u + sgn u /2~; ~, where
7' p is the average scattering time. Accordingly the mod-
ified critical temperature T is de6ned by the equation
7rT,'Ag ~cu

~

= 1. With the aid of (ll) it is easy to
check that scattering on nonmagnetic impurities does not
lead to qualitative changes in the behavior of the order
parameter in the vicinity of a superconductor-insulator
interface. E.g. , the homogeneous solution rl(x)
for @(p) = @(p) and the solution ri(x) = Cx for @(p) =
—g (p) remain valid in the presence of impurities. Similar
results hold also for intermediate crystal orientations.

The above analysis shows that in the case of specu-
larly reflecting boundaries the values q(0) and g are
of the same order of magnitude only for particular ori-
entations of the normal n within narrow angular in-
tervals KPp AHp [(p/((T)] ~~ around the crys-
tal axes xo, yo, zo. For other crystal orientations &om
Eq. (16) one has rI(0) rI (p/((T) « g, i.e. , the
d-wave superconducting order parameter turns out to
be strongly suppressed in the vicinity of the insulating
barrier. In the case of diffusive scattering at the inter-
face one has q (p. Thus in this case the parameter
rI(0) (pg /((T) « rI for T ~ T, and all crystal
orientations.

At low temperatures the analysis of the proximity ef-
fect becomes more difBcult. As we already discussed for
particular crystal orientations the form of the order pa-
rameter can be described with the aid of symmetry ar-
guments. E.g. , for @(p) = @(p) the superconducting
order parameter A(T) does not depend on coordinates
whereas for g(p) = —@(y) at any T we have A = 0 at
the superconductor-insulator interface. For other crys-
tal orientations the behavior of the order parameter at
T (( T can be qualitatively described by the following
estimate.

Let us consider the exact equation (7) and split the
&equency range into two intervals: ~~

~
&& b, p and

[
) Ap. The contribution of the first frequency inter-

val to the self-consistency equation is small in the param-
eter ~ /Ap. Therefore for our estimate it is sufflcient to
restrict our consideration to the second &equency inter-
val. For [tu

~
)& Ep one can neglect nonlinear terms in

(7). Then making use of the condition (p )) v /h1 one

xi @(p)vdSi (19)

According to this result for NS structures at T ~ T
the parameter q is of order (p for all crystal orientations.
As before at T ~ 0 the order parameter changes &om
A(x = 0) to A(x = oo) at distances of order (p from the
NS boundary. To estimate the value g(0) for this temper-
ature interval one can follow the procedure developed in
Ref. 32 for the case of isotropic 8-wave superconductors.
Then similarly to Refs. 32 and 33 one finds g(0) = 0.5q
at T ~ 0. This estimate appears to hold for any crystal
orientation. It also agrees with the results of Ref. 34 in
which the order parameter of a d-wave superconductor
has been calculated numerically for a particular crystal
orientation.

Finally let us note that at T close to T and dis-
tances x & (p &om the interface we also expect an ad-
ditional suppression of the order parameter with respect
to that described by Eqs. (14), (15), and (19). Indeed,
the Ginzburg-Landau equation and its solution (9) ap-
ply only at distances x )& (p &om the boundary. For

This estimate provides correct limits g(0) = rI for

Q(p) = vP(p) and q(0) = 0 for @(p) = —@(p) and qualita-
tively describes the low-temperature behavior of rI(0) for
intermediate crystal orientations. It demonstrates that
at T « T, the value g(0) is of order q for a relatively
wide angular interval APp, b, 8p 1. The typical length
scale at which the value g(x) changes from g(0) at the
boundary to g deep in the superconductor is of order
(p

In the case of an ideally transmitting normal-metal—
superconductor interface D(p) = 1 quasiclassical prop-
agators are continuous at this interface: g (x = 0)
g+(x = 0) and f (x = 0) = f+(x = 0). Then im-
posing the boundary conditions fq(x -+ oo) = f
A(x ~ oo) = b, , fq( —oo) = 0 and assuming that the
order parameter is equal to zero in the normal metal
E(x & 0)—:0 one can repeat the above analysis and
show that at T close to T the order parameter is again
described by Eqs. (9) and (14), where

vr3
~ =

I ~36&~3~r f@'(i)~1~*~1' *~

7&(3) [f@'(J )V.'d'S]'&
4vrsT f $2(p)~v ~d2S )
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III. JOSEPHSON CURRENT
FOR ANISOTROPIC SUPERCONDUCTORS

A. Tunnel junctions

Let us investigate the dc Josephson effect in tunnel
junctions between two d-wave superconductors. Assum-
ing that the junction transparency is small D(p) « 1
one can proceed perturbatively and expand the bound-
ary conditions (4) in powers of D(p). Keeping only the
linear terms one gets

g (~ ) —g--(~--) =
2 (& )[f+(&+)-f+5 )--
—f-(J -)f+ (&+)1 (20)

x & (p it is necessary to proceed within the framework of
a rigorous microscopic analysis. E.g. , one can show
that the exact value rl(0) at the boundary between a
normal metal and an s-wave superconductor is by the
factor 1.4 smaller and the exact ratio rI'(0)/q(0) is by
the factor = 1.6 larger as compared to the corresponding
values which follow &om the standard Ginzburg-Landau
analysis (see, e.g. , Ref. 35). We believe that similar situa-
tion takes place also for superconductors with anisotropic
pairing considered here.

where the functions f~(p+) and f+ (p+) are the anoma-
lous Green functions calculated on both sides of the tun-
nel barrier for D(p) = 0. Substituting this expression
into the formula for the superconducting current

d2S
j(R) = 2vri—eT ) — vy(p)g(p, H, u ), (21)

2 lr 'Uy

we arrive at the general expression for the Josephson cur-
rent

d2S—f2 —(&-)f2+(&+)]
(2 ), (22)

where y js the phase difference between two superconduc-
tors [i.e. , the gap is proportional to exp(ip)g+(p+) and

(p ) on the left and on the right, respectively], v is
the Fermi velocity projection on the normal to the plane
interface. The functions fq, f2 are calculated for real
@+(p+), tP (p ). Provided the functions f~(p+, ur ) do
not depend on space coordinates one can easily evaluate
js (22) and get

js = 27reT sing) D(p )v (p )[fq (p )f~+(p+)
m, v~&0

js = 2vreT sin p ) (23)

&+(&+)&-(&-)
.&o I++(I"'+)

I
+ I+—(P—) I

~ 6 I &+(i+) I

—
I

&- (I ) I
&

E, I&+(~+) I
+ I&-(&-)I)

d2S
xD(p )v (p ) (24)

This result coincides with that obtained in Ref. 27. At
low temperatures T (( L it yields

state resistance of a tunnel junction

d2S
B~ =2e D(p )v (p )

&p 2 lr v~
(26)

one can easily reduce Eqs. (24) and (25) to the anal-
ogous results for conventional superconductors provided
the momentum dependence of the gap function L is ne-
glected.

Close to the critical temperature T T, the expression
(23) reduces to

where K(t) = f (1 —t sin P) ~ dP is the complete
elliptic integral. At K (p ) 4+(p+) A(p) and any
T we find &om (23)

f'A(P) l
js = ere sin p A(p) tanh

~

v &0

ere sin y
v &0

d S
X

(2~)sv~

&+(I +)& (~ )D(& )v*(&-)---
(27)

d S
xD(p)v (p) (25)

This result shows that the Josephson current between
identical similarly oriented d-wave superconductors at
T « 4 is proportional to the product A(p)D(p)v (p)
averaged over the momentum directions at the Fermi sur-
face.

With the aid of a standard expression for the normal-

As it was demonstrated in the previous section in the
presence of a nontransparent insulating barrier the order
parameter and the Green functions of a d-wave super-
conductor do not depend on coordinates only provided
one of the principal axes is perpendicular to the barrier
plane. For any other crystal orientation the order param-
eter b as well as g and f functions vary in space and the
results (23)—(25), (27) are no longer valid. To derive the
corresponding generalization of Eq. (27) let us combine
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the exact formula (22) with the results obtained in Sec.
II. As for a spherical form of the Fermi surface the value

D(p) depends only on p, with the aid of Eq. (13) at T
close to T we And

j.=(~'(0))' „. ~+(p.)4 (p-)
v )0
d S

xD(p )v (p ) (30)

D(p )v*-(p )I+-(p+ ~-)

The functions I~ read

I+(p+ ~-) = 1
+( + )

l
x exp (—2ldrn

v~ )

js = 87reT sin rp )
rn v )0

d2SxI (p, (u )
27t 'Uy

(28)

js ocr) (0) ocT, —T, (31)

(29)
whereas for @(p) = —g(p) the result (30) yields

This result demonstrates that even if the order parame-
ter of a d-wave superconductor vanishes at the interface
g(0) = 0 the Josephson current remains Rnite. The non-
locality of js (28), (29) results in different temperature
dependence of the Josephson current for different crystal
orientations. E.g. , for a particular case Q(p) = @(p) and
T close to T, from (27) we have

x is the distance &om the interface.
The results (28), (29) show that the expression for the

Josepson current in d-wave superconductors is essentially
nonlocal in space: the value jp is determined by the or-
der parameter at distances (o from the tunnel barrier.
E.g. , for a particular crystal orientation @(p) = —@(p)
at both sides of the barrier close to T we get

js ~ g"(0) ~ (T. —T)'. (32)

To evaluate the Josephson current for arbitrary crystal
orientations let us combine the results (9), (14) with Eqs.
(28) and (29). Then making use of (26) and assuming
D(p) oc p"„/p~~ (k = 0, 2, ...), we get

I q+q +2,T(q-++q-)v*(p )+ 48T, l0 (p )0+(p—+)
*

„+, d'~. (33)sing g (k + 2)
16eTp2& + T T „&0 l 2+sT 48T2 ) + %+1

Here q~ are the values of the parameter q (16) on both
sides of the interface. The result (33) is valid provided
the parameters q~ are not very large q~ (( (+(T). Ac-
cording to (16) this implies that the direction of either
one of the crystal principal axes should not be very close

to that normal to the interface Ago, A00 )) ((0/((T))
At APs, AHO + ((o/((T)) the expression for js shows
a crossover from (33) to (27). Thus we can conclude that
at T close to T for a wide range of crystal orientations
the proximity effect strongly infiuences the dc Josephson
current in d-wave superconductors leading to the temper-
ature dependence js oc (rj /((T)) oc (T, —T) . Only if
one of the crystal principal axes is (nearly) perpendicu-
lar to the junction plane this dependence changes and be-
comes js oc T, T. At lower tem—peratures T & A(T) the
role of the proximity effect becomes less important and
the expression (23) qualitatively describes the dc Joseph-
son current for a wide range of crystal orientations.

Sigrist and Rice suggested the following simple phe-
nomenological expression for the Josephson current be-
tween two tetragonal superconductors with p —p type
of pairing near T:

= gp slI1 (p(A+( )
—'A+( ) ) (77 ( )

n
( ) ).

Since the basis function g(p) is not unique for a given
pairing symmetry type, the dependence of the Joseph-
son current on the orientation of the boundary plane
relative to the crystal axes cannot be chosen unambigu-
ously from the symmetry arguments only. Equation (34)
presents the simplest example for a particular angular
dependence of the Josephson current consistent with the
pairing symmetry. For more complicated cases higher
powers of n+( y) can appear.

In the case of diffusive scattering at the boundary
the Josephson current does not depend on the rela-
tive orientation of two superconductors and g(0)
[(o/((T)]2' . If we put g(0) 0, in accordance with
(32) and (33) at T close to T, we have jo oc (T, —T)2.

As it follows &om our analysis the dependence of jp
on the relative orientation of superconductors becomes
important for the specular scattering at the insulating
barrier. Prom Eq. (27) one can easily recover the depen-
dence of the Josephson current js on the angle P between
the z0 axes of two superconductors. E.g. , if n+( p) 1
and D oc p /p& we have

(35)

Here n~(, ~
denotes the projection of the unit vector nor-

mal to the boundary plane on the i axis.
where L~, A2 are the maximum values of
A(p+), A(p ). We see that in the case of Eq. (35)
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FIG. 3. An example of the circuit which contains the odd
number of vr junctions.

the Josephson critical current is positive for all values of
P (0 contact). However if, for instance, the zo axes for
both superconductors are perpendicular to the boundary
plane, Eq. (27) yields

gg oc cos 2P,

where P is now the angle between the xo axes of the
superconductors. In the latter case the Josephson critical
current turns out to be negative (vr junction ) for certain
values of P. Thus, rotating one of the crystals around its
zo axis one can turn the 0 junction into the vr junction.
The latter property remains also for lower temperatures
T « T, in which case the P dependence of the Josephson
current is more complicated.

Note that the dependence (36) permits to realize a very
simple configuration, for which three parts of the same
superconductor form a closed circuit with the odd num-
ber of vr junctions (see Fig. 3). The zo axes of the grains
coincide and are taken to be perpendicular to junction
planes. The angles between the xo axes of the first and
second as well as the second and the third grains are
supposed to be equal to vr/6. Then according to (36) the
corresponding junctions are of the 0 type. In contrast
the junction between the third and the first grains turns
out to be of the vr type because the angle P is equal to
vr/3 for this junction.

B. SNS junctions

Let us now consider the dc Josephson effect in planar
structures superconductor-normal-metal-superconductor
(SNS). In the case of clean s-wave superconductors this
effect was studied in Refs. 37 and. 38. Here we provide
the generalization to the case of d-wave superconductors
with arbitrary orientations relative to the boundaries.

In order to evaluate the supercurrent in SNS junc-
tions one has to solve the Eilenberger equations (1) in
superconducting and normal regions and match the so-
lutions at NS interfaces with the aid of the boundary
conditions (4). Below we shall consider the case of trans-
parent NS boundaries with D{p) = 1 and assume that
the order parameter in the normal metal is equal to zero
4(—d/2 & x & d/2) = 0, d is the thickness of a normal

l
v*1&*hg+{p * ~-) = +21&+{p+ x) I»+(p+ * ~-)

(38)

The solution of the Eilenberger equations (1) in the
normal metal is trivial. Combining this solution with
{37) and making use of the continuity condition for the
Green functions at NS interfaces we find

giv(p, (u ) = » (p, ~ ) = »+(p+, (u ),

[e'~-("-) + e'~ ( -)sgnv hg (p td )]e

= e'~+(~+) —e*~+("+)sgnv hg+(P+, (u ), (39)

g~ is the Eilenberger Green function in the normal metal.
Similarly to the case of conventional superconductors
(see, e.g. , Ref. 33) Eqs. (39) yield

i(p(p) ~ d
giv(p, ur ) = sgnv tan. h +

2 v~
(40)

where p(p) = y for it+(p+)g (p ) ) 0 and p(p)
p+vr for @+(p+)g (p ) & 0 [as before the gap is chosen
to be proportional to vP (p ) on the left side and to
exp(iy)@+(p+) on the right side of the barrier].

Substituting (40) into (21) we arrive at the final ex-
pression for the Josephson current in SNS junctions. For
vy/d « T « ]A~(0 = 0)~ we reproduce the standard
result

js = 6en exp( —2mTd/v~) sin p'/md,

derived before for conventional superconductors.
Here b.~(0 = 0) = A(p ~ = p~) and p' is the total
phase difference between A+(0 = 0) and A (8 = 0),
n = g./3vr is the electron concentration. The difference
between 8- and d-wave superconductors becomes impor-
tant in the low-temperature limit T « v~/d. At T ~ 0
and d » (0 we get

layer between two d-wave superconductors which occupy
two half spaces x & —d /2 and x ) d /2. To find the
Green functions of superconducting banks we shall use
the following ansatz:

f~(p x ~ )
—e~v'+(P+)

~e' + + sgnv»~(P x ~ )

f+(p x ~ )
—e ~Ã+(P~)

'~+("+) gn hg (p, , ),
g~(p~, x, cu ) = »~(p~, x, (u ).
Here p~(p+) are the phases of the order parameters
A~(p+). Equation (37) satisfies the normalization con-
dition (2). The ansatz (37) is correct for ur « A(p).
The latter inequality in turn holds for the parameter re-
gion v~/d && T && ~A~(0 = 0)

~

or T && vy /d, d &) (o
which will be considered below.

Substituting {37) into (1) in the main approximation
one obtains



CHARGE TRANSPORT IN JUNCTIONS BETWEEN d-WAVE. . . 673

3en
d(&i[a]+ &2[V + ~]). (41)

The function [y] defines the standard sawtooth behavior
of js(y) for s-wave superconductors at T = 0 (Ref. 38)
(see Fig. 4) and

Cy cos OdO ) C2 cos 080 )
v &0 e~ &0

dO+' are the solid angle elements on the Fermi sphere
for which the functions @ (p ) and @+(p+) have equal
or opposite signs, respectively. The phase dependence of
the Josephson current in SNS junctions between d-wave
superconductors js(y) (41) is presented in Fig. 5(a). In
contrast to the analogous dependence for s-wave super-
conductors (Fig. 4) it contains an additional jump at
p = 0. This jump is due to the presence of an addi-
tional phase shift a acquired by electrons with momen-
tum directions corresponding to different signs of the gap
functions in two superconductors.

We believe that the above-mentioned unusual behavior
of d-wave SNS junctions can be used to provide an exper-
imental test for the symmetry of the order parameter in
high-temperature superconductors. Let us consider a su-
perconducting ring interrupted by an SNS junction with
the current-phase relation (41). Rewriting this relation
in the form I = Aqy g A2m, respectively, for 0 ( y ( m

and —7t ( y ( 0, one can easily derive the &ee energy
of the system E. In the absence of an external magnetic
field we have

inside the interval —m ( y & m. This behavior differs
kom that for tunnel junctions in which case the system
has only one energy minimum at y = 0 or p = m.

Minimizing (42) with respect to I we find the equilib-
rium value for the current

I = +r(0)/(I + ~).

This result means that an SNS junction described by
the current-phase relation (41) attpays induces a sponta-
neous current in a superconducting ring no matter how
small the inductance L is. This result differs from that
obtained for a ring with a m junction in which case
the spontaneous superconducting current can occur only
provided L is suKciently large.

Without an external magnetic Geld the ground state
of the system is degenerate with respect to the direction
of the current I Bowing across the ring. This degeneracy
is lifted by an external magnetic Aux 4 applied to the
ring. In this case the value I in the last two terms of
(42) should be substituted by I+ (4'/L) and the energies
of the two lowest states difFer by 6 E = 2I(0)4/(I + r).
For K )) I and Aq A2 we obtain a simple estimate
bE CpC/L.

If one considers a SQUID configuration with two SNS

4vrj smd/3en

E(I) = [I + KI ——2I(0)]I~],
2

(42)

where I is the current in the ring, L is the ring in-
ductance, I(0) = A27r, K = 27ILAi/Op, C'p is the fiux
quantum. This expression is valid for ~2LI/O'p~ ( 1,
for larger values of ~I~ the two last terms in (42) are
periodically continued with the period 4p/L The free.
energy of the ring with an SNS junction is shown in
Fig. 5(b) for the large inductance limit. It has two min-
ima at y = +m A2/Ai which correspond to the condition
Is(p) = 0. Thus an SNS junction between two d-wave
superconductors has a twofold degenerate ground state

FIG. 4. The sawtooth function [p] of Eq. (41).

FIG. 5. The current-phase dependence (41) (a) and the en-

ergy (b) of an SNS junction between d-wave superconductors
Rt T=0.
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ious geometries (microconstrictions, microbridges, etc.)
which provide a direct contact between two metals. The
normal-state conductance of such systems depends only
on the cross-sectional area of the orifice A and is given
by the well-known expression for the inverse Sharvin re-
sistance

1/R = e p~A/47r . (43)
p = 2ii. c /40

FIG. 6. The maximum current I „ through the SQUID
with two SNS junctions [described by the current-phase de-
pendence (41)] as a function of the external magnetic flux
C.

junctions one can easily see that the critical current
through this system I may reach its minimum value
not only at C)/C'p ——1/2 (as in the case of a SQUID with
0 junctions) or at C'/Cp = 0 (as for a SQUID with vr

junction) but at an arbitrary value of 4/4p depending
on the relation between Ai and A2. The dependence
I „(4) for a SQUID with identical SNS junctions and
Aq ) 2A2 is depicted in Fig. 6. The minimum value of
I „ is reached at 4'/@p = (Ai —A2)/2Ai.

C. Short meak links

In addition to tunnel junctions and SNS structures an-
other type of weak links between d-wave superconductors
is of physical interest. Let us consider two superconduc-
tors separated by an impenetrable insulating barrier with
a sinall orifice of a typical size I « (p. Below we shall
assume that electrons can freely move (rather than tun-
nel) through this orifice and put its transparency coeffi-
cient equal to one D(p) = 1. This model describes var-

In the case of conventional superconductors the dc
Josephson eKect in this type of weak links was studied in
detail by Kulik and Omel'yanchuk. It was found in Ref.
28 that at low temperatures the corresponding current-
phase relation deviates from the standard sin p form lead-
ing to a somewhat higher Josephson critical current than
that for tunnel junctions. Here we brieHy discuss the
generalization of the theory for the case of d-wave su-
perconductors.

Following Ref. 28 we shall assume that the gap function
4 is not disturbed in superconducting bridges due to the
presence of a microconstriction. This assumption is valid
everywhere except for a narrow region br « (p close to
the orifice. It is straightforward to check that the partic-
ular form of L in this region is not important for calcula-
tion of the current through the orifice. Therefore without
loss of generality (and also for the sake of definiteness)
we stick to the same form of the order parameter E(x)
in two superconducting bridges as that discussed before
for the case of tunnel junctions.

First let us consider crystal orientations g~ (p)
@~(p) for which the value 4 is (nearly) uniform in both
superconductors. Then following the procedure, one
can easily solve the Eilenberger equations in supercon-
ductors. Matching the Green functions at x = 0 for
the electron trajectories passing through the orifice and
assuming these functions to be equal to the equilibrum
ones far from the weak link x ~ Woo similarly to Ref. 28,
we obtain the expression for the superconducting current
through the orifice Is = jsA

v (p )4+(p+)A (p ) sing d S

;, . )p ~' + ([~' + &+(p+)][~' + &'-(p-)])" + &+(p+)&-(p-) cos~ (2~)'v~ (44)

At T » 4 Eq. (44) reduces to Eq. (27) with D(p) = 1. To analyze the result (44) at lower temperatures it is
again convenient to introduce the quantity p(p). Then for IA+(p+) I

—IA (p ) I
similarly to the case of conventional

superconductors &om (44) we get

Ig = 2vreA I&-(p )l»n[~(p)/2]tanhl Iv*(p )
/ I&-(p-) I cos[~(p)/2] &

~)0 l2T J 2 ir vy
(45)

Here d 8 is the element of the Fermi sphere for which the condition IA+(p+)I IA (p )I is satisfied. As in Ref. 28
the current turns out to be discontinuous at p = vr. In the opposite limit Ib, +(p+)I » IA (p )I and at T = 0 with
the logarithmic accuracy we find [0 & p(p) & 27r]

Is = /Ssssiinio(Sr)~~A )Sr )~~in v (Sr ), for ~ioiir) —v~~)) inI&+(p+) I

d'~" I&+(p+) I

v )0

Ig ———4meA sgn y g —m L p v p —,for y p —vr ((ln
v )0 27l Vy'

(46)



CHARGE TRANSPORT IN JUNCTIONS BETWEEN d-WAVE. . . 675

where d 8 denotes the element of the Fermi sphere with IA+(p+)I )) IA (p )I. We see that the magnitude of the
current jump at p(p) = ~ (46) is by the factor ln (ID+I/IA I) smaller as compared to the case ID+I = Ib,

I
(45).

For y(p) close to n and arbitrary ratio (ID+I/IA I) the magnitude of the jump reads

. I&(~.)ll&(~ )I „
(P )I+I+( (47)

The integration in (47) runs over the parts of Fermi sur-
face where &p(p) is close to vr. As the function @(p)
changes its sign on the Fermi surface an additional jump
on the Is(&p) dependence takes place at T ~ 0 similarly
to the case of SNS junctions.

Let us emphasize again that the result (44) holds only
for a homogeneous distribution of the order parameter in
superconducting banks. %within the same framework an
analogous result was recently derived by Yip. Provided
the condition IA(p) I

= IA(p) I
is not satisfied, the super-

conducting order parameter depends on the coordinate
and the expression for Josephson current deviates from
(44). In this case after a straightforward calculation one
can show that at T )) A(T) the value Is is given by Eqs.
(28), (29) and hence again reduces to the result (33) with
D(p) = 1 (k = 0) and Riv -+ R~.

& v. )O

(.—«l
tanh

I I

—tanh
IE2T) E 2T )

x g+ (e —e V, p+ )g' (e, p )de
I

d2S
«*(I-)D(~ ) 2

(48)

Here j~ is a dissipative contribution to the current across
the junction and g+(e, p+) are the normalized densities
of states of two metals in the vicinity of a tunnel barrier.
In the case of d-wave superconductors for A(p) = b, (p)
we have

als. Then expressing the current in terms of the Green
function of the system and making use of the boundary
conditions (4) in the lowest order in D after a standard
calculation (see, e.g. , Ref. 25) one easily finds

IV. QUASIPARTICLE TUNNELING
AND PHASE FLUCTUATIONS

lele[l~l —I&+(s ~) llg'+(~ P+) =
e' —&'+(&+)

(49)

A. Low voltage conductance and I-V curve

A possible way to test the symmetry of the supercon-
ducting order parameter is to measure the I-V curve of
a tunnel junction in the limit of low temperature and
voltage. In the case of isotropic 8-wave superconductors
at T « L only a small number of quasiparticles acti-
vated above the gap contributes to the junction conduc-
tance G. Therefore in the limit of small voltages we have
G oc exp( —A/T). At T = 0 no quasiparticles exist above
the gap and the current across the junction is equal to
zero I = 0 provided the externally applied voltage V does
not exceed the value 4/e for NS junctions and 2A/e for
SS junctions. Below we shall show that in the case of d-
wave symmetry of the order parameter the I-V curve of a
tunnel junction is entirely different in the corresponding
temperature and voltage intervals.

Let us assume that the time-independent external volt-
age V is applied to the tunnel junction between two met-

I

Let us 6rst calculate the I-V curve of an NS junction.
Setting 4 = 0 and 4+ ——A(p) and substituting (49)
into (48) we obtain at T = 0

[(«)' —&'(P) j"o[«—l&(P) Ij
u~ )0

d2S
xD(P)~*(P)

2
(50)

Equation (50) defines the dissipative current across the
tunnel junction for crystal orientations with A(p)
A(p). For other crystal orientations the superconduct-
ing density of states in the vicinity of a tunnel barrier
deviates from (49). Nevertheless —as in the case of a dc
Josephson current —at T = 0 the result (50) remains to
be valid apart from an unimportant numerical factor of
the order of 1. Below we shall neglect this factor and ap-
ply the result (50) to any crystal orientation. Then choos-
ing the order parameter in the form A(p) = Ae (p2 —p„)
from Eq. (50) we have

2m ~/2

j~ = dP d0 sin 0 cos 0D(0) ((eV) —Do[sin 0 cos P —(sin 0 sin P cos 0e —cos 0 sin 0O) ]
4Vr3 0 0«(« —l&(P) I). (51)

Here Op is the angle between the vector n normal to the
junction plane and the crystal axis zp Lp is the maximal
value of A(p).

It is easy to see that —in contrast to the case of 8-wave

superconductors —the current (51) does not vanish even
for eV « Lp. In the latter limit the main contribution to
j~ comes from quasiparticles with the momentum direc-
tions close to the directions for which the order parameter
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A(p) is equal to zero. The integral over these momentum
directions can be in turn split into two terms

elRN/ho

2.00—

jN —jN1 + jN2 (52)

The first term jNi is defined by the integral over the
narrow solid angle region around the direction zp or, in
other words, over the momentum values p, = pp. With
the logarithmic accuracy the corresponding integration
in (51) yields

1.50—

1.00—
ev (8o)D(8o)(eV)2p~~jN1— ~ ln

8~2~ (58)

The second term jN2 comes &om the integration over
momentum directions close to the lines p, = +p„,. In
the vicinity of these lines the gap function is A(p)
(p2/p~)Aoh(pi) where pi is the coordinate along the line
of zeros and p2 the one in perpendicular direction. In our
case h(pi) = 2 sin 8', where 8' is the angle between p and
zp. Integrating over p2 we obtain

0.50—

0.00 0.50 1.00 1.50 2.00
eV/ho

D(»)v*(») d
(«)'»

.)o Ih(pi) I
8vr2Eovp

(54)

Comparing the results (53) and (54) one can conclude
that in the limit eV « Ap the current jNi dominates
for crystal orientations vr/2 —I8ol )) ln "+ (Ao/eV).
E.g. , for 8o ——0 and D(8) oc cos 8 (k = 2) we get

FIG. 7. The I-V curves for a tunnel junction between a
normal metal and a d-wave superconductor at T = 0. The
results are shown for the speci6c crystal orientations for which
the axis zo is either perpendicular to the junction plane (upper
solid curve) or coincides with this plane (lower solid curve).
Ohmic I-V curve is shown by a dashed line.

eV2 Lp
ln (55)

For 7r/2 —I8ol « ln i (Ao/eV) the axis zo nearly coin-
cides with the junction plane and the term jNi becomes
small. In this case the current jN is given by the term
j~z (54). For 8o ——+m/2 and eV && Ao it yields

eV2

4~2 RivAo
(56)

The zero-temperature I-V curves for an NS tunnel
junction with D oc p2/g, are presented in Fig. 7 for

I

two particular crystal orientations (one of the principal
axes xo or zo is perpendicular to the barrier plane). At
low voltages eV « Lp these curves follow the results
(55) and (56) [improving the logarithmic accuracy of
(55): ln(Ao/eV) ~ 1n(2.4Ao/eV)]. At higher voltages
eV Lp the I-V curves shows a smooth crossover to
the standard Ohmic behavior.

The I-V curve of a tunnel junction between two d-wave
superconductors can be calculated analogously. Substi-
tuting (49) into (48) for the case of identical supercon-
ductors at T = 0 we find

f '
i l"+li u)(eV —u))d~ ) d2g

, , ID(p )v*(i )..)o & i~(; &i
[~' —&'(~-)]"[( V —~)' —&'(p+)]"') * (2~)'v~

ev-(K) D(p;)»(«)'
24~» lh+(p*+) ~-(P;-) II »»l&o' (58)

The integration in (57) is made over that parts of Fermi
surface where eV —IA+(P+)I ) IA (p )I. In a general
case the zero lines of the order parameters in two su-
perconductors do not coincide. Assuming that the angle
y between these lines in the point of their intersection
p; obeys the condition eV/b, olh(p;) Iy « 1, we can easily
obtain the leading order contribution to the quasiparticle
current for eV « Dp.

e2V3
jN —a~ (59)

Here the factor a keeps track on the particular relative
orientation of superconductors and is of order one for
most of such orientations. This factor vanishes only pro-
vided v (p;)D(p, ) = 0, i.e. , if the intersection points

In order to find the total current it is necessary to sum
up the contributions &om all intersection points. Then
one obtains
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coincide with the poles of the Fermi surface and the zp
axes of both superconductors are in the junction plane.

If both superconductors are oriented identically we
again arrive with the aid of (57) at the expression for
the current j~ defined by the expressions (53)—(56) mul-
tiplied by the numerical prefactor

8 '~'
r~K

I Id~ = 0.6,
7r O (1 —(d j

where as before K(t) is the complete elliptic integral. In
this case the zero lines of b, (p ), E+(p+) coincide if
they are drawn on the same Fermi surface.

The zero temperature I-V curves and the differential
conductance G = dI/dV for the junction between two
d-wave superconductors calculated numerically &om the
equation (57) are presented in Fig. 8. Curves 1 and 2
of Figs. 8(a) and 8(b) were calculated assuming that,
respectively, zp and xp axes of both superconductors are

perpendicular to the boundary plane. Orientation of xo
and yp axes of two superconductors is identical for the
curve 1 whereas for the curve 2 their yp axes consti-
tute the angle m/2 between each other. Again in the
low voltage limit the numerical curves agree well with
the analytic results (59), (55) and allow us to define
the corresponding numerical prefactors. E.g. , the fac-
tor a in Eq. (59) is found to be equal to a 0.35
for the above crystal orientation and the logarithmic ac-
curacy of Eq. (55) can be improved by a substitution
1n(Ao/eV) + ln(3 94o/eV).

For larger voltages of order Lp the differential con-
ductance G = dI/dV has a maximum which position
depends on the relative crystal orientation. E.g. , for the
specific crystal orientations 1 and 2 of Fig. 8(b) the value
G(V) reaches its maximum, respectively, at eV 1.0540
and eV = 24p.

In order to understand the physical reasons for this ef-
fect let us express the zero-temperature differential con-
ductance in the form:

—i
G(V) =

l
eR~ D(p )v (p )d S

l I
D(p )v (p )d S (me/2)b(u)IA+(p+)4 (p )I

~

v &0 ) E e &0

«—I&+(m+) I

+O(u)
)~-(u ))

~(eV —(u) d(u

([ ' —&'-( -)1[( V — )' —&'( )])' ' J
'

where we define u = eV —IK+(p+)I —IE (p )I. Due to
the presence of the factor D(p )v (p ) the main contri-
bution to the integral over the Fermi surface (60) coines
&om the velocity directions close to that perpendicular
to the junction plane. For the orientation 2 of Fig. 8 the
order parameter of both superconductors is equal to Lp
in this direction and the value dI/dV reaches its maxi-
mum at eV = 24p. In contrast for the orientation 1 of
Fig. 8 the order parameter vanishes along the direction
normal to the interface. Accordingly the maximum of
G(V) has a much smaller amplitude and takes place at
lower voltages eV Lp.

For further analytic analysis of the expression (60) let
us make use of the identity

~(~) I&+(p+)& (p )I"D(p )v--(p--) d'S-

the value of this jump hG = G(eV & a) —G(eV ( o)
reads

bG=- vr fA+E li~2Dv I„-

2Riv (bc) i~2 f Dv d2S ' (62)

e.g. , for the curve 2 of Fig. 8(b) we have a = 24o and
hG = —m/3Riv. No jump occurs if Dv = 0 in the ex-
tremum points of ID+I + lb,

I
[curve 1 of Fig. 8(b)].

Similarly in the local miniinum points of Ib, + I+ IA
a + bpz + cpz the jump of the differential conductance
G(eV = a) has the opposite sign (8G & 0) and the
same absolute value (62). In the case of a saddle point
ID+I + lb,

I

= a+ bpi —cp2 (b, c ) 0) the differential
conductance logarithmically diverges at eV ~ a. Within
the logarithmic accuracy we get

~l&+&
I
"Dv*l~=n. & rpz-G= ln

R~(bc) &2 j Dv d2S ( la —eVI) ' (63)
I &+(p+)& (p )I"D(p )v -(p -)d~--

I&p [I&+(i+)I+ I&-(p )lll
(61)

where l is the local coordinate along the line eV
IE+(p+)I+ IA (p )I. At the extremum point p = po
of

I A+ I + IA I
the expression in the denominator of (61)

is equal to zero and the conductance G(V) suffers a jump
or divergence. If the sum of the order parameter reaches
its maximum

I A+ I + I
E

I

= a —bpi —cp2 (pi and p2
are the local euclidean coordinates on the Fermi surface
of the "-" metal near the corresponding maximum point)

where r = b for eV ( a and r = c for eV & a.
I et us also point out that the jumps of G(V) at the

local maximum or minimum points of IA+(p+, T)l +
(p, T) I

remain also at T ) 0. The magnitude of
these jumps is given by the expression bG(T) = hG(T ='
0) [tanh (A (T)/2) + tanh (E+(T)/2)]/2.

Thus, while for isotropic superconductors the differ-
ential conductance G has a b'-functional singularity at
eV =

I A+ I
+

I
E I, in the case of anisotropic pairing



678 YU. S. BARASH, A. V. GALAKTIONOV, AND A. D. ZAIKIN

this singularity is washed out due to the momentum de-
pendence of the order parameter. Nevertheless at the
extremum points of (b, +(g+)~ + ~A (p )~ the jumps or
divergences of G(V) occur as the remnants of the origi-
nal singularity. The presence of such peculiarities allows
for a direct experimental measurement of the extremum
values of ~A+ (p+) ~

+ ~A (y ) ~

and the parameters 6 and
c for any given crystal orientation.

Another interesting feature of the difFerential conduc-
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FIG. 8. (a) The I Vcurves for a tunn-el junction between
two d-wave superconductors at T = 0. The solid curve 1 cor-
responds to similarly oriented superconductors with their axes
zo being perpendicular to the junction plane. For the solid
curve 2 the xo axes of both superconductors were taken to
be perpendicular to the junction plane whereas their yo axes
were rotated by the angle z /2 with respect to each other. (b)
The zero-temperature difFerential conductance G = dI/dV
for the same crystal orientations.

tance G(V) is the "kneelike" behavior in the vicinity of
the point eV = Ko/2 [curve 2 of Fig. 8(b)]. A rapid
change of the slope of G(V) around this point is caused
by a topological reason: the number of diferent solutions
of the equation ~A+~ + (4

~

= eV at the Fermi hemi-
sphere v ) 0 changes from four at eV ( Ao/2 to two at
eV ) Ap/2. The curve 1 does not show the kneelike fea-
ture because for the corresponding crystal orientation the
number of the above solutions remains constant within
the interval 0 ( eV ( 26p.

Note that the behavior of the low voltage conductance
G oc V~ has been detected in recent experiments with
SS tunnel junctions. This behavior is in a good agree-
ment with our theoretical predictions (58) and (59). Also
for higher voltages our results qualitatively agree with
those reported in Ref. 19. At this point it is impor-
tant to emphasize that the exact value of the conduc-
tance jump ~hG~ (62) depends on the detailed form of the
function A(p) through the parameters 6 and c. There-
fore the discrepancy between theoretical (~8'G~ = 7r/3R~)
and experimental values of the jump by a factor of or-
der 2 might be due to deviation of the momentum de-
pendence of the order parameter &om the simple form
b, (p) = Eo(pz —p2) adopted here.

The low voltage dependence G oc V for a tunnel junc-
tion between d-wave superconductors as well as the jump
bG at higher voltages have been also discussed in a recent
paper by Won and Maki within a difFerent theoretical
framework. They evaluated the quasiparticle current by
means of the standard tunneling Hamiltonian approach
assuming that tunneling matrix elements are indepen-
dent of the momenta of tunneling electrons and making
use of the expressions for the superconducting densities
of states averaged over all momentum directions. This
approach yields the results which are independent of rel-
ative orientation of two superconductors. Although it
appears to be quite difBcult to justify such an approach
microscopically we believe that it might work —at least
qualitatively —for diffusive SS boundaries. However it
clearly fails for specularly reHecting boundaries in which
case the quasiparticle current essentially depends on the
relative orientation of d-wave superconductors.

Very recently the case of specularly rejecting bound-
aries has been independently studied by Bruder, van
Otterlo, and Zimanyi. These authors also proceeded
within the tunneling Hamiltonian approach completed
by a phenomenological assumption about the angular de-
pendence of the tunneling matrix elements. For identi-
cally oriented superconductors with zp axes being in the
barrier plane they also arrived at the result j~ oc V
which agrees with our results (54), (56). However for
misoriented superconductors at T = 0 a vanishing sub-
gap current I(eV (( 2,) = 0 has been found in Ref. 42.
In contrast our results (53), (54), and (58) demonstrate
that even at T = 0 the subgap current does not van-
ish for all crystal orientations with v (p, )D(p, )
p; is the electron momentum value at the intersection
point of the nodal lines for the order parameters L+ and

. The origin of this disagreement lies in the fact that
the authors4 considered the case of a cylindrical Fermi
surface whereas the analysis developed here is based on
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a picture of a (nearly) spherical Fermi surface. Un-
der certain restrictions the Eilenberger formalism can be
also applied to superconductors with nonspherical Fermi
surfaces ' and the corresponding generalization of our
approach is straightforward. E.g. , for cylindrical Fermi
surfaces "cut" by the planes at the Brillouin-zone bound-
aries our results remain valid provided order-parameter
zero lines of two superconductors intersect or coincide. In
order to find the values h+ and g in (58) it is sufficient to
express the function 4+(p+) in terms of the p variable
and draw the nodal line of this function on the Fermi
surface of the "-" metal. Then it is easy to see that the
result (59) (with a 1 and R~ being the normal-state
resistance of the corresponding junction) remains valid.
If the nodal lines of A+ and 4 do not intersect each
other the quasiparticle current j~ vanishes in the sub-
gap voltage region at T = 0. We believe that the results
of Ref. 42 correspond to the latter physical situation. In-
deed the analysis was developed for cylindrical Fermi
surfaces with parallel zp axes being in the junction plane.
In this case Eq. (57) yields a vanishing subgap current
for V & pLp, p is the angle between the xp axes of two
superconductors.

For metals described by the dispersion law e(p)
(p, +p„,)/2mi+p„/2m', Eqs. (26), (54), and (58) also
remain valid. For misoriented superconductors the cur-
rent is diminished by the factor (eV/Ep)(mi/m2) ~ as
compared to the case of similarly oriented superconduc-
tors. On the other hand, in this case the junction normal-
state resistance also increases by the factor (m2/mi) ~

Absorbing this factor into the expression for R~ we again
arrive at the result (59) with a 1.

At low but Bnite temperatures T (( Lp the results
obtained above for the case T = 0 remain valid for not
very small voltages eV )) T. In the opposite limit eV (&
T the main contribution to the current j~ comes &om
quasiparticles thermally activated above the gap. In the
limit eV &( T (( Lp for the NS junction we And

Z 'Vy7. exp —Spy' (66)

7 is the imaginary time variable which changes &om 0
to P = 1/T. To evaluate the effective action functional
S,ir[rp] we make use of the approach developed in Refs. 47
and 46 which allows us to recover S,ir [p] from the expres-
sion for the kernel of the current density operator j(v, r)
by means of the integration over the eBective "coupling
constant" A. In our case the corresponding formula reads

1 P
S[y] = dA dr (p(r)j [Arp(r)]A/2e,

p p
(67)

js = jo sin p(r), (68)

whereas the kernel for the quasiparticle current operator
has the form46

~[V(r)] = 2«r'n(r —r')»nl
I

(69)
& V (r) —~(r') &

o & 2 )

Combining (67)—(69) and also taking into account the
charging energy term one immediately arrives at the
Ambegaokar-Eckern-Schon (AES) effective action

P
S,ir = dr —— —Eg cos y(r)

p 2 2e

P P
dr dr'n(r —r') cos

l

(70)

where j [p(r)] represents the current density through the
junction. In the interesting limit of low frequencies the
expression for the supercurrent jp reduces to the stan-
dard Josephson relation

jiv = G(T)V, (64)

G(T) T /R~Ao. (65)

Analogously for the crystal orientations described by
Eqs. (53) and (54) one gets, respectively, G(T)
(T/Riv Ap) ln(Ap/T) and G(T) (T/Riv Ap).

where the linear conductance G(T) of a tunnel junction
between misoriented superconductors is

n(r) = 3a/~e'Rumor'. (71)

C is the junction capacitance and Eg = jpA/2e is the
Josephson coupling energy which can be positive or neg-
ative depending on the relative crystal orientation. The
particular form of n(r) depends on the form of the IV-
curve in the limit of small V. E.g. , making use of (69)
it is easy to show that for I oc V one has n(r) oc r
More precisely, combining (59) with (69) we obtain at
Tm0

B. Effective action

Finally let us brieBy demonstrate how the above re-
sults can be generalized to take into account thermody-
namic and quantum Buctuations of the phase difFerence

y across the tunnel junction between d-wave supercon-
ductors. The grand partition function of this junction
can be expressed in terms of the path integral over the y
variable (see, e.g. , Ref. 46)

According to the above analysis this result holds for most
of crystal orientations. For the orientations described
by the I Vcurves (55) and-(56) we find, respectively,
n(r) ln(b, pr)/e R~Apr and n(r) 1/e R~Aor .
The latter dependence has been also obtained in Ref.
42. We believe that the above results might be help-
ful for a quantitative description of thermodynamic and
quantum properties of Josephson junctions and granular
arrays composed by d-wave superconductors.
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V. DISCUSSION

The microscopic analysis of the charge transport in
tunnel junctions and weak links formed by d-wave super-
conductors allows us to uncover several interesting fea-
tures of such systems. We demonstrated that the order
parameter of a d-wave superconductor can be essentially
suppressed in the vicinity of the insulating boundary de-
pending on its orientation relative to the principal crystal
axes of such a superconductor. This proximity effect can
in turn strongly inHuence the Josephson current between
two superconductors and becomes particularly important
at T close to T, . In the latter case the temperature de-
pendence of the Josephson critical current jo varies from
j, oc T —T for a homogeneous order parameter in su-
perconducting bulks (i.e., if one of the principal crystal
axes is nearly perpendicular to the junction plane) to
jo oc (T, —T)2 for other crystal orientations. The re-
sults of our calculation show a significant dependence of
the Josephson current on the relative orientation of the
superconductors and are consistent with those of recent
experiments which indicate the possibility of d-wave
pairing symmetry in HTSC compounds.

The current-phase relation for SNS junctions and short
superconducting weak links essentially deviates from the
standard Josephson relation j~ ——jo sing in the low-
temperature limit. In the case of d-wave symmetry of
the order parameter at T = 0 the current-phase rela-
tion js(p) for SNS junctions shows an additional jurnp
(as compared to the case of s-wave pairing) at the point
rp = 0. Accordingly the superconducting coupling en-

ergy for such junctions E(p) (in contrast to tunnel junc-
tions) has two degenerate minima within the phase inter-
val —a ( p ( vr [see Fig. 5(b)] which correspond to two
dif ferent stable zero current states. Positions of these
minima do not coincide with p = 0 or p = ~ (as for
tunnel junctions) but can be located at any point inside
the interval —m & y & vr. Thus in the analogy with 0
and vr junctions one can say that the systems in question
provide an interesting example of "whatever junction. "
Being included into a SQUED ring such a junction in-
duces a spontaneous superconducting current no matter
how small the ring inductance is and yields to further
features different from those for SQUID's with tunnel
junctions. We believe that these features could be used
as an additional test for the pairing symmetry in HTSC.

An additional information about the form of the super-
conducting order parameter and the density of states is
contained in the expression for the quasiparticle tunnel-
ing current. We evaluated this current for tunnel junc-
tions between a normal metal and a d-wave supercon-
ductor as 'well as between two d-wave superconductors
in the low-temperature limit. The corresponding I-V
curves show zero-bias anomalies of the type j~ oc V,
jN oc V 1n(1/V) or j~ oc V depending on the junc-
tion type and. relative crystal orientations. The latter
dependence agrees well with the experimental results.
At larger voltages the differential conductance of SS
junctions has a peak (also detected experimentallyr ' ),
which position also depends on the relative crystal orien-
tation.

We would like to point out that one can, in princi-
ple, provide an example of a vr junction not only between
d-wave superconductors but also between 8-wave super-
conductors with rnultisheet Fermi surfaces and different
signs of the order parameter on different sheets. From
this point of view an experimental confirmation of vr-

junctiori-like properties of HTSC compounds yet cannot
completely exclude 8-wave pairing. On the other hand,
for special types of Fermi surfaces the anisotropic s-wave
order parameter [e.g. , A(p) oc cos p, a+ cos p„,a] can be
equal to zero for certain momentum directions not due
to the symmetry reasons (as it would be for d-wave su-
perconductors). Therefore the low-temperature measure-
ments of a quasiparticle tunneling current rather can be
considered as a "gaplessness" test than really distinguish
between 8- and d-wave types of pairing. Bearing all that
in mind one can conclude that it is quite important to
combine both dc Josephson effect and quasiparticle tun-
neling measurements for the same tunnel junctions. Al-
though even demonstration of combined vr-junction-like
and gapless properties of such systems formally cannot
yet exclude other than d-wave types of pairing it would
strongly favor the possibility of d-wave pairing in HTSC.

The results derived here are not specific for HTSC com-
pounds and can be also applied to other types of uncon-
ventional superconductors, like heavy fermion supercon-
ductors. Our analysis holds for an arbitrary form of the
Fermi surface. For the sake of definiteness some limit-
ing results were derived for the case of a spherical Fermi
surface. The latter is by no means restrictive for any of
the conclusions reached in the present paper. E.g. , our
results also remain valid for the case of a (nearly) cylin-
drical Fermi surface which appears to be more relevant
for several HTSC compounds. The modification of our
results for the latter case reduces to an effective renormal-
ization of the junction normal-state resistance provided
the zero lines of L~ intersect or coincide. A special case
of nonintersecting zero lines can be also treated easily
within the framework of our approach.

It is important to emphasize that our analysis is com-
pletely based on the microscopic theory and does not
involve model assumptions which are inevitably present
in the tunneling Hamiltonian approach. Within the lat-
ter approach the correct dependence of the current on
the momentum directions and crystal orientations (irn-
portant for d-wave superconductors) usually cannot be
recovered. in a unique way and the validity of the final re-
sults rather depends on physical intuition of the authors
than it is controlled by the method itself.

We recently became aware of a paper where the
Josephson current between superconductors with mixed
s+id symmetry of the order parameter has been analyzed
within the tunneling Hamiltonian approach. In order to
evaluate jp the authors neglected the momentum de-
pendence of tunneling matrix elements and omitted the
part of the anomalous Green function which depends on
the electron momentum in the x direction [Eqs. (3) and
(4) of Ref. 49]. Below we shall demonstrate that these
model assumptions lead to incorrect results for jp.

Let us consider the case of 8 + id pairing symmetry
and express the order parameters for two supercondur-
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tors in the form A~(p~) = [A,~+iAd~(p~)] exp(kp/2),
by~(p~) = Ad~(p', ~ —p„',~). Then substi-
tuting the anomalous Green functions f~(p~)
A~(p~)/g[[b. ~(p~)[2 + ~2 ] into Eqs. (20) and (21) we
easily And

of tunneling matrix elements T„„on the momentum
direction of tunneling electrons p~. E.g. , it is straight-
forward to check that within the tunneling Hamiltonian
approach the results (72) and (73) are reproduced pro-
vided one substitutes

js = j~y sin p + j~g cos p) *( -) ( -) ( -'
— ')/ ( -).

=-i,~(&-)D(i-)~*5-)
j~z 2 ——2meT

&+(J +) + ~-' &' (~-) + ~'
d2S

(27r)suF
' (73)

where =i —— A, A,+ + Ag (g7 )Ag+(p+),
b„Kg+(p+) —A,+b,g (p ). In the case of either s- or
d-wave pairing in both superconductors we have j~2 ——0
in agreement with the results derived above. For simi-
larly oriented identical 8+ id-wave superconductors with
A~ = A, +iAd(p) we define b, (p) = gA, + b&(p) and
again have j~2 ——0 and

For a tunnel junction between s- and d-wave supercon-
ductors, Eq. (73) yields j~i ——0 and j~2 g 0 (see, also,
Ref. 50).

These results allow to recover the correct dependence

j~q ——ae 4 g tanh D g v p 3
(b, (p) ) d2S

v~)0 2T ) 27l Vp

(74)

Physically this result can be easily understood because
the probability of tunneling per unit time [T„„+[ is
given by a number of attempts (oc v ) multiplied by the
barrier transparency D(p). The h function assures the
momentum conservation in the direction parallel to the
junction plane. For typical specularly reQecting barri-
ers we have D(p) oc p and thus for identical metals

T„„ocp . This dependence and the results (72)—(74)
dier drastically &om those reported in Ref. 49.
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