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1

On the triangular lattice, for J2/J: between g

and 1, the classical Heisenberg model with first- and

second-neighbor interactions presents four-sublattice ordered ground states. Spin-wave calculations
of Chubukov and Jolicoeur and Korshunov suggest that quantum fluctuations select amongst these
states a collinear two-sublattice order. From theoretical requirements, we develop the full symmetry
analysis of the low-lying levels of the spin-; Hamiltonian in the hypotheses of either a four- or a
two-sublattice order. We show for the exact spectra of periodic samples (N = 12,16, and 28) how
quantum fluctuations select the collinear order from the four-sublattice order.

I. INTRODUCTION

Symmetry breaking and the selection of a particular
macroscopic state amongst many degenerate ones result
in part from infinitesimal external causes. In the case of
planar Néel order, the plane of antiferromagnetic order-
ing, for example, is chosen by the environment, whereas
the possibility of antiferromagnetic symmetry breaking
and the nature of the antiferromagnetic order are intrin-
sic and deeply rooted in the spectral properties of the
low-lying levels of the Hamiltonian on a given lattice.!™
Two features have to be considered in this respect: “the
ground state” and the first excitations of the system. In
the past, interest has mainly been focused on the “first
excitations”: the so-called antiferromagnetic magnons.
The interest in the ground state has been limited to the
measurement of the order parameter modulus. The ap-
proach of this problem through exact diagonalizations on
small samples has led us to focus on the nature of this
ground state: the eigenstates of the Heisenberg Hamilto-
nian on a finite lattice of NV sites are eigenvectors of total
spin S and, in all presently studied cases, the absolute
ground-state is S = 0 or § = } (depending on the num-
ber of sites in the sample). If we consider the even site
samples, the S = 0 absolute ground state is spherically
symmetric: it does not break the rotational symmetry of
the Hamiltonian and as such is insufficient to describe a
Néel antiferromagnetic state. As underlined by Anderson
in 1952, the Néel symmetry-breaking state arises from
a linear combination of a macroscopic number of levels
{E} with different S values which in the thermodynamic
limit collapse to the absolute ground state faster than the
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softest magnons. _

This set of levels { E}—called QDJS for quasi degener-
ate joint states in Refs. 2 and 3—has specific symmetry
and dynamical properties which embody the characteris-
tics of the symmetry-breaking phase. Let us recall that
for a finite solid, the low-lying levels are eigenstates of the
total momentum and they indeed collapse to the ground
state in the thermodynamic limit faster than the softest
phonons. This is a wave packet of these eigenstates that
localizes the center of mass. Here, in an ordered anti-
ferromagnet, the multiplicity {E} is associated with the
dynamics of the order parameter. In other words, the
knowledge of the symmetry and dynamical properties of
this set of eigenstates yields the nature of the ordered
phase. For the case of a 2d Néel phase, this set of lev-
els {E} collapses to the ground states as N1, that is,
faster than other quantities, in particular, faster than
the softest magnons which converge to the ground state
as N~1/24 Understanding the symmetry and dynami-
cal properties of these low-lying levels of the Heisenberg
Hamiltonian on the triangular lattice leads to a consistent
picture of an ordered ground state with three-sublattice
Néel order; this reconciles spin-wave theories and exact
diagonalizations approaches.?3

More subtle symmetry breakings still exist when two
or more different kinds of order are classically degen-
erate. In the pure classical case, Villain et al.> have
shown that thermal fluctuations could select a specific
order. The selected order has softer excitation modes
and therefore, for a given low energy, a larger density of
excitations and a larger entropy: Villain et al.’ called this
mechanism “order by disorder.” This concept has been
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rather fruitful for the studies of classical and quantum
antiferromagnets.57

The existence of competing interactions is indeed the
main cause of classical ground-state degeneracy. As a
generic example, one can consider the so-called Ji-J3
model on a triangular lattice with two competing an-
tiferromagnetic interactions. This Hamiltonian reads

H=2J1 si-sj+2J D si sk, 1)
(09) ()

where J; and J; = aJ; are positive and the first and
second sums run on the first and second neighbors, re-
spectively. The classical study of this model has been
developed by Jolicoeur et al.® They have shown that for
small a (o < 1) the ground state corresponds to a three-
sublattice Néel order with magnetizations at 120° from
each other, whereas for % < a < 1, there is a degener-
acy between a two-sublattice Néel and a four-sublattice
Néel order (see Fig. 1). Chubukov and Jolicoeur® and
Korshunov!® have then shown that quantum fluctuations
(evaluated in a spin-wave approach) could, like ther-
mal ones, lift this degeneracy of the classical ground
states and lead to a selection of the collinear state (see
Fig. 1 ). As usual for spin—% systems, the validity of the
spin-wave theory has to be checked. The first study of
the exact spectrum of Eq. (1) done by Jolicoeur et al.®
was not incompatible with this conclusion, but was insuf-
ficient to yield it immediately. Deutscher and Everts!!
found good agreement between spin-wave results for the
collinear state and exact diagonalizations but their sam-
ple geometries were too restricted to fully accommodate
the four-sublattice order. We show in this paper that
a study of the complete dynamical “ground-state multi-
plicity” leads to this conclusion.

In order to understand the origin of this thermody-
namical multiplicity we first study exactly solvable mod-
els which display either four-sublattice order or collinear
order (Sec. II). Then, on exact spectra of small samples,
we show how quantum fluctuations of increasing wave-
length select the collinear order (Sec. III).

II. EXACT SOLVABLE QUANTUM MODELS OF
ORDERED SYSTEMS

These model Hamiltonians are obtained by retaining
the Fourier components of the Heisenberg Hamiltonian
which are compatible either with the two- or the four-
sublattice order. In Fourier components, the Heisenberg

Hamiltonian [Eq. (1)] reads
J

*B(5, 54,55, 5c,5p) = 1:(

where the quantum numbers S4, Sp, Sc, Sp run from 0
to N/8 and the total spin results from a coupling of the
four spins S4, SB,Sc, Sp.

The low-lying levels of Eq. (4) are obtained for S4 =

J1 + Jz) [S(S + 1) — SA(SA + 1) —-SB(SB + 1) — Sc(Sc + 1) — SD(SD + 1)] s
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FIG. 1. Top: four-sublattice classical ground state. Spins
in the sublattices A and B, as well as spins in C and D, make
an angle 26. The plane of the spins of A and B makes an
angle ¢ with the plane of the spins of C and D. Bottom: the
collinear solutions with the three possible arrangements (in
this case, classical spins in sublattices A and B are antiparal-
lel).

H =6J; Z Sk-S_k [’Yk + g—[cosk- (2u; + uy)
k

+ cosk - (uy + 2up) + cosk - (uz — uy)]], (2)

where Sy = ﬁ > isiexpik -r; and vic = 1/3 Z# cosk-
u, (u, are three vectors at 120° from each other, con-
necting a given site to first neighbors). In Eq. (2), the
k components associated with the k vectors which keep
the sublattices invariant provide the essential features of
the dynamics of the order parameter. We successively
study the case with four-sublattice order and the case
with two-sublattice collinear order.

The four vectors which keep the four-sublattice or-
der invariant are k = O and the three middles of the
Brillouin-zone boundaries (called in the following kr, kg,
and kg). In this study, we will exclusively consider fi-
nite samples with N = 4p sites and with periodic condi-
tions: these samples do not frustrate the four- (nor the
two-) sublattice order and they effectively present the
above-mentioned k vectors in their Brillouin zone. It is
straightforward to write the contribution of these Fourier
components to ‘H in the form

8
Ho = (J1+J2) (8 -84 -85 -SE - S%),  (3)
where S is the total spin operator and the S, are the total
spin operator of each sublattice. *H,, S?, S,,S%,8%,SZ,

and S% form a set of commuting observables. The eigen-
states of 4Ho have the following energies:

(4)

~
SB=Sc=SD=N/8:

_htd

4Eo(S) = 3

(N +8) + (1 + 2)S(S +1). (5)
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These states, which have maximal sublattice magnetiza-
tions S% = S% = S% = S% = (N/8 + 1)N/8, are the
rotationally invariant projections of the bare Néel states
with four sublattices. This is the single physical origin
of all properties of {*E}. These levels have an energy
collapsing to the absolute ground state as N~ justifying
the name of tower of states or “ground-state multiplic-
ity” given to {*E}. In this exactly solvable model there
are no quantum fluctuations to renormalize the sublattice
magnetization; quantum fluctuations will be introduced

by the discarded part of the Hamiltonian [Eq. (2)].
As we will now show, this multiplicity {4E‘} can be
entirely and uniquely described by its symmetry proper-
1

Ns =

N[ =

Note that this degeneracy depends both on S and N
and not only on the total spin S as is the case for two- or
three-sublattice problems. In fact, in the latter two cases,
which describe Néel order on a square or triangular lat-
tice, the objects to be considered stem from the coupling
of two or three angular momenta: they have perfect coun-
terparts in the orbital three-dimensional world which are
rigid rotators and tops with well-known quantum num-
bers, depending only on S. More generally, a Néel order
with p sublattices on a finite sample of IV spins gives rise
to a “ground-state multiplicity” of the order of NP.

The determination of the space symmetries of these
eigenstates allows a complete specification of {*E}. The
four-sublattice order is invariant in a two-fold rotation
(Rr): thus the eigenstates of {*E} belong to the triv-
ial representation of C,. As it arises from the coupling
of four identical spins, this subset of levels forms a rep-
resentation space of Sy, the permutation group of four
elements. The eigenstates of {*E} could thus be labeled
by the irreducible representations of S; (see Table I).

TABLE I. Character table of the permutation group Sjs.
The first line indicates classes of permutations. The second
line gives an element of the space symmetry class correspond-
ing to the class of permutation. These space symmetries are
t, the one-step translation (4 — B), Rax;3 (resp. ’R'z,,/a)
the threefold rotation around a site of the D (respectively,
B) sublattice, and o, the axial symmetry keeping invariant C
and D. Ng is the number of elements in each class.

Sa I (AvB)(CyD) (AvB7C) (A’B) (A,B,C,D)
Q I t Rz,,/;; o} ’2.,../30'
Neg| 1 3 8 6 6

Iy 1 1 1 1 1

T, 1 1 1 -1 -1

I's 2 2 -1 0 0

Ty 3 -1 0 1 -1

s 3 -1 0 -1 1

%(—352+S(N+1)+2+£> for S <
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ties under spin rotation and transformation of the space
group of the lattice. Let us begin by the SU(2) proper-
ties induced by the fact that these states represent the
coupling of four identical spins. The degeneracy of each
S level is (2S + 1) Ng where the factor (25 + 1) comes
from the magnetic degeneracy and Ng is the number of
different couplings of four spins, each of length N/8, giv-
ing a total spin S. This number is readily evaluated by
using the decomposition of the product of four spins n/8
representations of SU(2) (DV/8):

in spin S irreducible representations (D°). One obtains

N
2 4’
(7)

N N N
o 2 > 2L .
(2 S+1)(2 S+2> for S_4+1

T
Indeed, the complete analysis of all the eigenstates of
Eq. (1) is usually done through the more general point of
view of the space group of the lattice. But it is straight-
forward to show that in the four-sublattice subset of so-
lutions, each element of the space group maps onto a
permutation of S4: one step translations map onto prod-
ucts of transpositions as (A, B)(C, D), threefold rotations
onto circular permutations of three sublattices (4, B,C)
and so on. The complete mapping of the space symme-
tries of the four-sublattice order onto the permutations
of Sy is given in Table I together with the character table
of S4. Each irreducible representation of S4 can thus be
characterized in terms of its space symmetry properties.
As noted above they are all invariant in R,. Analysis of
the properties under translation shows that I';, I'2, and
I's correspond to the wave vector O, whereas I'y and T's
have a wave vector kg, ky, or ky. I'; and T'; are invariant
under C3, whereas I'3 is associated with the two complex
representations of this same group. Finally, I'y and I'y
are even under axial symmetry whereas I'; and I's are
odd. The number of replicas of I'; that should appear for
each S is then computed in the S, Ms subspace with the
help of the trace of the permutations of Sy:

D = 5g ST (Ruls )Nl ®)

where Ry is an element of the class k of Sy, Nei(k) is
the number of elements in this class, and x;(k) is the
character of the class k in the irreducible representation
I'; (see Table I). The values of the traces for a given total
spin S are then found as

Ms=S )

) )
Ms=S+1

Tr ((A,B,C)

S) =Tr ((A,B,C)

—Tr ((A,B,C)
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In each Ms subspace of {*E}, it is straightforward to
find the trace of the elements of Sy:

N/8

Tr(la|ms) = Z Ot+vtaty,Ms,
t,v,z,y=—N/8
N/8
Tr((4,B)(C,D)|ms) = > barsau,Ms,
t,o=—N/8
N/8
Tr((4,B,C)|ms) = Z 03t+v,Ms ) (10)
t,y=—N/8
N/8
Tr((4,B)lMs) = Y. Szetvte,Ms,
t,v,e=—N/8
N/8
TY(A,B:C’D)’Ms)z Z 64t,Msa
t=—N/8

where t,v,z,y are the z components of the total spin of
each sublattice (constrained to vary between N/8 and
—N/8) and §;; denotes the Kronecker symbol. Using
Egs. (8), (9), and (10) one readily obtains the number
of occurrences of each I'; for each S subset of {4E} (Ta-
ble II). We have thus obtained the complete determina-
tion (all quantum numbers, and all the degeneracies) of
the family of low-lying levels describing the ground-state
multiplicity of the four-sublattice Néel solutions.

Let us now consider the collinear solutions (Fig. 1).
They are particular solutions of the four-sublattice case
and we will rapidly go through the same scheme of anal-
ysis, indicating mainly the new points. The two vectors
which keep the two sublattices invariant are 0 and the
middle of one side of the Brillouin zone [the vectors k;,
ky, and kg correspond, respectively, to the collinear so-
lutions (a), (b), and (c) in Fig. 1]. Extracting a specific
set of two wave vectors from Eq. (2), we find the following
contribution to the total Hamiltonian:

Mo = %(Jl +Ja) [s2 - %(Si + Sﬁ)] : (11)
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The corresponding low-energy spectrum for S, = Sg
N/4is

_hitd

2Eo(S) = 5

(N +8) + (1 + 2)S(S +1)
(12)

and is degenerate with the four-sublattice low-energy
spectrum [see Eq. (5)]. Here, the two sublattices have
maximal spins S, = Sg = N/4. These new solutions
arise from the symmetric coupling of the spins of two
sublattices of the four-sublattice order: S, = S5 + Sg
or S, =SA+Sc or S, = Sa +Sp with the counterparts
for Sg. As there are three ways to do this coupling, the
collinear solutions have a Z3 degeneracy. The representa-
tion space is thus the sum of three products DN/4¢QDN/4,
It is not a direct sum since DV/4(4, B) ® DN/4(C, D)
and DN/4(A,C) @ DV/4(B, D) have in common the same
(symmetric) irreducible representation with a total spin
N/2. On a N sample, the representation space of the
ground state of the collinear solution is

{E} =3D5=° ¢ 3D5=1 g ... @ 3D5=N/2-1 g pS=N/2,
(13)

The degeneracy is thus 3(2S + 1) for all S values except
for S = N/2 where it is (25 + 1).

As for the four-sublattice order, the space-group analy-
sis is done as for the two-sublattice order, but the number
of occurrences of each irreducible representations I'; is
now different since the space {2E} is smaller than {*E}.
The calculation could be done along the same lines as for
the four-sublattice order. The problem, however, is much
simpler because for each S value there are only three
replicas of DS arising from the Z3 group [Eq. (13) and
Fig. (1)]. This allows direct computation of the permuta-
tion traces in each S subset of {2£}. Using the coupling
rules of two angular momenta (and in particular the fact
that the S eigenstate resulting from the coupling of two
integer spins changes sign as (—1)° with the interchange
of the two parent spins) one obtains (for S # N/2):

TABLE II. Number of occurrences nr, (S) of each irreducible representation I'; with respect to
the total spin S. For N = 28, nr,, and nr, as well as np, and nr, have been added because this

sample does not present any axial symmetry.

N =16

s 0 1 2 3 4 5 6 7 8
nr, (S) 1 0 2 0 2 1 1 0 1
nr,(S) 0 0 1 0 0 0 0 0 0
nry(S) 2 0 2 1 2 0 1 0 0
nr,(S) 0 2 2 3 2 2 1 1 0
nrg(S) 0 2 1 2 1 1 0 0 0

N =28
s 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
nr(S) +nr,(S)] 2 0 5 1 5 3 4 2 4 1 2 1 1 o0 1
nrs(S) 3 0 4 2 5 2 5 2 3 1 2 0 1 0 0
nr(S)+nrg(S)] 0 7 6 11 9 12 9 10 6 6 3 3 1 1 0




Tr(l4)s) = 3,
Tr((A, B)(C,D)|s) = 1+ 2(-1)%,
Tr((4,B,C)|s) =0,
Tr((4,B)|s) =1,
Tr((4, B,C,D)|s) = (-1)° .

Therefore, the collinear solution is simply characterized
by I'; and I'3 for even S and I'y for odd S.

From these equations [(8), (9), (10), and (14)], the
symmetries of all states of the tower are fully deter-
mined both for the four-sublattice order {*E} and for
the collinear order {2£}.

Going back now to the original (J1-J2) model, we have
to account for quantum fluctuations generated by the dis-
carded part of H. This perturbation does not commute
with sublattice total spins and consequently reduces the
sublattice magnetization. Nevertheless, it preserves all
the symmetries of the Néel state and thus also the ones
of the levels of {*E} or {?E}. Then the question is:
do quantum fluctuations conserve qualitatively the dy-
namics of these levels or not? If these levels remain the
low-lying ones of the exact spectra with overall dynam-
ics qualitatively similar to that of the bare Néel state
[Egs. (5) and (12)], then the quantum model will be or-
dered at T = 0. By qualitatively, we mean that the lead-
ing term of the energy of the exact subset {E} behaves
as 3% (J1+J2)S(S+1), where 3 is a renormalization fac-
tor. This factor is related to the spherical homogeneous
susceptibility of the sample,® even if, in general, the ten-
sor of susceptibilities is not spherical because quantum
fluctuations lift the degeneracies of {¢E} of the exactly
solvable model.

(14)

III. EXACT SPECTRA OF SMALL PERIODIC
SAMPLES

We have determined the low- (and high-) energy levels
of the J;-J; Hamiltonian in each irreducible representa-
tion of SU(2) and of the space group of the triangular
lattice for small periodic samples with N=12, 16, and
28. The spectra are displayed in Figs. 2 and 3. We di-
rectly see in the upper parts of these figures the set of
QDJS (“ground-state multiplicity”) well separated from
the set of levels corresponding to the one-magnon ex-
citations. We have verified that the QDJS form . set
of levels with the exact properties of the above defined
{*E} subset. The action of quantum fluctuations could
then be read in the lower parts of the figures. As ex-
pected, quantum fluctuations lift the degeneracies which
are present in the exactly solvable model and stabilize
the eigenstates with the lower S valués. Nevertheless,
the low-lying energies per site still group around a line of
equation Eo, + 88S(S + 1)(J1 + J2)/N? with 8 = 1.004
(resp. 1.055) for N = 16 (resp. 28). The number and
space symmetries of these levels for each S and IV value
are exactly those required by the above analysis of the
four-sublattice Néel order. Moreover, it is already visible
on the N = 16 sample and quite clear on the N = 28 sam-
ple that a dichotomy appears in this family (see Fig. 4).

52 J1-J; QUANTUM HEISENBERG ANTIFERROMAGNET ON THE . . .

6651

40

20

TT T T
(]
1

1 Ni—

—-20 +

L

B
|
| —
1 E—
i
H\-f

tnn unﬂ‘

IN
™7
[N
[}

[ RN
(BRI

|
PELRY B

TR W

|
1

4
Il
)
TSN UT N NS S U S U SR A A WA R O BT

E,(S)-‘Eo(s)

O

1 | Il L L ] 1 | 1 | 1 1 1

20 40 60
S2=S(S+1)

FIG. 2. Top: complete spectrum of the N = 16 periodic
sample with respect to S? for Jo/J; = 0.7. Bottom: en-
largement of the difference between the exact spectrum and
the energy of the low-lying levels of the model Hamiltonian
[Eq. (5) or Eq. (12)]. The ground-state multiplicity {*E} is
well separated from the magnons.
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FIG. 3. Partial spectrum of the N = 28 periodic sample
(same legend as for Fig. 2). Bottom: the tower of states of the
four-sublattice order {*E£} lays under the dashed line. Above
appear the first magnons. Above the dotted line are repre-
sented the first excited homogeneous states. In the magnon
multiplicity (k # 0,ka, ks, or ks), for S < 5, only the
five lowest states of each irreducible representation have been
computed.
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FIG. 4. Enlargement of the N = 16 and N = 28 QDJS. A
global contribution 8E,(S) is subtracted from the exact spec-
trum. This contribution describes the overall dynamics of the
order parameter in this finite sample, 8 measures the renor-
malization of this dynamics by quantum fluctuations (see text
and Ref. 3). The bars represent eigenstates which belong both
to {2E} and {*E}. The triangles indicate states which belong
to {*E} but not to {2E}. We see that, with increasing sizes,
the tower of states of the collinear order separates from the
four-sublattice order. For N = 28, the two states of {2E‘}
with even S are quasidegenerate and cannot be distinguished
at the scale of the figure.

The lowest levels of this tower of states appear to be
I';,T'3, or I'y representations depending on the parity of
the total spin. They precisely build the family {ZE} of
isotropic projections of the collinear solutions given above
[Eq. (14)].

We see in Fig. 4 that the difference between the energy
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per bond of the collinear states and that of the other
states of the four-sublattice order roughly increases by a
factor of 4 from the N = 16 to the NV = 28 sample. This
strongly suggests that the four-sublattice order will dis-
appear in the thermodynamic limit and only the collinear
order will persist. This result supports the conclusion of
the spin-wave expansion® 1% concerning the selection of
the collinear state in the J;-J; model for % < a<1for
spins %

IV. CONCLUDING REMARKS

It appears from the two situations that we have studied
(triangular Heisenberg model?® and this model) that the
symmetry and dynamical analysis of the low-lying levels
of a Hamiltonian likely to exhibit ordered solutions give
a rather straightforward answer to the kind of order to
be expected.!? The method is rapid, powerful, and unbi-
ased: it does not require any a priori symmetry-breaking
choice: if a specific order is selected, one should see it di-
rectly on the exact spectra. Moreover, as it is essentially
exact, there are no questions relative to the convergence
of the expansion as in the spin-wave approach. On the
other hand, as the sizes amenable to computation are
limited, there is, in the exact approach, a cutoff of the
long-wavelength fluctuations. Results so obtained should
thus be examined in the light of a finite-size scaling anal-
ysis. The present work nevertheless shows that it is not
necessary to invoke quantum fluctuations with very long
wavelengths to select the collinear order.
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