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We study critical properties of the four-coloring model, which is given by the equal-weighted
ensemble of all possible edge colorings of the square lattice with four different colors. We map the
four-coloring model onto an interface model for which we propose an effective Gaussian field theory,
which allows us to calculate correlation functions of operators in the coloring model. The critical
exponents are given by the stiffness of the interface, which we calculate ezactly using recent results

on the statistical topography of rough interfaces.

Our numerical exponents, from Monte Carlo

simulations of the four-coloring model, are in excellent agreement with the analytical calculations.
These results support the conjecture that the scaling limit of the four-coloring model is given by the
SU(4)r=1 Wess-Zumino-Witten model. Moreover, we show that our effective field theory is the free-
field representation of the SU(4)x=1 Wess-Zumino-Witten model. Finally, we discuss connections to
loop models, and some predictions of finite temperature properties of a particular Potts model for

which the four-coloring model is the ground state.

I. INTRODUCTION

Over the years the ground-state ensembles of certain
two-dimensional classical spin models have been found
to exhibit critical behavior. The first such ground-state
ensemble was encountered in the antiferromagnetic Ising
model on the triangular lattice.!»? The correlation func-
tions of operators constructed from the Ising spins in the
ground-state ensemble were found to decay with distance
as power laws with various exponents.

Other known models with critical ground states are
the six-vertex model® and the closely related three-state
antiferromagnetic Potts model on the square lattice,*
the three-state antiferromagnetic Potts model on the
Kagomé lattice,>® and the O(n) model on the honey-
comb lattice.”"® Other models that are of this type are
the antiferromagnetic Ising model of general spin on the
triangular lattice,®'° the noncrossing dimer model, and
the dimer-loop model,!! both defined on the square lat-
tice.

It has recently been shown that the ground-state prop-
erties of all the known classical spin models with critical
ground states can be analyzed by mapping the original
spin model onto an interface model.!? This analysis is
equivalent (by a duality) to the Coulomb gas method,
which has been used successfully for calculating exact
critical exponents of many two-dimensional lattice mod-
els.13

In this paper we study the properties of the ground
state of a very particular variant of the four-state anti-
ferromagnetic Potts model on the square lattice. This
model was first introduced by Read!* as a generalization
of the three-state antiferromagnetic Potts model on the
Kagomé lattice. The Potts spins live on the bonds of the
square lattice. At each vertex, the Potts spins living on
the bonds that meet at that particular vertex interact
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pairwise antiferromagnetically with equal strength.

Our study of the ground-state properties of the Potts
model was inspired by two questions: First, whether
the ground-state ensemble is indeed critical, and if so,
what are the scaling dimensions of the different opera-
tors? Second, are the critical correlations in the ground
state correctly described by the SU(4) Wess-Zumino-
Witten (WZW) model'® at level k = 1, as conjectured by
Read?'* The SU(4)x=1 WZW model is a conformal field
theory (CFT) with conformal charge ¢ = 3, and a known
spectrum of scaling dimensions of the primary fields.®

An interesting question that has been raised recently
is how, and whether, the introduction of frustration (or
in this case constraints) can lead to large values of the
conformal charge (¢ > 1) in two dimensional lattice mod-
els. Large values of ¢ have been observed in the fully
frustrated XY model on the square lattice,!” and more
recently in the fully packed loop model on the honey-
comb lattice.” Just as in the fully packed loop model,
the value of the conformal charge that is found in the
four-coloring model can be understood by mapping this
model to an interface model. The basic idea is that the
constraints in these two models require that the heights
of the interface have more than one component. This
interface can be therefore thought of as an embedding
of the two-dimensional lattice in a higher dimensional
target-space. If the interface is rough, the field theory
which describes the long-wavelength fluctuations of the
interface will have a conformal charge given by the di-
mensionality of the target space, as is well known from
the theory of the bosonic string.'® These remarks will be
made clearer in Sec. III.

This paper is organized as follows: In Sec. II we
describe the four-coloring model on the square lattice,
which is equivalent to the ground states of a particu-
lar Potts model. In Sec. III we map the four-coloring
model onto an interface model and we introduce an ef-
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fective field theory for the long-wavelength fluctuations
of the interface. In Sec. IV we define different operators
in the four-coloring model and we calculate their scaling
dimensions; we find that they are given by the stiffness
constant associated with the interface model. We turn
our attention to the statistical and geometrical proper-
ties of loops that naturally appear in this model in Sec.
V. In this section we also calculate the exact value of the
stiffness, using recent results on the geometrical expo-
nents of equal-height contour loops on random Gaussian
surfaces.!® Finally, in Sec. VI, we present our Monte
Carlo results for the stiffness, the scaling dimensions of
operators, and the geometrical exponents associated with
loops of alternating color. We conclude with a discus-
sion of the conformal field theory of the four-coloring
model, finite temperature properties of the Potts model
(for which the four-coloring model is the ground-state en-
semble), and an interpretation of the four-coloring model
as a type of a fully packed loop model on the square lat-
tice.

II. THE FOUR-COLORING MODEL

In this section we introduce the four-coloring model as
the ground-state ensemble of the antiferromagnetic four-
state Potts vertex model on the square lattice.

Our starting point is the antiferromagnetic Potts ver-
tex model given by the Hamiltonian

H=T D 60oilr),0;(r)), (2.1)

r i,.j=.1
1<
where the Potts spins o;(r)(z = 1,2,3,4) live on the
bonds of the square lattice {r}, as shown in Fig. 1, and
each spin can be in one of four possible states labeled
A, B, C, and D. This Hamiltonian associates an energy
penalty to having equal spins on bonds that share a ver-
tex of the square lattice. An alternative representation of
this model, introduced by Read,* involves the “crossed-
square” lattice in which diagonal bonds are drawn on ev-
ery other square plaquette, so that the “crossed” plaque-
ttes form a checkerboard pattern. In this representation
the Potts spins live on the vertices of the crossed-square
lattice and have nearest-neighbor antiferromagnetic in-
teractions.

At zero temperature, the only allowed spin config-
urations are ones for which {o1(r), o2(r),o3(r),04(r)} =
{4,B,C,D} for every . With {o1(r),02(r),
o3(r),04(r)} we denote the set of Potts
spins on the four bonds at the vertex r, while by the
ordered set (o1(r),02(r), 03(r),04(r)) we denote the par-
ticular configuration of spins at r.

The ground-state ensemble has an extensive entropy.
Namely, the ground-state entropy per site, defined as®

. 1
s = A}l_x}n(’o N In(Z,), (2.2)

where Z; is the number of ground states and
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FIG. 1. Labeling of the spins in the Potts model. At each
vertex of the square lattice r, the four spins living on the
bonds originating at r are labeled in a staggered manner.

N the number of sites, is nonzero. This can
be easily verified by examining the state given in
Fig. 2: In every AB plaquette the spins A and
B can be exchanged independently of the other pla-
quettes. This gives rise to 2V/4 states, which puts a lower
bound on the entropy per site at s > In2/4.

If we think of the four Potts spins as four colors, then

FIG. 2. One of 24 symmetry related ideal states of the
four-coloring model. Using the height rule defined in the text,
every plaquette is assigned a microscopic height z. Note that
in the ideal state the height describes, on average, a flat in-
terface with a fast modulation of the microscopic height; the
wavelength of the modulation is given by the lattice spacing.
These fast modulations are responsible for the peak structure
of the Fourier transformed microscopic height (see Fig. 6).
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the ground states correspond to the four-coloring model
on the square lattice. In the four-coloring model each
bond of the square lattice is colored with one of four
different colors A, B, C, or D, with the constraint that at
each vertex all four colors meet. All such configurations
are given the same statistical weight.

III. THE INTERFACE MODEL

In this section we describe the mapping of the four-
coloring model to an interface model, and we propose an
effective field theory that describes the long-wavelength
fluctuations of this interface.

We define a height mapping by placing a three-
component microscopic height z € Z3 at the center of
each elementary square (plaquette) in such a way that
the change in z, when going from one plaquette to a
neighboring one, is given by

z (r + g) -z (r - g) = (1) g (r), (3.1)

where 4 crosses the bond that the color (spin) o(r) lives
on, and £ and y are the components of r. The phase
factor on the right-hand side of the above equation ac-
counts for the choice of direction in which the microscopic
height increases (Fig. 2). The four possible color values
that o(r) can take are represented by vectors pointing to
the vertices of a tetrahedron:

A = (—1,+1,+1),
C=(-1,-1,-1),

B = (+1,+1,-1),
D= (+1,-1,+1). (3.2)
For a given configuration of colors, the set of microscopic
heights defines a two-dimensional interface in five dimen-
sions. Each allowed microscopic height configuration is
given equal statistical weight.

In order to define an effective field theory for the above
described interface model, we introduce a coarse-graining
procedure for the microscopic heights in the following
way (see Fig. 3 for a summary).

JANE KONDEV AND CHRISTOPHER L. HENLEY 52

First, we define ideal states of the four-coloring model
as states in which each plaquette is colored by two col-
ors only (Fig. 2). There are 24 = 4! ideal states re-
lated to each other by lattice symmetries, and each cor-
responds to a different permutation of the four colors.
These states are flat, in the sense that the variance of
the microscopic height is minimum. Furthermore, they
have the important property that most of the entropy
of the four-coloring model is contained in bounded fluc-
tuations around the ideal states. This point is crucial.
Namely, if we wish to change the color of a bond, the
smallest change we can perform on the lattice, without
violating the constraints of the four-coloring model, is an
exchange of two colors along a loop of alternating color.
The ideal states mazimize the number of loops of alter-
nating color, and it is this property that selects them
out. This entropic selection effect is similar in spirit to
the “order by disorder” effect, introduced by Villain.2°

Second, we replace the original model with a coarse-
grained version where the lattice is split into domains,
such that in each domain fluctuations occur about a
different ideal state, as shown in Fig. 3. With each
ideal-state domain we associate a coarse-grained height
h, which is given by the average microscopic height in
that domain:

h=z. (3.3)

Third, we define the ideal state graph T C R3. Every
node of T represents an ideal state, and its position in
R3 is given by the coarse-grained height h € R3 of the
ideal state it represents.

Finally, we consider the long-wavelength limit of the
interface model, where the heights defined over particu-
lar ideal-state domains are replaced with a continuously
varying height field h(r) = (h1(r), h2(r), h3(r)), as seen
in Fig. 3. The dimensionless free energy f, of the inter-
face, which is entropic in origin, is assumed to be of the
form

f= [ @ | GATmP + 1l + [Tk + V(8|

(3.4)
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FIG. 3. The construction of a fluctuating interface equivalent to the four-coloring model (schematic): (a) The microscopic

four-coloring state is broken up into domains of ideal states. The ideal states are here denoted by the integers i = 1,2,...,6

’

and the set of microscopic heights for each ideal state is {z}:. (b) Each ideal-state domain is assigned a coarse-grained height
equal to the average microscopic height of the domain, h;) = {z}:. (c) Finally, the discrete heights h(;) are replaced by a
continuous height field h(r); the interface is assumed to be rough. (This construction works for all known discrete spin models

with critical ground states.?)



where V(h) is a periodic potential with the periodicity
given by the ideal-state graph,
Vih+I)=V(h). (3.5)
The free energy f defines an effective field theory of
the four-coloring model; the assumption being made is
that it correctly describes the long-wavelength fluctua-
tions of the microscopic height z. The periodic potential
V (h), which is usually referred to as the locking term,2!
favors the heights to take their values on Z, while the first
term represents fluctuations around the flat ideal states.
Therefore, the assumption that the effective field theory
of the four-coloring model is given by Eq. (3.4) is directly
related to the intuitive idea put forward earlier, that the
free energy of the four-coloring model is entirely con-
tained in bounded fluctuations around the ideal states.
The locking term is periodic with the periodicity of
Z. Thus, the four-coloring model, in its interface rep-
resentation, undergoes a roughening transition for some
value of the stiffness K = K,..2! If the stiffness K satisfies
K < K,, then the locking term in Eq. (3.4) becomes irrel-
evant, in the renormalization group sense, and the four-
coloring model is described by a Gaussian model with a
free energy
K 2 2 2 2
F=% /d r (IVhil? + |Vha|? + [Vhs?) . (3.6)
In the case that the locking term is relevant (K > K,),
the four-coloring model will lock into long-range order in
one of the ideal states. We will see later that in the inter-
face representation of the four-coloring model K actually
equals K., so the model is at the roughening transition.

IV. OPERATORS IN THE FOUR-COLORING
: MODEL

In this section we elaborate on the construction of the
ideal-state graph, and we define operators in the four-
coloring model that are periodic functions of the height.
We show that the stiffness of the interface K determines
the scaling dimensions of all the operators.

A. The ideal-state graph

The ideal-state graph Z, introduced in the preceding
section, plays a crucial role in calculating the scaling di-
mensions of operators in the four-coloring model. Here
we describe how we construct the ideal-state graph in
more detail.

We start with an arbitrary ideal state; in order to be
concrete let us take this state to be (ABCD). If we
exchange the colors A and B on all the AB plaquettes
we get a new ideal state, (BACD). Only the AB pla-
quettes are affected by these loop updates, and conse-
quently only the microscopic heights defined at their cen-
ters are allowed to change. The change in z at the AB
plaquettes is Az = A — B, which gives rise to a change of
the coarse grained height of Ah =1/4 Az = 1/4 (A-B);
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FIG. 4. The ideal-state graph of the four-coloring model.
The vertices that correspond to the 24 different ideal states
form a truncated octahedron. The full ideal-state graph cor-
responds to a periodic tiling of space with these octahedra.
They are arranged in a face-centered-cubic lattice.

this is the vector that takes us from the node (ABCD)
to the node (BACD) on the graph Z. Note that in this
way the edges of T are associated with transpositions of
the colors. Repeating this procedure we construct the
ideal-state graph which is shown in Fig. 4.

The 24 different ideal states form a truncated octahe-
dron with a side of length +/2/2 in the units chosen for the
vectors A, B, C and D; see Fig. 4. These truncated oc-
tahedra are arranged periodically in a face-centered-cubic
(fcc) lattice, which we call the direct lattice D, to form
the full ideal-state graph. The side of the conventional
cubic cell of D is 4.

B. Definitions of operators

In order to define local operators on the lattice as func-
tions of the colors, we adopt the vector representation of
the four colors Eq. (3.2). We define operators in such a
way that they are spatially uniform in the ideal states.

A local operator O(r) constructed from the colors and
spatially uniform in the ideal states can be written in
terms of the coarse-grained height as O(h(r)). Since h
and h + D represent the same ideal state on the ideal-
state graph, we can identify them

h=h+D, (4.1)
and the operator O(h) is necessarily periodic with the
periods forming the fcc lattice D. Therefore, we can write
O(r) as a Fourier series

O(r) = ) Oge'Sh®
GER

(4.2)

where R is the body-centered-cubic lattice (bcc) recipro-
cal to the direct lattice;?? it has a conventional cubic cell
of side w. The scaling dimension of O(r) is equal to the
scaling dimension of the most relevant operator in the
above expansion.

We define four operators: the staggered spin, the row-
staggered spin, the cross-staggered spin, and the par-
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ity. All four are functions of the color configuration
(o1(r),o2(r),03(r), 04(r)) of the bonds that share the
common vertex r. More abstractly, every color config-
uration at a vertex is a permutation of the four colors,
and these operators can be thought of as functions on
the permutation group Sj.
The staggered spin S(r) is defined as

S(r) = o1(r) + io2(r) — o3(r) —ios(r) . (4.3)
The staggered spin takes its values in the three-
dimensional complex space C2. This operator returns
different values for all the 24 ideal states (elements of the
permutation group) and therefore plays the role of the
order parameter in the four-coloring model. The recipro-
cal lattice vector of the most relevant term in Eq. (4.2)
for the operator S(r) is

111
= — 4
GS 0 <2a 27 2) (4 )
The row-staggered spin R(r) is defined as
R(r) = o1(r) — o2(r) + o3(r) — o4(r) . (4.5)

This operator maps elements of the permutation group to
vectors in R3. It returns equal values for ideal states re-
lated by a (13)(24) permutation [the notation (pg) means
transpose p and g]. In the ideal-state graph, states re-
lated by a (13)(24) permutation are separated by [2,0,0]
type vectors, and therefore we conclude that the recip-
rocal lattice vector of the most relevant operator in the
Fourier expansion of R(r) is
Gz = 7(1,0,0) . (4.6)
The parity P(r) takes two different values de-
pending on  whether the color permutation
(o1(r),o2(r),o3(r), 04(r)) is even or odd. It can be de-
fined as the triple product

P(r) = o1(r) - (o2(r) X o3(r)) .

Since each bond of the ideal-state graph corresponds to
a single transposition of the colors, the parity changes
sign when going from one ideal state to the neighboring
one. It has the same periodicity as the row-staggered
spin, and the associated reciprocal lattice vector is

(4.7)

Gp =n(1,0,0) . (4.8)
Finally, we define the cross-staggered spin as
Q(r) = [o1(r) — o3(r)] X [o2(r) —oa(r)] . (4.9)

The periods of Q(r) are vectors of the type [2,0,0] and
[1,1,1] in the ideal-state graph (they generate a bcc
lattice which is the Bravais lattice?? of the ideal-state
graph), and therefore its most relevant reciprocal lattice
vector is

Gg =7(1,1,0) . (4.10)
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C. Scaling dimensions

Using Eq. (3.6) for the free energy, we can easily cal-
culate the scaling dimensions of the staggered spin, the
row-staggered spin, the parity, and the cross-staggered
spin. They are given by the scaling dimension of the most
relevant operator appearing in their respective Fourier
expansions, Eq. (4.2).

The scaling dimension g of an operator of the form
exp(iG-h(r)) figures in the two-point correlation function

(iC-B(0)g—iGh(r)) 1

5ea (4.11)

where the averaging is with respect to the Gaussian free
energy Eq. (3.6); here we have assumed that the locking
term in Eq. (3.4) is irrelevant. Using the property of the
Gaussian model, that the average of the square of the
height difference varies logarithmically with separation,

1
((hj(0) = hs(r))*) = bij = In(r) + const,,  (4.12)
we find the scaling given by Eq. (4.11), where the scaling
dimension is

1 |GP?

g =———.

T 2rK 2 (4.13)

It is important to note that the stiffness K completely
determines the scaling dimensions of all the operators in
the four-coloring model; G in Eq. (4.13) is the most rel-
evant reciprocal lattice vector. This is a well-known sce-
nario that appears in two-dimensional models that renor-
malize, at the critical point, to the vacuum phase of the
Coulomb gas.3

The assumption that the locking term in Eq. (3.4) is
irrelevant corresponds to the condition'?

Tg; 22, (4.14)

where Gz € R is the periodicity of the ideal-state graph,
which is the periodicity of the potential V' (h). Looking
at Fig. 4 we see that the Bravais lattice of the ideal-state
graph is a bcc lattice with a conventional cubic cell whose
side is of length 2; this implies Gz = = (1,1,0). Now,
using Eq. (4.13), we can rewrite the condition Eq. (4.14)
as a condition on the inverse stiffness,

4
K> —=1273.... (4.15)
We will see in the following section that the value of
the stiffness satisfies the above inequality as an equality,
and that the four-coloring model in the interface repre-
sentation is exactly at the roughening transition.

V. LOOPS IN THE FOUR-COLORING MODEL

In this section we study geometrical exponents asso-
ciated with loops of alternating color: the loop size dis-
tribution exponent 7 — 1, the fractal dimension D, and
the loop correlation function exponent x;. Using recent



results on the statistical topography of rough interfaces
we calculate these exponents ezactly, which also leads to
the exact value of the stiffness.

A. Definitions and scaling relations

The loop size distribution P(s) is defined as the prob-
ability, given we choose a pair of colors a3, that a loop of
alternating color affaf ... passing through a fixed point
on the lattice has a length s. Assuming that the four-
coloring model is critical we can expect loops of all sizes
to be present on the lattice; the smallest loop will be
determined by the lattice spacing, while the largest loop
will be given by the system size. Consequently, P(s) is
given by a power law

P(s) ~ s~ (771, (5.1)

The fractal dimension D of the loops in the four-
coloring model determines the scaling of the length of
a loop s with its radius R:

s~RP. (5.2)
The radius of a loop is defined as the side of the smallest
box that contains the loop.

The fractal dimension and the loop size distribution
exponent have been shown to satisfy the following scaling

relations:19:23:24

2
2—“1'1
D=2'—$1,

T—1=

(5.3)

where z; is the exponent that governs the behavior of
the loop correlation function G; (R). The loop correlation
function is defined as the probability that two points that
are separated by R lie on the same loop of alternating
color.
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The exponent z; can be calculated from the interface
representation of the four-coloring model in the familiar
way:13 If we denote the number of configurations with a
loop of alternating color passing through points 0 and R
as Z(R), then G;(R) can be written as

Z(R)
Z b

where Z is the total number of configurations; 7 is also
the partition function, since all configurations in the four-
coloring model have equal statistical weight. Now, if we
exchange the two colors on the loop along one half of the
loop going from 0 to R, then this generates a vortex and
an antivortex in the interface model, at these two points.
For example, if the loop consists of alternating A and B
colored bonds, then the color configuration, after flipping
half the loop, is A, A,C, D at one end, and B, B,C,D at
the other (see Fig. 5). Using the height rule we find that
the Burgers vectors associated with these “defects” are

Gi(R) = (5.4)

b; =+(A - B) = +(-2,0,2) . (5.5)
Therefore, the loop correlation function is equal to the
probability of having a vortex-antivortex pair of Burgers
charge b; separated by R, in the interface model. This
probability is readily calculated using the formula for the
free energy of the interface in terms of the coarse-grained
height Eq. (3.6). It follows from Eq. (3.6) that the energy
of a vortex pair varies logarithmically with separation R,
and from this it can be shown that!3

G1(R) ~ [R|7*, (5.6)

where the exponent z; is determined by the stiffness

_ K |by)?

- (5.7)

Ty

FIG. 5. A vortex-antivortex pair (circled)
in the four-coloring model; the pair belongs
to a loop of alternating color (bold). These
defects are responsible for the behavior of
the specific heat and the correlation length
at small but finite temperatures.
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B. Exact results from the statistical topography
of Gaussian surfaces

In the interface representation, loops of alternating
color become loops of constant height. This is most read-
ily understood from an example: take an AB loop, and
consider the points at the centers of the plaquettes along
the inside of the loop (Fig. 5). These points are sepa-
rated by C and D bonds only, and therefore the compo-
nent of the microscopic height z in the e;-e3 direction is
unchanged as we go around the loop (the projections of
both C and D are zero in this direction; e; are the or-
thonormal basis vectors in the height space). In general,
every pair of colors defines loops of alternating color on
the lattice, and they are contour lines of the component
of z in the direction which is perpendicular to the vectors
representing the other two colors.

This observation allows us to calculate ezactly the loop
correlation function G;(R), by using the following result,
that we have discussed elsewhere:'° the probability that
two points that are separated by R belong to the same
equal height contour of a random Gaussian surface de-
fined by Eq. (3.6) is universal, in other words, indepen-
dent of the value of the stiffness, and given by

Gi(R) ~ |R|7?, (5.8)
from which the exact result z; = % follows. Inserting
the latter value into Eq. (5.7) gives the exact value of the
stiffness:

14
K *'=-=1.273.... (5.9)
s

As advertised earlier, the exact value of K satisfies
Eq. (4.15) as an equality, and we conclude that the in-
terface model is at the roughening transition. The exact
scaling dimensions of operators in the four-coloring model
are completely determined by K; their values are given
in Table I.

From the scaling relations Eq. (5.3) and using the exact
value of the defect exponent z; = %, we can also calculate
the exponent 7 — 1 and the fractal dimension D,

T—1=
D =

NI Wb

(5.10)

It is interesting to note that in the three-coloring model

TABLE I. The scaling dimensions of the operators in the
four-coloring model; zg) was calculated from the value of the
stiffness found numerically, K ~! = 1.28 +0.01 (Sec. VI), zg)
was determined from the structure factor of the staggered
spin and the row-staggered spin (Sec. VI), and z&*°* was
calculated using the exact value of the stiffness found from
the statistical topography analysis of contour loops (Sec. V).

O(r) Go a:(ol) :cg) zEract
Str)y «(1,L,1 0.754+£0.006  0.70 +0.03 3
R(r)  =(1,0,0)  1.005=+0.008  0.96+0.1 1
P(r)  m(1,0,0)  1.005=0.008 1
Q(r)  =(1,1,0)  2.011+0.016 2
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on the honeycomb lattice, which is defined as an equal-
weighted edge coloring of the honeycomb lattice with
three different colors, loops of alternating color also rep-
resent loops of constant height (in this model the height
is a two-component vector).® In fact, for this model,
the exponent 7 — 1 has been measured in numerical sim-
ulations by Chandra, Coleman, and Richey,® and they
report 7 — 1 = 1.34 + 0.02, in excellent agreement with
the exact result 7 — 1 = 4/3.

VI. RESULTS FROM MONTE CARLO
SIMULATIONS

In this section we present our Monte Carlo results for
the stiffness, the staggered spin and row-staggered spin
structure factors (from which the scaling dimensions of
these two operators can be deduced), and the fractal
dimension and size distribution of loops of alternating
color.

A. The stiffness

In order to determine the stiffness and check that
the interface model is indeed rough, we have performed
Monte Carlo simulations of the four-coloring model on
square lattices of size 16 x 16, 32 x 32, and 64 x 64.
Periodic boundary conditions were imposed and the sys-
tem was equilibrated by performing loop updates, which,
as pointed out earlier, are the smallest possible changes
on the lattice that leave all the constraints of the four-
coloring model satisfied.

A loop update consists of choosing a bond and one of
its nearest neighbors at random; these two bonds will
necessarily be of different color, say A and B. Next we
follow the AB loop to which the two chosen bonds belong;
due to the periodic boundary conditions the loop actually
lives on a torus. If the loop has winding numbers in both
directions equal to zero, we exchange colors A and B
over the length of the whole loop. This will result in a
new ground state. (We update only the loops with zero
winding numbers to ensure that the overall tilt of the
interface is kept at zero.)

In order to satisfy detailed balance every proposed loop
update is accepted, since all the microstates have equal
statistical weight. The loop updates are ergodic in the
sense that they can be used to go from one ideal state to
all the others with the same overall tilt. (In the worst case
some isolated states might not be attainable but they will
not be macroscopically represented in the ground-state
ensemble.)

At this point it is interesting to point out that a Monte
Carlo simulation of the Potts model Eq. (2.1), at small
but nonzero temperature 7', should incorporate some sort
of a cluster algorithm which approaches this loop algo-
rithm in the T — 0 limit; a single-spin-flip type of algo-
rithm would fail completely in this limit. Monte Carlo
simulations with loop updates have been recently stud-
ied as algorithms that reduce critical slowing down by
Evertz, Lana, and Marcu.2®



The initial configuration was chosen to be either flat
(i-e., an ideal state) or corresponding to a “roof” con-
figuration in which the interface rises uniformly, starting
from two opposite sides of the lattice. For the “roof”
configuration on the 64 x 64 lattice we found that ap-
proximately 600 loop updates were needed to flatten the
“roof”’; in other words, the equilibration time at this sys-
tem size is roughly 600 loop updates. Measurements of
the microscopic height were performed only at intervals
of an equilibration time in order to avoid measuring the
height over states that were very correlated. We did not
obtain a more quantitative measure of the dynamics of
the four-coloring model with loop updates, which can be
done by measuring the equilibration time as a function
of the system size.2> We believe this to be an interesting
open problem.

After the system is equilibrated we construct the mi-
croscopic heights {z(r)} using the height rule Eq. (3.1).
From this we calculate, using a fast Fourier transform
routine,?® the Fourier transformed microscopic heights
{Z(q)}. This is repeated for many equilibrated states and
we calculate the average value of the modulus squared of
each Fourier component {{|Z;(q)|?), (: = 1,2, 3)} and its
variance.

Assuming that the long-wavelength fluctuations of
the microscopic height are correctly described by the
Gaussian free energy Eq. (3.6), we expect from equipar-
tition:

lima*(|Z(@)*) = K7, (i=1,2,3). (6.1)

The results from the simulation are plotted in Fig. 6

0.01 ' 0.1

A .
o 20.0 +
o 1
N

o ,

FIG. 6. The Monte Carlo data for the Fourier transformed
microscopic height. What are shown are data for the first
height component; the other two are equivalent, within error
bars. The size of the system for which we show the data
was 64 x 64, and the wave vector q was measured in units
of the inverse lattice spacing. Note that in the limit q — 0,
q?(|2(q)|?) approaches a finite nonzero value, as expected for
a rough interface. The peaks at g2 = 72 = 9.869... and
q? = 2n% = 19.739... are a consequence of the modulation
of the microscopic height in the ideal states. In the inset we
show the same data on a log-log plot, at the smallest values
of q. The mark on the vertical axis corresponds to the exact
value of the stiffness K~! = 4/m = 1.273.. ., found in Sec. V.
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where we show data for the first height component; the
plots for the other two components are identical (within
error bars), as expected from symmetry. The data shown
are for a 64 x 64 lattice; no appreciable finite size effects
were found when results from different system sizes were
compared. The construction of the microscopic heights
was performed every 600 elementary loop updates, and a
total of 6 x 10* measurements of the Fourier transformed
microscopic height were taken (this took a few days on a
Sun-Sparcl station). These were grouped in 100 bunches
of 600 successive measurements. The average values of
|Z1(q)|? over each bunch were considered independent,
and the error bars seen in Fig. 6 were obtained from
their variance over the 100 bunches.

From the plot we see that the Fourier transformed
heights indeed behave as required by Eq. (6.1), and we
conclude that the interface is rough. From the intercept
of the plot, we determine the inverse stiffness to be

K~'=1.280 +0.010 . (6.2)
This is in excellent agreement with the exact value of
the stiffness given in Eq. (5.9). The above value of the
stiffness was determined by fitting (|1 (q)|2) to the func-
tion q72(K ! + C1q® + C2q2q2), which has the required
symmetry of the lattice, and it minimizes the standard
deviation. Data for wave vectors within the outermost
squarelike contour on the contour plot shown in Fig. 7
were used for the fit. The parameters Cy and Cs were
found to be 0.355 +0.003 and —0.44 4+ 0.02, respectively.

Prominent features in the plot in Fig. 6 are the peak
at g2 = 72 = 9.869... and the smaller peak at q> =

«
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q
x

(@)

FIG. 7. The contour plot of In(({|Z(q)|?)) for system

16 16

size 64 X 64; q is in units 27w/64. Note the peaks at
q = (32,0), (0,32), and (32,32) (and at the symmetry re-
lated points); data within the outermost squarelike contour,
centered around (0,0), were used in extracting the value of
the stiffness.
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272 = 19.739... . They appear due to the fact that the
microscopic height is not uniform in an ideal state but is
rapidly oscillating with wave vectors Q = (m,0), (0, 7),
and (m,7). This results in Z;(q) having delta-function
peaks at @ = Q in an ideal state, which are smeared out
by fluctuations around the ideal state. Actually, these
peaks carry information about the staggered spin and
row-staggered spin structure factors, which we discuss
next.

B. Structure factors of operators

Due to the linear connection between the microscopic
heights and the spins Eq. (3.1), we can express the struc-
ture factor of the staggered spin and row-staggered spin
in terms of the height structure factor z(q).

If we substitute Eq. (3.1) into the defining equation
for the staggered spin Eq. (4.3), then, after Fourier trans-
forming, we find that the structure factor of this operator
is given by

|ReS;(q + (7,0))|* = 16|2;(q)|?

x sin? (q?z) cos? (%) y
where ReS; is the real part of the ith component of the
staggered spin. The formula for the imaginary part has
g and g, interchanged, and instead of the shift (m,0) we
have a shift of (0, ).

Similarly, from Eq. (3.1) and Eq. (4.5) we find that

the structure factors for the row-staggered spin and the
microscopic height are related by

(6.3)

|Ri(q + (m,7))|* = 64|2(q)|?
x sin? (q?z) sin? (%y—) .

In Fig. 8 we show the plots for (/ReS;(q?)

and (|Ri(q|?), which were computed from Egs.
(6.3) and (6.4), using the data for (|Z:(q)|?) shown
in Fig. 6. We see from the plots that at small wave
vectors both structure factors decay approximately as
power laws. This explains the peaks seen in the plot
of the height structure factor at q = («,0), (0,7), and
(m, ) (Fig. 7).

The power law decay of the structure factor is to be ex-
pected for operators that have autocorrelation functions
that decay with distance as power laws:

(6.4)

(0(x)0(0)) ~ (6.5)

7-2110 .
Namely, if we Fourier transform the above equation, we
find that for small wave vectors, the structure factor is
given by

(10(q)[?) ~ g1,

This allows us to estimate the scaling dimension zo of
an operator from the power law behavior of its structure
factor at small wave vectors.

(6.6)

JANE KONDEV AND CHRISTOPHER L. HENLEY 52

Ay - —
LN -
10°
© O
e oo
o <IR(@Q)P>
4 <IS(q)>
10“ T 4 e 10'1
10? 10" 10°
qz

FIG. 8. The staggered spin (|S(q)|?) and the row-staggered
spin {|R(q)|?) structure factor for system size 64 x 64. Here
we show data at small wave vectors; note the power law decay
which signals a critical (power law) autocorrelation function.
The straight lines correspond to exact values of the scaling
dimensions for these two operators (zs = 2 and zr = 1)

1
found in Secs. IV and V.

Fitting the data in Fig. 8 to a power law where
(|0(a)|?) = ¢*®o~1)(C} + C2q) was chosen for the fitting
function, with zo, C1, and C» being the fit parameters,
gives for the scaling dimensions of the staggered spin and
row-staggered spin

2 = 0.70 £ 0.03
2 = 0.96 £ 0.01 .

(6.7)

These are in good agreement with the exact values shown
in Table I and the ones calculated from the value of the
stiffness determined from simulations. They are both
somewhat smaller than the exact values, which is most
likely due to a relatively small system size (64 x 64).

It is important to note that the errors in Eq. (6.7) are
about an order of magnitude worse than the errors for
:L'(sl) and mg) in Table I, which were inferred from the
same data by the method of calculating the exponents
from the stiffness K which is extracted from (|Z;(q)|?).
We believe this demonstrates the superiority of the inter-
face representation in extracting critical exponents from
numerical data. Errors smaller by an order of magnitude
were also found when the critical exponents for the an-
tiferromagnetic Ising model of general spin on the trian-
gular lattice, calculated using a height representation,'®
were compared to the values found using the more tradi-
tional finite size scaling method.®

C. The loop exponents

The exponents 7 — 1 and D defined in Egs. (5.1)
and (5.2) can be determined from Monte Carlo simula-
tions. We record the length and radius of every loop that
is updated. This allows us to plot the loop size distribu-
tion P(s) and the mean length of a loop s as a function



52 FOUR-COLORING MODEL ON THE SQUARE LATTICE: A ...

FIG. 9. The length distribution P(s) of loops of alternat-
ing color in the four-coloring model. The distribution is cut
off due to the finite system size (64 x 64). The line corre-
sponds to a least squares fit to the data in the scaling region,
10 < s < 50.

of the loop radius R (the radius was defined earlier as
the side of the smallest square that completely covers
the loop).

The results for system size 64 x 64 are shown in Figs. 9
and 10. We extract the value of 7 — 1 and D from the
data in the scaling region by doing a least squares fit to
a line, and we find

7—1=1.30%0.03
D =1.501 £ 0.003 .

(6.8)

These numerical results are in excellent agreement with
our analytic results displayed in Eq. (5.10), which relied
on the interface representation of the four-coloring model.
The measurements of 7 — 1 and D can also be thought

10° | 1
2
o 100 F E
10" ;
10° 10’ 10°
R
FIG. 10. The average length s of the loops in the

four-coloring model as a function of their radius R. At small
radii the length of a loop is constrained by the lattice spacing,
while for very large loops the sytem size (64 x 64) intervenes.
The line corresponds to a least squares fit to the data in the
scaling region, 10 < R < 50.
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of as independent measurements of z; or of the stiffness
K.

VII. DISCUSSION

We discuss the conformal field theory associated with
the four-coloring model, finite temperature properties of
the Potts vertex model, and the relation of the four-
coloring model to a loop model.

A. Relation to conformal field theory

We have seen that the four-coloring model can be
mapped onto a Gaussian interface Eq. (3.6) with a three-
component height that is compactified on the direct lat-
tice D, Eq. (4.1). Thus, the CFT that emerges in the
scaling limit is a rather simple one. It corresponds to
three massless free bosons h = (hy, ha, h3) [Eq. (3.6)],
compactified on the fcc lattice. The fcc lattice is the root
lattice of an SU(4) Lie algebra.2” If the radius of com-
pactification is carefully chosen, then the CFT has an ad-
ditional infinite symmetry (besides the usual conformal
symmetry described by the Virasoro algebra) given by
the affine SU(4)x=1 Kac-Moody algebra.?® The choice of
the radius of compactification is equivalent to the choice
of the stiffness for the interface.

The idea that the scaling limit of the four-coloring
model is given by the SU(4)x=1 WZW model!® was first
put forward by Read.!* He showed that the four-coloring
model is equivalent to a lattice model with explicit SU(4)
symmetry and went on to conjecture that the scaling
limit is given by a WZW model. Our interface repre-
sentation of the four-coloring model is thus a familiar
construct in CFT; it corresponds to the free field repre-
sentation of the SU(4)x=; WZW model.2%:30

The conformal charge of the SU(4)x=; WZW model
is ¢ = 3, corresponding to the three free massless Bose
fields (hi1,h2,hs). The operator spectrum of this CFT
consists of three primary fields ®(A;), (¢ = 1,2,3) that
transform under different representations of SU(4); by A;
we denote the highest weight of a representation of SU(4).
The highest weights belong to the so-called weight lattice
which is reciprocal to D and can therefore be identified
with R. In the free field representation, the primary fields
of the CFT become exponentials of the Bose fields

®(A;) = exp (iA; - h(r)) , (7.1)
which are the so-called vertex operators. Their scaling di-
mensions are 3/4 (doubly degenerate) and 1,27 which is
in excellent agreement with our results shown in Table I.
In fact, the exact values of the scaling dimensions shown
in Table I, that were derived from the statistical topog-
raphy of Gaussian surfaces, prove that the four-coloring
model is in the universality class of the SU(4)=1 Wess-
Zumino-Witten model. In other words, the fact that the
three Bose fields are compactified on the fcc lattice, which
is the root lattice of the SU(4) algebra,?” and that K has
the special value given by Eq. (5.9), proves the conjecture
put forward by Read.



6638

B. Predictions for finite temperature

At small but nonzero temperature, violations of the
coloring rule (defects) are present in the Potts vertex
model, which was defined in Eq. (2.1). The free en-
ergy is dominated by the elementary defects that cost
the least amount of energy. These elementary defects in
the Potts model have energy J and they come in pairs as
seen in Fig. 5. In the interface representation they cor-
respond to a vortex-antivortex pair with Burgers charge
bl, Eq. (55).

The free energy f scales with the defect fugacity Y; =
exp(—J/kgT) as'?

@

2
FrYTT =Y (7.2)
where z; = % is the previously determined vortex-
antivortex correlation function exponent Eq. (5.8). This
exponent also governs the scaling of the correlation
length £ with Y;. Namely, the singular part of the free
energy of the Potts vertex model is related to the corre-
lation length by the hyperscaling relation

f~E2. (7.3)
From Eq. (7.2) we find that the correlation length di-

verges with the defect fugacity (which goes to zero as the
temperature approaches zero) as

(7.4)

The scaling in Eq. (7.2) can in principle be checked
by measuring the dependence of the specific heat on
the fugacity, from Monte Carlo simulations of the Potts
model at finite temperatures. This was done in the case
of the three-state antiferromagnetic Potts model on the
Kagomé lattice by Broholm et al.;3! the ground states of
this model correspond to the three-coloring model on the
honeycomb lattice, which has been shown to be equiva-
lent to a two-dimensional rough interface in four dimen-
sions.® Elementary defects in this model also appear as
vortex-antivortex pairs with the exponent z; = 1.8 Bro-
holm et al. found the scaling given by Eq. (7.2) to hold,
and they measured the exponent to be 1.3+ 0.1, in good
agreement with the exact result 4/3.

C. Relation to loop models

Recently there has been quite some interest in loop
models on two-dimensional lattices.”32 The four-coloring
model can be mapped to a fully packed double loop
(FPDL) model on the square lattice. The FPDL model
is defined by placing loops on the square lattice of two
different flavors in such a way that each vertex belongs
to two loops of different flavor, and every bond belongs
to a single loop. We assign fugacities n; and n, to the
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two flavors of loops. Then the partition function of the
FPDL model is given by

Zo=3 il (7.5)
FP

where the sum goes over all fully packed (FP) configu-
rations, and N;, N, are the number of loops of the first
and second flavor, respectively. In the case ny = ny, = 2
we recover the four-coloring model, where the two flavors
of loops correspond to the AB and CD loops and the fu-
gacities are due to the two possible ways of coloring each
loop with alternating colors A-B and C-D.

An interesting line of inquiry, that we are currently
pursuing, might be to understand the critical properties
of the FPDL model for loop fugacities that are less than
two. For higher loop fugacities we expect the associated
interface model to be in the smooth phase. The loop
model develops a finite correlation length that roughly
corresponds to the radius of the largest loop in the sys-
tem.

It is interesting to note that the n; = ny = 1 case
is equivalent to the equal-weighted six-vertex model on
the square lattice for which exact results are known.?
The equal-weighted six-vertex model can be mapped to
the three-state antiferromagnetic Potts model on the
square lattice, which was found to possess a “mysterious”
Z4 symmetry.33 We believe this Z, symmetry to be re-
lated to the SU(4) symmetry present in the four-coloring
model. We are currently looking into this possibility.

The ny = 2, ny = 1 case is related to the dimer-loop
model,!! while the limit of vanishing fugacities might be
an interesting new variant of the self-avoiding random
walk problem.

VIII. CONCLUSION

We have investigated the critical properties of the four-
coloring model. Making use of a mapping onto an inter-
face model we have determined the scaling dimensions of
different operators numerically, from a Monte Carlo sim-
ulation. We found that the numerical results are in excel-
lent agreement with the values predicted from conformal
field theory, which supports Read’s conjecture!# that the
scaling limit of the four-coloring model is the SU(4)z—1
Wess-Zumino-Witten model. We have also investigated
numerically properties of loops of alternating color in the
four-coloring model, and found excellent agreement with
recent exact results on the geometry of equal-height con-
tours on random Gaussian surfaces.'® Finally, we demon-
strated that the exact value of the stiffness K = w/4,
which we extract from loop correlations in the Gaussian
model, is sufficient to prove that the four-coloring model
is in the universality class of the SU(4)x—=; Wess-Zumino-
Witten model.

We have not looked into the dynamics of the four-
coloring model, which we believe to be worth investi-
gating in view of the recent work on Monte Carlo algo-
rithms with loop updates.24 Further interesting questions
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that we have only touched upon here are the finite tem-
perature properties of the four-state antiferromagnetic
Potts vertex model, and the critical properties of the fully
packed double loop model away from the four-coloring
point.
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