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We reformulate the two-channel Kondo model to explicitly remove the unscattered charge degrees
of freedom. This procedure permits us to move the non-Fermi-liquid fixed point to infinite coupling
where we can apply a perturbative strong-coupling expansion. The fixed-point Hamiltonian involves
a three-body Majorana zero mode whose scattering effects give rise to marginal self-energies. The
compactified model is the N = 3 member of a family of O(N) Kondo models that can be solved
by semiclassical methods in the large N limit. For odd N, fermionic "kink" Huctuations about the
N = oo mean-field theory generate a fermionic N-body bound state which asymptotically dpcouples
at low energies. For N = 3, our semiclassical methods fully recover the non-Fermi-liquid physics
of the original two-channel model. Using the same methods, we Bnd that the corresponding O(3)
Kondo lattice model develops a spin-gap and a gapless band of coherently propagating three-body
bound states. Its strong-coupling limit offers a rather interesting realization of a marginal Fermi
liquid.

I. INTRODUCTION

The possible origins of non-Fermi-liquid behavior in
highly correlated metals is a topic of lively debate.
Non-Fermi-liquid behavior has been observed in a va-
riety of metallic systems, including low-dimensional
conductors, cuprate superconductors, ' systems at a
quantum critical point, and in certain heavy fermion
metals. In this context, the two-channel Kondo model
is of particular interest, for it provides a simple exam-
ple of a class of non-Fermi-liquid (NFL) behavior that is
driven by local physics. ~ Variants of this model are of
potential relevance to the physics of dilute heavy fermion
systems ' 6' " and two level tunneling systems.

Most pedestrian techniques in condensed-matter the-
ory involve perturbative expansions about weak- or
strong-coupling fixed points. Insight into the underlying
physics is often gained when these simple approaches can
be applied. Unfortunately, non-Fermi-liquid behavior in
the two-channel Kondo model is associated with an in-
termediate coupling fixed point, placing it beyond the
reach of elementary methods. In this paper we show how
this difFiculty can be overcome by taking advantage of
spin-charge decoupling. A key result is the derivation of
an effective Hamiltonian for the low-energy spin physics
of the two-channel Kondo model:

H = ) Ek@g 4f + CX44' ' (0)@( (0)@~ (0).

Here 4—:(@(il,@(2),@(s&) is a three-component Majo-
rana fermion (4( l = 4( it) with dispersion ek and 4 =
4 ~ is a Majorana fermion localized at the origin, whose
singular scattering efFects generate a marginal Fermi liq-

uid. The spin density is given by S(x) = —i@(x) x 4(2:).
We shall derive this Hamiltonian in two ways and show
how it may be used to simply obtain the thermodynamics
and spin physics of the two-channel Kondo model.

Spin-charge decoupling, the separation of spin and
charge into independent degrees of &eedom at low en-
ergies, is a universal feature of impurity Kondo models.
For multichannel Kondo models, the use of a lattice cut-
oK interferes with this separation. By compactifying
the two-channel model into a Hamiltonian that exclu-
sively describes the decoupled spin degrees of &eedom,
we show how the overscreened fixed point is eliminated,
relocating the NFL fixed point to infinite coupling. We
can then examine the NFL properties of the two-channel
Kondo model in a strong-coupling expansion. We can
also apply semiclassical methods to examine the model
both in weak coupling and in a lattice generalization.

Many aspects of the two-channel Kondo model
have been characterized by a combination of Bethe
ansatz methods, i2' s conformal field theory, i4 numerical
diagonalization, ' and bosonization. 2' These meth-
ods show that the NFL ground state is characterized by

(i) Logarithmic temperature dependence of the specific
heat C oc T ln T and magnetic susceptibility y oc ln T.

(ii) A remarkable zero point entropy of magnitude

2 ln2.
Emery and Kivelson's study of a solvable anisotropic

limit of the two-channel Kondo model identifies this Fac-
tional zero point entropy with a unique fermionic zero-
mode: a "Majorana" fermion. This localized mode de-
velops below the Kondo temperature ultimately decou-
pling from the conduction sea at the NFL fixed point.
Sengupta and Georges 3 have shown that the residual
low-energy coupling of this fermionic zero mode to the
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conduction sea creates the logarithmic temperature de-
pendence of the susceptibility and specific heat. Our
work complements these discoveries and provides a sim-
ple Hamiltonian formalism for studying them in the spin-
isotropic limit.

We begin in Sec. II by compactifying the two-
channel Kondo model, mapping the spin degrees of free-
dom of each channel onto the spin and isospin (charge)
degrees of freedom of a single-flavored electron Quid. In
Sec. III we make a strong-coupling expansion of the non-
Fermi-fixed point, applying methods previously applied
by Nozieres to the one channel Kondo model. In the
strong-coupling Hamiltonian, non-Fermi-liquid behavior
is associated with the development of a sharp three-body
resonance in the conduction electron propagators. In Sec.
IV we develop a versatile functional integral technique for
studying this model in the regime of weak coupling. We
first use a mean field approximation to find the appar-
ent order parameter, then we show that Z2 fluctuations of
this order parameter restore the local symmetry and lead
to the same non-Fermi-liquid regime that was obtained
in the strong-coupling limit. Finally, in Sec. V we use the
methods developed for an impurity model to formulate
and solve its lattice generalization. Of particular interest
here is the competition between "incoherent" non-Fermi-
liquid behavior and coherent three-body bound-state mo-
tion. Section VI summarizes and concludes the results of
these studies.

~(2:) = c (x)o. pep(x)

is the isospin density, whose diagonal and oK-diagonal
components respectively describe the charge and pair
density at site x. The tilde on the electron operators
denotes a Nambu spinor

(cg l
c4 ) (4)

+1 Z l t 0 X

02 X i r' 7 Z

The dynamical equivalence of these two sets of opera-
tors is established by comparing their long-distance, long-
time correlators at J = 0. At J = 0, in a particle-hole
symmetric band, the correlators of isospin and spin are
identical. Furthermore, since the low-energy spin and
charge degrees of &eedom are decoupled, the joint low-
energy correlators of isospin r(0) and spin o(0) com-
pletely factorize, thereby emulating the joint correlations
of the spin density in the original two-channel Kondo
model. More precisely,

(o (1)o (2). . . o (n) v(1')r (2'). . .~(r') ) g p—

We link the two models by making an identification
of the low-energy spin modes in (2) with the low-energy
spin and isospin modes of (3),

II. MODEL (a&(1)~&(2) .ol(n))(o2(1 )o2(2 ) ~ ~ ~ o(& ))J=o

Our starting model is the two-channel Kondo model,
which we write in a one-dimensional form if all time scales are longer than the bandwidth (i.e., all

1/t). (See Appendix for a more detailed
discussion. ) If we now turn on the interaction, this one-
to-one correspondence between the correlation functions
ensures that the models are equivalent in the continuum
limit, to all orders in perturbation theory. By explicitly
separating the spin degrees of &eedom in the compacti-
fied model, when we now use a lattice cutoH'procedure we
avoid developing an unrenormalizable coupling between
spin and charge in the strong-coupling limit.

It is convenient to rewrite the conduction electron
spinor in terms of its real and imaginary components 4
as follows:

II' =it) [at~ (n+1)ap (n) —H.c.]

(0) + -,(0)] (2)

c(n) = @p(n) + i4 (n) c

- 60
2 Z

In terms of these components (see Appendix B),

o(n, ) + ~(n) = —i4(.n) x 4(n)
II =it ) [ct (n+ 1)c (n) —H.c.]

[ (o)+ (o)].s . (3) and

G=3

where A = 1, 2 labels two independent one-dimensional
conducting chains and o~(0) = az (0)o. palp(0) is their
spin density at the origin. In this model, prior to coupling
to the local moment at the origin the spin degrees of
freedom of the two chains are completely independent.

Motivated by the observation that in the continuum
limit, the spin and charge degrees of freedom of a single
chain behave as two decoupled spin-1/2 degrees of &ee-
dom, we now write down a "compactified" two-channel
Kondo model where the local moment is coupled to the
spin and isospin degrees of freedom of a single chain:

Here

a(*) = c.'(*)~-pcp(&)

[ct(n+1)c (n) —H.c.] = ) @ (n+1)@ (n).

is the spin density at position x and
The Hamiltonian is seen to decouple into a "scalar" and
"vector" part
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H =H„+H,
where

H,.= it) @o(n+ 1)@o(n),

H„=it) 4(n+1). 4(n) —iJS„.ilI(0) x 4(0)

(10) a spin-1 composite at the origin to overscreen the lo-
cal moment. Consequently, the unstable "overscreened"
fixed point vanishes from the renormalization flows. In-
stead, as we shall show, the non-Fermi-liquid behav-
ior appears as a stable fixed point at infinite coupling
g2 = oo. Qualitatively, if g is the zero of the P function
for the original two-channel Kondo model, by changing
the cutoK procedure we have mapped this point to infin-
ity g' = G[g'] = oo.

(12)

spinon [1] spinon [2] ; scalar vector.

The "scalar" part (11) describes a freely propagating
fermion mode whereas the "vector" part (12) describes a
local moment interacting with a sea of vector Majorana
fermions. This simple result shows that the low-energy
spin excitations in the the two channels fuse to form
a band of &ee singlet and interacting vector fermions.
Schematically,

III. STRONC-COUPLING LIMIT

In this section we examine the strong-coupling limit of
the compactified two-channel Kondo model. For simplic-
ity we assume that the local moment is located at the
origin of a chain:

n=oo

H =it ) 4(n+1) . 4(n) —iJS& [4(0) x C(0)]. (19)
n=o

From (8), we see that the joint spin density of the two
chains is carried by these vector excitations.

The universal scaling properties of this model are iden-
tical to those of the two-channel Kondo model. The
weak-coupling scaling equation for the interaction con-
stant g = pJ (where p is the density of conduction elec-
tron states at the Fermi energy) has a form

cog ( = P(g) = 2g —g + O[g ].

On general grounds, the first two terms in the weak-
coupling expansion of the P function are universal.
Higher-order terms which determine the location of the
NFL fixed point cannot be defined in a universa/ way, so
the precise location of the NFL fixed point depends on
the cutoK procedure. The original and compactified mod-
els correspond to two diferent regularization schemes of
the same running coupling constant g(() and g(() that
dier in strong coupling due to the higher-order terms
in the P functions. Their coupling constants coincide at
weak coupling,

g = G[g],
G[x] = x+ O[x'],

H = —iJS&. (4 x 4). (20)

The eigenstates of the strong-coupling Hamiltonian H, t,
correspond to singlet and triplet states formed between
the local moment and either the spin or isospin of conduc-
tion electron at the origin. Thus there are two singlet and
two triplet states, separated by energy 2J, as shown in
Fig. 1. This twofold duplication of energy levels results

We imagine that we carry out a Wilson scaling
procedure, keeping track of the corrections to the
free energy and the evolution of the Hamiltonian as we
integrate out the high energy degrees of freedom and
move away &om weak coupling. On general grounds,
the qualitative physics described by the Hamiltonian at
each point on the scaling trajectory will not change. If
the strong-coupling fixed point is stable we can obtain a
simple description of the essential physics of the model
at weak coupling.

We begin by examining the character of the strong-
coupling fixed point. At J = oo we may neglect all sites
except n = 0:

but the higher-order terms of G[x] depend on the cutoff
procedure. In the compactified model there is no un-
stable "overscreened" fixed point. Though the long-time
correlation functions of S = 2[o(0) + w(0)] mimic the
correlations of the operator S' =

2 [oi(0) + o2(0)], in the
two-channel problem S is a spin-1/2 operator obeying
usual identities:

2J

S=&

S=O

[S,S ] = ie g, S',
g2

4

On a lattice, the spin and isospin cannot simultaneously
be finite at one site, so it is not possible to produce

n=0, 2

FIC. 1. Energy levels for the strong-coupling limit. The
singlet can form with a spin (n = 1) or "isospin" (n = 0, 2).
The twofold degeneracy can be identified with the fermion (
which commutes with the strong-coupling Hamiltonian.
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from a local supersymmetry: there are two real Fermi
operators, 4~ ~ and

2.@(1)y(&) y(3)

which commute with the Hamiltonian II (20). The
complex fermion ( = (4( ) i@)/—~2 transforms one state
into its degenerate partner. Unlike bosonic degeneracies,
transitions between the two singlet states is always ac-
companied by emission/absorption of an odd number of
fermions.

To examine the effect of hybridization we first reinstate
it between sites 0 and 1, writing

tion electrons. We construct the perturbation theory
using Feynman diagrams containing the local propaga-
tors of the itinerant conduction electrons and the three-
body bound state. Both propagators describe Majorana
fermions, and are represented by lines without arrows.
We represent the conduction electron local propagator
(4 (1, 7 )0'b(1, 0)) = 8 bG(~) as

(1, 0) ———————————————(1,~) = 8 bG(7), '

(26)

where

(21) G(v-) =
"dk, pvrT

[1 f(ek)]e (27)
2~ " sin(7 ~T)

where t = it@(1).@(0). The hopping term t causes tran-
sitions amongst the singlet and triplet states at the ori-
gin. Its matrix element between the singlet states is zero.
We now use perturbation theory in t/J to eliminate the
high-energy states triplet states and form a low-energy
effective Hamiltonian H'. This is done by making the
canonical transformation H; H* = e He, where

Here T is the temperature, ek ———2t sin k, and p =
is the density of states for a Fermi velocity v~ = 2t,.
The bare three-body bound-state propagator G~@(r)
(4 (r)4(0)), is

0 — — — — —r = G~(r),0

S=P
/

/+ / /

+ Pi —(Hc)
(i I t'i
i —2J) (—2J) (22)

is chosen to eliminate the off-diagonal terms between the
singlet and triplet states. Here P1 and Po respectively
project into the subspaces with a triplet or singlet con-
Gguration at the origin. The residual interaction induced
in the singlet subspace is then

H;„,=Po
g2 g3

2J (2J)~ (23)

Under the singlet projection, the first term in (23) van-
ishes. The second term becomes

@y( )(1)@()(1)@()(1) (24)

II* =it ) 4(n+ 1) 4(n)
n=1

+~c,y (i) (1)y (~) (1)iI (s) (1) (25)

where the site at the origin is explicitly excluded.
Let us now consider the perturbative corrections that

result from coupling the itinerant band to the zero
mode. We shall show that these corrections are for-
mally 0 in the renormalization-group sense, but that
they produce strong scattering effects on the conduc-

where n = 3t /4J . This term couples to the fermionic
zero mode 4 to a three-body composite of conduction
electrons at site l. In the more conventional one-channel
Kondo model, this term is absent and the leading term
in the Hamiltonian is a benign Fermi-liquid interaction
proportional to t / J . The three-body resonance feature
of the two-channel fixed point fundamentally transforms
its physics. Our final fixed-point Hamiltonian for the
spin-degrees of freedom of the two-channel Kondo model
is thus

where

Gc, (r) = T) —e ' " = —sgn(v. ).
Z(d~ 2

(29)

At T = 0, G(r) —,so the scaling dimension of the con-
duction electron operator @(1) is d@ = z, whilst the
fermionic zero mode is dimensionless: d@, ——0. The
dimension of the interaction term in the action S;„qoc

I drC iII 4 @ is consequently

d;„i——1 —d@ —3d@ = —1/2.

The interaction is formally "irrelevant, " because it scales
as [7 ~ ]

= [w ~ ]. From a practical standpoint, this
means that each additional power of o. associated with
vertex corrections to the skeleton diagrams introduces
an additional power of &equency into the diagram. The
vertex corrections to the bare interaction vertex between
three conduction electrons and the zero mode, shown in
Fig. 2, are thus proportional to o. u and can be com-
pletely neglected at low energies.

The polarizability of the electron fluid leads to two
leading corrections to the interactions between the local-
ized and itinerant fermions, as shown in Fig. 3. The ver-
tex induced between the localized Majorana modes and
the itinerant electrons [shown in Fig. 3(a)] is ci y, (r),
where y„(r)is the local spin susceptibility of the con-
duction electrons. At long times, y„(r)becomes small:
y„(r) oc 1/r~ which implies a frequency dependence
y, (v ) oc ~v

~

showing that this term is irrelevant at low
frequencies. The second vertex shown in Fig. 3(b)] de-
pends on the joint susceptibility between the conduction
electrons and the three-body bound state y @. Prom a
scaling argument, y, c, (r) cc 1/~w[ which implies an inter-
action g y, c, (cu) oc ln ~u ~. This term generates a marginal
interaction between the conduction electrons that is re-
sponsible for departures from Fermi-liquid. behavior.
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O(cx co)

where Z = [1 —b Z@(ur)]~o. In other words, a renor-
malized component of the three-body operator comm, ute8
with the fixed-point Hamiltonian. By contrast E~(7) oc

I/w2, and hence ImZ@(u) oc ~w~,

E@(w) oc (u 1n(u,

O(cxm)

FIG. 2. Vertex corrections to the bare interaction. Solid
lines denote the electron propagator G(r). Dashed lines de-
note the three-body propagator G@(v) = -sgn(r). The vertex
corrections scale as O(n u).

a signature of a marginal Fermi liquid. The stability of
the fermionic zero mode guarantees that this feature is
not removed by higher-order processes. A consequence
is that the itinerant spinons described by the conduction
sea develop a sharp, zero-energy pole in their three-body
propagator.

The explicit form of the off-diagonal susceptibility y @
in the frequency domain is of particular interest. We
write

X 4 (r)~ = ([@ (1 'r)c'(~)][@ (1 O)C'(O)D

so that

Another way to consider the effect of these interactions
is to evaluate the self-energy parts that they generate.
Only two diagrams are possible in the second order (Fig.
4). The term shown in Fig. 4(a) renormalizes the propa-
gator of the fermionic zero, mode,

Writing this as a Matsubara sum

Ge (~)
].: G@(o/) = (3o)

Since Z@(v) oc I/7, ImZ@(u) oc o/ at low frequencies.
This means that the sharp pole in the zero-mode propa-
gator is preserved to all orders in the scattering processes

1—Im [G@(u) ] = Zb (~) + (background),
(a) Z(i) —O(1/8) =& ImZ(m) —m

X, (i) —O(1/2) =& ImX, (co}—(co(

(b) g(q) —O(1/P) & Z(m)-m in co

(b)

)s

(z) —O(1/w) ~ Imx + (fo) —In fo

(c) Z(m„)= —i A sgn(cq, )

FIG. 3. Renormalization of interactions. (a) Irrelevant sus-
ceptibility y„(~)oc ~, (b) marginal susceptibility between
conduction electron and three-body bound state y, @(7.) oc —.
Another way to consider the effect of these interactions is to
evaluate the self-energy parts that they generate. Only two
diagrams are possible in the second order (Fig. 4).

FIG. 4. Self-energy corrections. (a) Irrelevant correc-
tion to three-body self-energy. Since ImZ(cu) cu, this
term preserves the sharp zero-energy pole in the three-body
propagator. (b) Marginal self-energy of conduction. elec-
trons induced by scattering off sharp three-body bound state.
ImZ(u) ~~~. (c) "Hartree" self-energy that gives Majorana
bound state a finite width A oc I3 in a magnetic field B.
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X c( -) = pT ). Sgn(ld~ )
cu +vl~- I

&D

ln
7l 27IT

I
2 27lT)

(1
X,@(v —ib) = — ln —4'

7I 27lT (2
iv &

The imaginary part of this susceptibility is

where 4(x) denotes the digamma function. Making the
analytic continuation gives

One of the most interesting physical quantities to cal-
culate is the dynamical magnetic susceptibility of the im-
purity. This is given by the diagram shown in Fig. 5,
which leads to

Xspin = o' Xz (v) Xe4 (v)1
2 2 (44)

X.,'-(v) = (~p)'X.~(v). (45)

From this result, we may also deduce the the static sus-
ceptibility

where X (v) is the uniform magnetic susceptibility of the
conduction band. At energies

~
v~ && t, X,(v) = p, so that

the impurity spin susceptibility is directly proportional
to the marginal susceptibility X,@(v)

l.e.,

X,"~(v) = p —tanh
A

X,p,„——p(np) ln
T (46)

V
II T'X. ()- (v «T)

(v )) T).

H&=B Sd —(i/2)) 4, x4, .
j=0

The splitting between the singlet and triplet states at
site 0 is unaltered up to terms of order O(B /J), so the
residual coupling of the magnetic Beld in the fixed-point
Hamiltonian only involves the electrons at sites x ) 0,

OO

H~ — B) 4(n—) —x 4(n) + O(B /J).
n=1

(40)

These terms introduce an ofI'-diagonal contribution to the
conduction electron propagators

(Q (1,7 )@g(1,0)) = G (7 )
b'

g + i e s,B,pe sgnv,

(41)

where p = 1/(2vrv~) is the density of states and D the
bandwidth. The second term in the propagator gives rise
to a static magnetization

The "marginal" form of this susceptibility is a direct
consequence of scattering ofI' the perfectly sharp three-
body bound state.

Suppose we introduce a magnetic field by adding the
term of a magnetic field that couples to both conduction
electrons and the local moment,

where A = D/(2vre ~~l).
We may calculate the dominant non-Fermi liquid cor-

rections to the free energy within second. -order perturba-
tion theory. These calculations essentially duplicate the
earlier work by Georges and Sengupta. In a weak mag-
netic field B (( T, there are two leading contributions
to the free energy (Fig. 6), a zero-field part [Fig. 6(a)]

[G(7.)] —sgn~ d~
2

vr/2

dx. 3sin x
p(o.pvrT) 2

2 T/A

p(o.vr pT) 2 A
ln

4 (47)

and a finite-field part [Fig. 6(b)]

(nM)
2

p(o pB)'
2

1
G(~) —sgn~ d~

2

1
dx

sin x

(M = pB)

(48)

Adding these two contributions to the free energy of
the asymptotically decoupled zero mode, Eo ——E —

2 ln2
gives

—-(4(1) x @(1))= Bp
2

(42)
Xe@(v) Xc(v)

and the zero-mode self-energy now acquires a "Hartree"
self-energy, as shown in Fig. 4. This term breaks the
fermionic degeneracy and broadens the sharp resonance
into a Lorentzian of width b = vrB (o.p) p. The field-
dependent energy scale will act as an efI'ective Fermi tem-
perature

TF 6(B) oc B .

Xsp j p(v) (x X (v) X (v)

FIG. 5. Impurity susceptibility. Showing how the magnetic
field couples to the marginal susceptibility.
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(a)

F (T) =

(I Apl '

S'[4] = Tln &

/2vr

(Di
2~

"
&2~T) '

(b)

F (T) =

provided [b(B) (( T]. The function

as, I'(-,'+,.') ~p (»p~
27r t 2 2ir)

(56)

S' = E ——ln2 — (7rT) + 2B ln
T p(np) - 2 2- A

2 4 T
(B «T).

(49)

This leads to logarithmic contributions to the suscepti-
bility and linear specific heat [p(T) = C~(T)/T]

(~)
2(p~)'in

I T I. (50)

FIG. 6. Leading dangerous correction to free energy. (a)
Zero-field component: leading correction from scattering off
the three-body bound state; (b) finite-field component.

describes the field-induced quenching of the 2ln2 entropy
associated with the three-body bound state.

To complete our discussion of the non-Fermi-liquid
fixed point, we should like to consider the entropy associ-
ated with the fermionic mode. In the single site (J = oo)
limit there are two real fermions, 4( ~ and 4 that com-
mute with the Hamiltonian, which gives an entropy ln2.
Once the coupling to the remainder of conduction sea is
included, the scalar fermion 4( ~ becomes a part of the
decoupled Fermi band, so half the fermionic degeneracy
is removed. To further elucidate the nature of the "frac-
tional" degeneracy it is instructive to consider two "two-
channel" Kondo impurities located at opposite ends of
the conduction chain (Fig. 7). In such a situation there
are two fermionic zero modes 4(0) and Ci(N) associated
with each end of the chain. Using perturbation theory
we may deduce that these two modes are coupled by

The bulk susceptibility and linear specific heat of the
original two-channel Kondo model are

2Np,

Hc, = —i%4(0)4(N),

where A = n f G (7)d7. and

(57)

8N —p,3 )
(5I)

+ O(I/N'). (58)

y;/y ( 2 ) (2') 8

~/~- & ') E 3) (52)

where N is the number of sites in the lattice, giving a
Wilson ratio

Thus A n /(v~N ). The interaction (57) leads to a
splitting of two zero modes. To show this, it is convenient
to form a complex fermion ( = ~[4(0) —i4(N)], then

At fields large compared with the temperature, the Ma-
jorana zero mode behaves as a resonant level model with
a finite width A oc B . In this case, the repeated scat-
tering ofF the resonance must be summed to all orders.
This gives rise to a resonant-level contribution to the free
energy

4(0)

N-2 N-1

S'[b.] = ——) ln [(i(u„+iA„)],T

where b, = sgn(w )8(D —~ur ~)A. Using the result
S = In 2—:(1/2)ln 2 per impurity.

ln = ) ln[z + n]
r(. + A:)

I' z

we can carry out the Matsubara sum to obtain

FIG. 7. Fractional entropy. A two-channel Kondo chain
with N + 1 sites. For finite chain length the two Majorana
zero modes are coupled, giving rise to a splitting of the ground
state of order O(l./N ). In the limit of N ~ oo, every state
in the Hilbert space is two fold degenerate, leading to a "de-
localized entropy" of 2ln2 per local moment.
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H
2) (59)

The O(N) Kondo model also possesses a local Z2 in-
variance under the transformation

indicating that as N ~ oo the ground state of this sys-
tem will develop a twofold degeneracy and, hence, a zero-
point entropy S = In2. This entropy is completely de-
localized, and for this reason we must associate a 2 ln2
entropy with the residual real Majorana zero mode C (0).
The reasoning employed here is strongly reminiscent of
arguments used to assign a fractional charge to a soliton
in a polyacetylene chain.

IV. WEAK-COUPLING LIMIT

In this section we solve a generalization of the spin-
charge Kondo model (12) in which the number of com-
ponents in the vector Majorana is generalized &om 3 to¹ We then formulate the model as a path integral and
show that the fiuctuations about the large N limit (i.e.,
about the saddle-point solution) recover the key aspect
of the strong-coupling limit, i.e., they reproduce the ef-
fective low-energy Hamiltonian (25). In contrast to the
previous section, this method can be applied to the weak-
coupling properties of the model.

To develop this generalization, we introduce a Majo-
rana representation of the local moments2

g —+ PgP (68)

The explicit form of the Z2 operator depends on whether
N is even or odd. For the case of N even

P (2 )N/2 1 2 N (69)

g)+ y
—zg)

l = 2, 4. . . N —1. (70)

To deal with the remaining g we are obliged to introduce
an additional "ghost" fermion field 4 such that if g
c +ct c —ct'~', C = —'~.'. With this representation, for N odd,~2i

P = (2i) ~ 4g'. . .g

Since C commutes with the Hamiltonian, this also implies
that for N odd, the fermion operator

The case of odd N requires special consideration. To
construct the Hilbert space which represents the Majo-
rana fermions g, g . . .q, we may pair N —1 fermion
g2. . .g~ into complex fermions

Sq ————g x q,
2

(60)
g (2i) (N —1)/2 1 N (72)

where the operators g are real and satisfy canonical an-
ticommutation rules (g, g f = b s. In terms of these
operators the Hamiltonian can be written

commutes with Hamiltonian. This can be also verified
directly. Thus, for odd N, the Z2 invariance manifests
itself as a supersymmetry

H = it) g(n+ 1) @(n) —J[iq 4(0)]2.
n

(61) Z2 [Q, H] = 0. (73)

We now generalize the number of components of g
and 4 &om 3 to ¹ a = 1.. .N. Then the generalized
Hamiltonian

We now formulate the partition function as a functional
integral

Z = 'V4"Vge (74)

H = it ) @(n+ 1) . @(n)
n

has a global O(K) invariance

a bmB bg,e'~ a bob,

[ig 4(0)]2, (62)

(63)
(64)

P 1(
g&.q+) 4(n) 8.4(n) +H d~. (75)

0 n

To proceed, we make a Hubbard Stratonovich transfor-
mation on the interaction term

S„'= —'[&,&'],

S.'
(&) = —'[@ (&) @ (&)]

(65)
(66)

whereupon

H;„,= Sq S, (0).2N (67)

where R g is an N dimensional orthogonal matrix. We
have rescaled J m J/2N so that with J fixed, the Hamil-
tonian grows extensively with N, establishing a well de-
Gned mean theory in the large N limit.

The interaction term can be conveniently rewritten in
terms of O(N) spins

NV2
iV(~)(g. 4) + 2J (76)

where the V(v) is a fiuctuating real field. In the large N
limit, Quctuations of this field are small, and at N = oo
the thermodynamics is determined by the mean-field sad-
dle point V = N(ig . @(0)). This saddle point solution
breaks the local Z2 invariance, and at Bnite N Quctua-
tions in the sign of V(v) play an important role in restor-
ing the local symmetry.

The mean field Hamiltonian
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+ NV2
IIMp(V) = ) ti, @ i, 4i, + V[irj. 4(0)3+

41, = N '~') 4(j)e *"*, (77)

Free Energy

describes an N-fold degenerate band hybridizing with a
resonant level. At this level of approximation, the prop-
erties of the Fermi system are those of noninteracting
resonant level of width A = mpV2. Using the resonant
level &ee energy obtained in (55), we find

-V,

(
FMp TTre —~ MF Nl F[43+

2 Jp~

Minimizing this with respect to 4, we obtain

(78)

-V,

X4

1'4p) Tic p
( 2 27I p 27I'

FIG. 8. Kink configuration. Configuration with four kinks
in the order parameter V at a given site.

where

I
TK = Dexp

Jp
(80) II(iv„)= —((ig 4) „„(iq4)„„). (s4)

is the "Kondo temperature" which sets the characteristic
energy scale of the mean-Geld properties. At low temper-
atures, 4:T~.

Let us now discuss the fluctuations about the mean
Geld theory. In the functional integral

Il(v-) = pf(lv-I/T~). (s5)

Since T~ is the only energy scale in the problem, at low
temperatures II(v„)has the functional form

Z = 'V@Vg'VVe

where

P g('
S = — rig rI + ) iII(n)8 4(n) + IIMp(V) dr,

)
(82)

we may identify two classes of Huctuations: (i) small
Gaussian fluctuations around the saddle-point solution
and (ii) rare tunneling events when the sign of the real
field V reverses ("kinks") as illustrated in Fig. 8.

In the large N limit, the action associated with an
order parameter "kink" scales as N, and hence the &e-
quency of these Huctuations scales as I"(Ã) oc exp( —N).
The small amplitude Gaussian fluctuations of frequency

& I' will be unaffected by the rare large amplitude
kinks, thus in the large N limit we may consider the
contributions to the functional integral from these fluc-
tuations independently.

Consider Grst the effect of the Gaussian fluctuations.
Expanding the action around the mean-Geld theory we
find

S = SMpT+ —) II(v„)bV(iv„)hV(—v„)+ O(hV ),

Though we can calculate f(x), its detailed form is not
of great importance. Since there is no continuous broken
symmetry associated with the mean-Geld theory, these
Gaussian fluctuations are gap full at all &equencies and
f(x) is a positive analytic function of x. Gaussian Huc-
tuations therefore generate small 1/N corrections to the
dynamics that are analytic functions of the &equency, so
they do not give rise to non-Fermi-liquid behavior.

Next we consider the effect of the large discrete fluctu-
ations in the sign of V. I,et us divide the trajectory V(w)
into periods of time when V = +Vo is almost constant,
separated by brief periods when V(w) is changing sign.
The time scale of the sign change can be estimated by
the rate at which V(w) approaches the stationary value
+Vo after the transition has occurred. This rate can be
estimated from (84): 1/Tp T~.

We should like to compute the action associated with
2n widely spaced sign changes in V(w). We anticipate
that there will be 6xed amount of action associated with
each transition, but there will be also Berry phase con-
tributions that lead to long time interactions between
kinks.

To calculate the overall Berry phase contributions to
a tunneling trajectory we may use the "sudden approxi-
mation" in which each tunneling is considered to be in-
stantaneous. The contribution to the path integral from
a given tunneling trajectory of 2n kinks is then

P2n~ T —s (86)

where II(v ) is given by the ferinion bubble where I' is the amplitude of a single tunneling event and
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P T2n TI

S = H(Vp)dT — H( —Vp)dT — H(Vp)dr .
T2 A T2n —1 0

(87) 0
If we take advantage of the identity

—f &2H( —Vo)dr —f ~i H(VO)dr
(88)

we may write the contribution to the path integral from
a given tunneling trajectory in the form

N—1)
(~)~ li~

pm
A [(7;)]= Tr T p( )

—
fo H(VO)dr (89)

FIG. 9. Conduction electron self-energy in O(K)
Kondo impurity. Z@(r) scales as ~ » which implies

ImZ&(~) oc u is marginally relevant when N = 3.

A„=— d7j. . .dv„A„[f~;f]. (oo)

We may now recognize the sum of all A as the per-
turbation expansion for the following time-ordered expo-
nential:

Ire
—f [H(V )+I'a P]dr1

r
n=o

(o1)

To estimate I', we may set it equal to a product of the
attempt rate ( TH) and the success rate of the tunneling
process, the latter of which becomes exponentially small
for large ¹ To find the success rate with exponential
accuracy we need to find the optimal trajectory leading
from one minima to another which minimizes the action.
We shall not do the explicit calculations here, instead
we estimate it as an action associated with a very fast
change of the sign. The exponential of this action is the
overlap between the wave functions of the fermions in the
ground states before and after the sign change, so

(o2)

We estimate (+~—) exp( —N/2).
We may rotate in the pseudospin space to transform

o ~ o, . Since o commutes with the Hamiltonian, we
may choose one sign of the pseudospin. The factor of 2
in the partition function that this gives rise to cancels
the normalization in (91). The effective Hamiltonian for
low-energy Quctuations then becomes

(93)

For even N,

where the trace includes the trace over a pseudospin vari-
able cr = sgn[V] that keeps track of the sign of Vp, and the
normalization factor of 2 takes care of the overcomplete-
ness introduced by introducing both the Majorana spin
representation and the additional ghost field 4. The op-
erator o converts pseudo-spin-up to pseudo-spin-down
and vice versa, so A [(w;)] vanishes for m odd, and in-
cludes the contributions from the two trajectories with
flips at times (7;f, starting out with either V(0) = V
or V(0) = —V . The total contribution to the functional
integral from all such trajectories is then given by

H„=H(v, ) + r&'. . . &" (o4)

describes a Fermi liquid, with a weak interaction amongst
the hybridized Fermi fields g. However, for odd N, the
efFective interaction couples the zero energy Majorana
fermion 4', which is unhybridized, to a composite of N
hybridized Majoranas g . . .g

H = H(v, ) + re(~'. . . &").

ImZ(~) - ~H —'. (96)

Marginal behavior only occurs for N = 3. The correction
to the free energy for odd N is

Z(r) T ln T,F ~ N —i
0 7 T )

(o7)

Thus non-Fermi-liquid behavior only develops for the
physical O(3) Kondo model and the unusual fermionic
zero mode produces only weak corrections to Fermi-liquid
behavior at N ) 3.

V. O(N) LATTICE

In this section we apply the approach developed in
Secs. III and IV to a lattice generalization of the two-
channel Kondo model (2). The two complimentary meth-
ods of the past two sections have demonstrated how the

This result is qualitatively similar to that obtained in the
strong-coupling analysis of Sec. III, but it is now seen
to be a feature of all O(N) Kondo models with odd X.
By repeating the perturbation arguments of the previous
section, we now see that in all odd N there is a decoupled
Majorana zero-mode with a 2 ln 2 zero-point entropy.

Although the effective Hamiltonian (95) has the same
qualitative form for all odd N as the effective Hamilto-
nian (25) of the strong-coupling limit, the large effect
of the Majorana zero mode on conduction electrons is
specific to N = 3. Consider, for example, the electron
self-energy produced by weak scattering o8' the induced
on-site interaction. The corresponding diagram is shown
in Fig. 9. Since the self-energy scales as 1/7H ~, this
implies
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H = t) c—tc~ +, +. H.c + J) S~ 0~+~~, (98)
j,ar 2

where j represents the site on a three-dimensional cubic
lattice,

cd = c ocj)
PV

7~ = C 7Cj) (99)

denote the spin and isospin density at site j and ai (l =
1, 2, 3 denotes the three unit lattice vectors). By using
the Majorana decoupling of previous sections:

driving force for non-Fermi-liquid behavior of the two-
channel impurity model is the formation of a fermionic
zero mode. How specific is this behavior to impurity
models, and do we expect a similar type of behavior to
persist in lattice generalizations of these models?

For more than one two-channel Kondo impurity, back-
scattering between spin sites will couple "right" and
"left" moving currents, so the kinematic spin-charge de-
coupling present in the original model is lost. In a two-
channel Kondo lattice, the main e8'ect of the lattice will
thus be to cutoH' the non-Fermi-liquid behavior by elim-
inating spin-charge decoupling.

In this section we consider the e8'ect of the lattice on
the zero-mode behavior of the O(3) Kondo model. Unlike
the two-channel Kondo lattice, here the complications of
these spin-charge coupling effects do not arise. We begin
by writing down the "O(3)" Kondo lattice model

tending the number of components of the vector fermions
from 3 to N, as was done in the preceding section:

H = it—)
j,ag

(104)

By examining this model around the large N limit, fol-
lowing the methods of the last section, we can learn how
the fermionic zero mode and the non-Fermi-liquid behav-
ior are modified in a lattice environment;.

Following the procedure introduced in Sec. IV we
decouple the exchange interaction by the Hubbard-
Stratonovich field V (i, r) to obtain the following action:

II, = it) vP,

al

g~O~g~ + jB~ j + Hj

NV2
@~+- + i& (4 @') +

hP(V )
bV

NV +i((4.@')) = o (1o5)

where the fermionic Green's function is calculated against
the background of a fixed uniform V. The mean-Geld
Green's function on this background,

((@ & )) ((«)) &
a a a a r (1o6)

In the mean-field approximation the V field acquires a
nonzero average V = (V). To find this average we need
to solve the equation

(100)
is given by

where Q = (vr/2, vr/2, vr/2), this model can be rewritten,
(107)

H = it)—
j,a~

—iJ) S~. [g~ xv), ]+H, .

(101)

where eg = 2t P& sin pr. The quasiparticle
spectrum, determined from the eigenvalue equation
det[G(E(k), k) ] = 0, is

where the decoupled scalar degrees of freedom, described
by Eg„=—"+ A e'(k)/4+ V' (A = +1) (108)

H. = it) Q,
' '@,+.. . — (102) contains a small gap:

j,a&

may be neglected. By writing the local moments in a
Majorana representation, Sj = —2' x 77j this model
may be cast in a manifestly O(3) symmetric form

-J) ['4 ~,]' (103)

Actually, both forms of this model are of interest. The
model written in form (98) involves a coupling between
pair and spin degrees of freedom. Such a model ap-
pears very naturally as the low-energy model for an odd-
&equency superconductor with composite oK-diagonal
order. s In the more symmetric form, (103), the model
can be compactly generalized to an O(N) model, by ex-

V2

PMF[V] =—NT ) ln 2 cosh(PEg&/2)
k, A

NV2

2J
Minimizing with respect to V yields

V = J) tanh(PEg(+)/2)
AV

e2/4+ V2

The mean-field free energy per unit cell is then

(109)

(11o)
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Replacing the momentum integral by an energy integral
near the Fermi energy Pk ', p J de and performing the
integral at T = 0 yields

V =2pJV in'
(D)
EV-r' (112)

where D —6C is the upper cutoff and p is the density of
states at the Fermi level of itinerant electrons. Solving
this equation for V with logarithmic accuracy we find

FIG. 10. Intersite coupling of the three body bound state.
The three-body bound state can disperse from site to site via
virtual Huctuations into the conduction sea.

1
where T~ ——D ~&, so that the gap Ag ——T~.

Clearly, the Z2 symmetry implies that the mean-Beld
free energy is independent of the sign of V~ at each site,
and beyond mean-field theory, Vz(r) will fluctuate be-
tween V and —V. We can apply the technique devel-
oped in Sec. IV to take into account the efFect of these
sign fluctuations. In particular, it was shown that this
eG'ect can be emulated by the integration over an addi-
tional Majorana ghost field C:

i f d7—.V(q g)

oc DC exp d~
~

—Ca.e+ geq g g

(114)

where the coupling constant g is physically identified with
the inverse tunneling rate for a local change of sign in
the V(n, r) field. As local processes are controlled by the
energy scale T~, we may estimate g T~. The scale
T~ is exponential in the bare coupling constant J, so the
result (114) is essentially nonperturbative.

The fermionic variable 4 represents low-lying excita-
tions of the theory. In order to derive the effective ac-
tion for these excitations, we need to integrate out high-
energy degrees of freedom described by the gap full modes
q, , g; (i = 1, 2, 3). The mode C' interacts with these gap
full modes via

1 2 3

2

The simplest diagram for the self-energy part of 4 is
shown in Fig. 10. It results in the dispersion

l g'
E(k) ) sin k~

) TK

Thus the low-energy properties of the two-channel Kondo
lattice are determined by a single band of real fermions
with a bandwidth of order of the Kondo temperature.
Since the fermion is real, the total amount of entropy ac-
cuxnulated in this band is ln ~2 per site, coinciding with
the residual entropy of the single impurity problem. The
efFective intersite interaction induced by virtual three-
body fluctuations removes the degeneracy of the single

impurity problem and results in the coherent dispersion
of the C mode.

At low temperatures the propagating 4 mode now
leads to a linear specific heat. Since the matrix elements
of spin operators and 4 states are zero, there are no low-
energy spin excitations. Remarkably, the two-channel
Kondo lattice represents a spin paramagnet with a Gnite
spectral gap 2T~. Above the energy gap a single spin
kink is a composite excitation consisting of two gap full
Majorana fermions. In this respect this model is similar
to the spin-1/2 Heisenberg chain.

In the weak-coupling limit of this model, the three-
body bound states develop coherence at a temperature
g /T~ TIc. Clearly then, the simplest lattice general-
ization of the O(3) model will not display any non-Fermi-
liquid —like behavior. In the strong-coupling limit, how-
ever, there is a possibility of a large separation between
the the scale g /TIc and TJr, leading to a regime where
the three-body bound states are localized and conduction
electron self-energies are marginal. This is an interesting
issue that we return to in the final section.

VI. CONCLUSION

A goal of this paper was to explore the non-Fermi-
liquid properties of the two-channel Kondo model by
using a "stripped-down" version of this model that de-
scribes the decoupled spin degrees of freedom. The com-
pacti6ed model that arose from these considerations pro-
vides a perspective on the two-channel Kondo model and
opens up a family of O(N) Kondo models which general-
ize the essential physics beyond the realm of the original
model. In this Anal section we discuss further applica-
tions of our methods and touch upon some of the inter-
esting questions that arise in connection with the O(N)
Kondo lattice model.

The key observation of this paper was the equivalence
of the two-channel impurity Kondo model

II' = i t) [at„(n+l)a), (n) —H.c.]

+ J[oi(0) + o.2(0)] Sg,

with its compactified counterpart

H = i t) [ct(n+ 1)c (n) —H.c.]

+ J[o.(0) + r(0)]. 5'g,
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under the mapping

CTy X i r 0 X )

0 2 X 3 P 7 Z )

Hint J101(0)+ J202(0) ~d~ (120)

may be compactified into

H;„,= J,0.(0) + J2r(0) S~.

Bethe-ansatz work on this model suggests that the char-
acter of the paramagnetic fixed point changes subtly
in response to channel anisotropy. Unlike the origi-
nal model, the strong-coupling limit of the compactified
channel-anisotropic model is a stable fixed point. The
"Fermi liquid" of spins that results from such a descrip-
tion appears to be very naturally described as a band of
vector and scalar Majorana fermions.

Perhaps the most fascinating aspect of the compacti-
fied model concerns the appearance of three-body bound
states and their close link with marginal Fermi-liquid be-
havior. The original marginal Fermi-liquid hypothesis
was advanced as a phenomenological framework to de-
scribe the normal state of cuprate superconductors. An
essential feature of the marginal Fermi-liquid ansatz is
the appearance of a two particle susceptibility

E constant,
(u) « T)
((u )) T) (122)

and a related electron self-energy

that resulted from spin-charge decoupling. The universal
spin physics of both models is the same, but by preserving
spin-charge decoupling in the compactified model, the
geometry of the scaling flows away from weak coupling
was deformed, moving the location of the NFL fixed point
&om intermediate coupling in the old coupling constant,
to infinite coupling of the redefined coupling constant.

Several other applications of this procedure have yet
to be explored. One clear application is the use of
the simple formulation in an actual numerical Wilson
renormalization calculation. Wilson s original numeri-
cal renormalization-group approach to the one-channel
Kondo model took great advantage of a strong-coupling
expansion to connect the numerical results to the strong-
coupling fixed point. This cannot be done in the stan-
dard formulation of the two-channel Kondo model, but
it can now be done with the simple formulation. This
then opens the possibility for a direct numerical calcu-
lation of the marginal Fermi-liquid spin susceptibility of
this model.

Another simple application of this reformulation is to
the channel-anisotropic two-channel Kondo model, where
the original interaction

II =it ) 4(m+1) . 4(n)
n=l

(124)

owes its marginal Fermi-liquid properties to the coupling
of a Majorana three-body bound state to the continuum.
The real character of the three-body operator 4 = 4~
means that its square is a c number 4 = 2(4, 4't), so
that any "mass term" of the form m 4 = m2/2 can be
absorbed into the ground-state energy, which prevents
the development of a mass term associated with this ex-
citation. A Majorana three-body bound state in an im-
purity model is thus massless to all orders in perturbation
theory. This essential Majorana character of the three-
body bound state thus ensures that

(i) The response function of the three-body bound-
state retains a zero-energy pole, giving rise to completely
scale-invariant response functions.

(ii) The joint susceptibility g,@(w) of the electrons and
the three-body bound-state is marginal, with no charac-
teristic energy scale

y, @(ur)" = p —tanh
2 T

((u « T)
constant (u )) T). (12')

The generalization of the strong-coupling Hamiltonian
(124) to a lattice environment is particularly interesting:

H* =it) C;.+ 4;.
2~&

+ ).@(i)@"(i)@"(~)@"(~). (126)

This is a model with "preformed" three-body bound-
states. Clearly, marginal Fermi-liquid behavior will per-
sist in this model down to temperatures T T*„where
the three-body bound state begins to propagate coher-
ently. This temperature T* is set by the size of the cou-
pling constant

model that furnishes a marginal self-energy down to arbi-
trarily low energies. A scale-invariant self-energy of this
form requires a massless excitation. Almost inevitably,
beyond leading orders in perturbation theory, a nomi-
nally massless excitation develops a mass. In an at-
tempt to try to overcome this difBculty, Ruckenstein and
Varma tentatively suggested that the massless excita-
tion responsible for marginal behavior might have its ori-
gins in a three-fermion bound state. Quite remarkably,
the marginal Fermi-liquid behavior associated with the
O(3) Kondo model is directly related to the formation of
a three-body bound state. The fixed-point Hamiltonian

Z(~) - ur ln(max[~, Tj). (123) (127)

It proves remarkably dificult to construct even a toy providing a rather interesting toy model for detailed cal-
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culations of marginal Fermi-liquid behavior in a lattice
environment.

Another suggestive aspect of this work concerns its
possible links with odd-&equency pairing. ' The semi-
classical methods that become exact in the large-N limit
of the O(N) Kondo model are almost identical to those
used to develop a mean-field theory for odd-frequency
pairing in the Kondo lattice. Consider the family of
Kondo lattice models

(i28)

where cr(j) and w(j) denote the spin and isospin den-
sity at site j, respectively. This type of model was re-
cently suggested as a low-energy Hamiltonian for an odd-
frequency superconductor, where the A dependent term
develops in response to the growth of composite order
(o (j)7g(j)) = B~g(j) between spin and charge degrees
of freedom. The A term can be considered analogous
to a Weiss Beld for odd-frequency pairing. The model
described by H[l] is the O(3) Kondo lattice model con-
sidered in this article; H[0] is the conventional Kondo
lattice model. Remarkably, if we use a Majorana repre-
sentation of the local moments, Sg ———

zg~ x gz and the
conduction electrons, then the same mean-field ansatz,

i J(q, g~) =—v,

can be used to extend the semiclassical methods used in
this article to all values of A. The mean-Beld theory con-
tains a spin and charge gap for each value of A, and as
A evolves, the state evolves continuously. For A = 1, this
semiclassical theory corresponds to that described in this
article. In the limit A ~ 0, the mean-field theory pro-
vided here corresponds to a broken-symmetry state with
composite order and odd-frequency pairing. These re-
sults suggest that there may be a whole range of qual-
itatively similar physics that evolves continuously from
the O(3) Kondo lattice model to the conventional Kondo
lattice model.
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This model describes M chains of right-moving electrons
with group velocity A, each interacting with a single spin
Sg at the origin. Each right moving electron spinor gp(x)
represents an electron scattering oK a Kondo impurity
in an s-wave scattering channel. The properties of this
model are determined by the correlation functions of the
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Here

(A3)

where the subscript (0) denotes correlation functions in
the noninteraction system and

Oz X = ) Z 0 P X (A4)

is the total conduction electron spin density. In a one-
dimensional problem, the spin densities behave as inde-
pendent degrees of freedom; for the M channel problem,
the kinetic energy decouples into a sum of independent
terms Hk;„=g& z M Hp + . . . , where Hp = v~ P:
op(q) . ap( —q): is a bilinear in the Fourier transform of
the spin density og(q) = PI, @&t&oggg+z at momentum
q, where ggg denotes an electron of momentum k. The
dynamics of these modes are set exclusively by their com-
mutation algebras ("current algebra" ). The spin density
satisfies the current algebra
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APPENDIX A: VALIDITY
OF THE COMPACTIFICATION PROCEDURE

Here, we discuss in more detail the compactified formu-
lation of the two-channel Kondo model. We begin by lin-

[cr„(q),o~, (—q')] = 2ic s,o~(q —q') + qb b~ ~ bg), .

(A5)

For the case where M = 2, the spin dynamics of two
spin channels may be mapped onto the spin and isospin
dynamics of a single chain. Consider the single chain
model where both spin and isospin interact with a local
moment

H = iv~ dxg. V'@,dx+ JS~. —o.(0) + ~(0), (A6)

where
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~(x) = c.'(x)~-pc~(x)

is the spin density at x and

~(x) = c.'(x) ~-~b (*)

&@t(x) )
@(x) =

I @t( )
I

(A7)

For one-dimensional electrons moving with linear disper-
sion, spin and isospin form two independent current al-
gebras

[0 (q) o' ( q)] =2ie b u (q q)+qh bq, q (A8)

is the isospin density at x, written in terms of the Nambu
spinor

8, establishing the equivalence of the two partition func-
tions. Similar perturbative arguments can be made for
any response function involving spin degrees of freedom,
even in the case of channel anisotropy.

Of course, if we now introduce a cutoff into these mod-
els by rewriting them as one-dimensional lattice models
with bandwidth 2t, the equivalence of the two-channel
model with its compactified counterpart is only guaran-
teed in the limit J/t « 1, at temperatures and frequen-
cies &( t. If we apply a Wilson renormalization procedure
to the two models, then although the two calculations will
predict the same low-temperature properties, the details
of renormalization Hows will differ beyond weak coupling.
General scaling principles ensure that the universal low-
energy dynamics predicted by the Wilson procedure will
match up for the two models.

[v' (q), w (—q')] = 2ie b r (q —q') + qh hqq

[~ (q) r (q )1 = 0

(A9)

(A1o)

APPENDIX 8: SIMPLE MANIPULATIONS
OF MA JORANA FERMIONS

where the label q denotes the Fourier transform of the
density at wave vector q. Since the electron kinetic en-
ergy can be expressed as the sum of two independent
bilinears of charge and spin current densities,

Here we present some of the technical manipulations
required to express the spin and isospin density at the
origin in terms of the Majorana fermion operators. We
begin with the expression for the Fermi field at the origin

~ = ' (e'+re ~) i

'. i,

):~(q) ~( q) + r(q) ' ~( q): (A11)
or more explicitly

(B2)
it follows that spin and isospin behave as two completely
independent spin degrees of freedom with precisely the
same dynamics as the spin densities of two independent
chains. When interactions are introduced that couple to
crq(x) and oq(x), their effect will be identical in a com-
pacti6ed model where we have made the replacement

og(x)
og(x)

: o(x),
; ~(x). (A12)

For example, in the case of channel symmetry in the com-
pacti6ed model, the local moment couples to the total
spin density 7 (x) = o.(x) + w(x). This operator obeys
the same current algebra as oz (x) = oq(x) + oq(x) in
the original two-channel model, so both operators have
precisely the same correlation functions in the absence
of interactions. Thus in the expansion of the partition
function of the compacti6ed two-channel model

=(4 )t,
~@a yb} hab

To deal simultaneously with the spin and isospin oper-
ators, it is convenient to rewrite the Fermi spinor as a
Balian-Werthamer four spinor, as follows:

( ct)

= ' (e'+re e) z, (B4)

where (@o,@) are four real (or Majorana) components
which satisfy

where

g Jn=1+),C„,
n=1

d~, (T7z, '(7~). . .7g" (~ ))o

(A1S)

(A14)

where

( —cq )

( 0)

& o)
(B5)

The correspondence of correlation functions guarantees
that the expressions in (AS) and (A14) are equal: C

In terms of this four spinor, the spin and isospin operators
are
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where

o. = —Cto.C,
2
1

~ = -et~a,
2

With these results, we can expand the expressions in (B6)
to obtain

= -Zt (4 —io 4)o. (C. +io. . y) ~

and

7g) 12~ 73

~ I

Z

(B7)
- a

=i C4 ——Cx@
2

(BIO)

Z O'Z

Zto'~bZ
Zto'7-bZ

Zto o'o'Z
Zoo'7Z

Z~7-Z = 0,

2ie+b+ (89)

When sandwiched between the spinors Z and Zt, these
matrices give the following expectation values:

= —Z (4' —io. . @)r (0 +io $) g

G

@0@
2

Combining these two results, we find

o-+~ = —iC x C.
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