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Magnetic-field effect on sound propagation as a probe of electronic structure
and electron interaction in an itinerant-electron ferromagnet
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We carry out a systematic formulation and a model numerical calculation on the effect of a magnetic
field on the sound velocity and attenuation of a ferromagnetic metal based on the Stoner model. We find
the magnetic-field effect to be strongly exchange enhanced and to depend very sensitively on the details
of the electronic structure, both above and below the Curie point T&. According to our result, for
T & T& the magnetic-field effects on the sound velocity and attenuation are proportional to, respectively,

y and y, where g is the (Stoner) magnetic susceptibility, with coefficients very sensitively rejecting the
electronic structure near the Fermi surface. We also obtain similar features of the magnetic-field effects
for T & Tc,' the magnetic-field effects reAect very sensitively the electronic structure and electron interac-
tion of a ferromagnetic metal. The mechanism of such magnetic effect on sound is that the screening of
the ion-ion interaction is affected by the (additional) spin splitting of the conduction electron bands in-
duced by a magnetic field. These findings suggest that the magnetic-field effects on sound propagation
can be a useful probe of the electronic structure and electron interaction of a metal, ferromagnetic one,
in particular.

I. INTRODUCTION

It is well known that the effects of a magnetic field on
the velocity and attenuation of sound vary quite widely
among different metals, especially magnetic ones. If we
put

s (H) =s +As (H)

for the sound velocity under a magnetic field H in the
paramagnetic state, we have bs(H)/H =k (p~H/e~), as
we will see below. Then we have ~k~ =O(10 ) for Fe-Ni
alloys, while for an ordinary nonmagnetic metal,
~k~=0(1). ' Not all of the ferromagnetic metals have
such large value of k; in Ni, for instance, the size of k is
much less. ' The mechanism of such magnetic-field effect
on the velocity (and attenuation) of sound in a metal, par-
ticularly a magnetic one, however, is not yet well under-
stood. It is not understood why the values of k can be so
different for Ni and Fe-Ni, for instance.

In a metal, the ion-ion interaction which determines
phonon frequency is screened by conduction electrons. A
magnetic field can have an effect on sound velocity or
phonon frequency because this screening behavior is
modified by the magnetic field; the magnetic field induces
the spin splitting of the conduction electron bands. The
principal purpose of this paper is to formulate this mech-
anism of the magnetic-field effects on sound velocity and
attenuation, for both above and below T~, by treating the
screening with the mean-field approximation within the
Stoner model of itinerant electron magnetism. As an il-
lustration of our results, we also carry out a numerical
calculation on those magnetic-field effects by using a sirv, -

pie model electronic density of states. Thus we find that
those magnetic-field effects depend very sensitively on the
electronic structure and electron interaction in a metal.
We show that the large difference in the values of k be-
tween Ni and Fe-Ni, for instance, can be understood
from the difference in their electronic structures.

In Sec. II we present a systematic derivation of various
magnetic-field effect coef5cients. Although some of them
were previously obtained by us, here we explicitly
derive all of them in a unified way. Then, in Sec. III we
present the results of our numerical examples. Conclud-
ing remarks will be given in Sec. IV.

II. GENERAL FORMULATION

coq=Q& —
~g (q) ~~g, (q, co~), (2.1)

where Qq is the bare-phonon frequency, g(q) is the
electron-phonon interaction constant, and

F+(q, co)+F (q, co)
g, (q, co) =

1 +( U)[qF (+, q)coF+(q, co)]

is the electron charge response, where

F (q, co)F (q, co)=
1 —VF (q, co)

(2.2)

(2.3)

In a jelliumlike model, if we treat the screening of the
ion-ion interaction by the generalized random-phase ap-
proximation, which takes into account the effect of the
exchange interaction between electrons, the frequency of
a longitudinal acoustic phonon, the only kind which we
consider in this paper, is given by
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is the exchange-enhanced Lindhard function of o. spin
electrons, with the ordinary Lindhard function given by

=CO
q

2y co = lg(q)l Imp, (q, co ),
('2. 11a)

(2.12)

F (q, co)=g (2.4)
Ck+ q~ Ek~ i6CO l 0

Here V and U(q)=4ire /Vq are, respectively, the ex-
change and the Coulomb interactions between electrons,
V being the volume of the system, ck =ok —Vn is the
one-particle energy of an electron with a wave vector k
and spin o.; —Vn is the exchange self-energy, with n

the total number of o spin electrons in the system.
The result of Eqs. (2.1) and (2.2) is valid for both the

ferromagnetic and paramagnetic states. If we consider
only the paramagnetic state, where we have

F+(q, co) =F (q, co) =F(q, co), and neglect the efFect of
the exchange interaction on the screening, which
amounts to replacing all the exchange-enhanced Lin-
dhard function F (q, co) by F(q, co), Eq. (2.1) reduces to
the familiar textbook result

2F(q, )

1+2U (q)F(q, coq)
(2.5)

(Ei, ) — (si, +q )
(q, co)=g&

k+ q, cr ~ko
(2.7)

—=gp " "+' =F (q, O)=F (q),
k ~k+q, t7 ~ka

(2.7a)

I (q, co)=mg[f(sz ) —f(sz+ )]
k

X 5( sq+ q
—c,q

—fico)

=——N (0)7r CO

2 UFu~

(2.8)

(2.8a)

where I' indicates taking the principal part in integrating
and 5(x) is the Dirac 5 function; N (0) and vz are, re-

spectively, the density of states at the Fermi surface and
the Fermi velocity of o. spin electrons. The approxima-
tions of Eqs. (2.7a) and (2.8a) (Ref. 6) are valid for
leal/Uz q «1.

Corresponding to Eq. (2.6), Eq. (2.1) is rewritten as

ei,'=Q~ —lg(q)l'Reg, (q, ~, ) —ilg(q)l'&mr, (q, ~ ) .

The phonon frequency to be obtained from Eq. (2.9)
should be complex,

COq =COq l fq

By putting Eq. (2.10) into Eq. (2.9) we have

co&
—y&=Q& —lg(q)l Ref, (q, co )

(2.10)

(2.11)

The Lindhard function, Eq. (2.4), for co%0 is a complex
quantity:

F (q, ~+iO+):—R (q, co)+iI (q, co),

where, by assuming 0 & y~ && co&, we put Rej,(q, co&—iyz) =Ref, (q, co&), etc.
In the pure jellium model, the bare-phonon frequency

is given by the ionic plasma frequency, 0
&= [4irZ e N/(MI V)]', where MI, Z, and N are, re-

spectively, the mass and charge of an ion and the total
number of ions. Then, from the phonon frequency given
by Eq. (2.5) with Q&=Q &, we obtain

1/2 1/2
1 P1Z

v'3 MI

VQ )

8ire N(0)
(2.13):Sp

-2
Pqp 6)q ~

VFQ
(2.14)

where we put F(0)=N(0) [see Eq. (2.23) below], N(0)
being the electronic density of states per spin at the Fer-
mi surface in the paramagnetic state, and noted
N(0) =3n/4s~, with n the total number of electrons for
the free-electron energy dispersion, ck =A k /2m, m be-
ing the electron mass.

As for the attenuation constant, we often use the spa-
tial energy attenuation constant a, in place of the tem-
poral one, yq,

' they are related by

2 Vqp
aqp = (2.15)

In an experiment, what is given is the frequency of sound
wave, rather than the wave number. Thus, in the follow-
ing we use a~ or y~, etc. , in place of aqp or yqp etc.

By applying Eqs. (2.lla) and (2.12) to Eqs. (2.1) and
(2.2) we obtain

sp
=g+ 2N (0) gF (0), (2.16)

sp U„F (0) 1=2 N(0)g
~ Ur~ (1—VF~(0))' m F (0)

where we put

Q2 Q2 —
g

2 2

(2.17)

(2.18)

The parameter g is considered to represent deviations
from the pure jellium model; for the pure jellium, we
have /=0. The physical origin of gsoq is the direct in-
teraction between ion cores which is outside of the
Coulomb interaction between separated ionic charges.
Since such direct ion-core interaction is repulsive, g is
considered to have a positive sign and a magnitude of
O(1).

Our concern in this paper is how the velocity and at-
tenuation of sound would change with an applied mag-
netic field H. The effect of a magnetic field is to change
the screening of the ion-ion interaction, and such an
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efT'ect on phonon frequency can be incorporated by
changing all the F (q, ro) in Eqs. (2.1) and (2.2) by
E (q, ro:H), which is obtained by replacing Ek = ek —Vn

by

Ek (H) =Ek —Vn (H)+ o ply H (2.19)

s(H)
Sp

in F (q, co); n (H) is the number of o spin electrons un-
der the magnetic field H. In this paper, for the ferromag-
netic state, we assume such state as shown in Fig. 1, with
n+ (n, that is, M = pi—i(n+ n—))0. Then a posi-
tive magnetic field in the direction of the z axis further
spin split the electronic density of states.

The e6'ect of a magnetic field on velocity and attenua-
tion is obtained by replacing all the F (0)'s appearing in
Eqs. (2.16) and (2.17) by F (0;H)=F (0,0;H). Thus, for
the sound velocity, corresponding to Eq. (2.16) we have

f«k (il))=ll+expIP((&k. —p)+(oil —~p»]]

Bf (E;rj)F (0;H)= f deN(e)
Bc

(2.23)

Expanding. the right-hand side in terms of o.g —hp, we
obtain

F (0;H)—:E (0;g)

=F (0)+F' (0)(cril —bp)

+ F"(0—)(oil —bp) +
CT (2.24)

where

(2.22)

where Ap is the change in the chemical potential due to
the magnetic field. The Lindhard function for q=0 under
a magnetic field is then given by

r

=g+2N(0)
E+ (0;H) E (0;H)+

1 —VF (O'H) 1 —VF (O'H)

g(n+ 1)f (e'F'"'(0)—:—f deN(E)C7 g~n+1 (2.25)

(2.20)

a (H)/a~ is similarly obtained from Eq. (2.17). Here,
note that U~ or U~ is not uniquely determined from a
given N(e) or N (E). Thus we assume the following rela-
tion, which is valid for the free-electron-like energy
dispersion:

gf(Ek (il))=g f(Eg )+f'(el, )(oil —bp)
k, o. k, o

+ f"(ei, )(oq —bp) + . —

Ap is obtained by requiring the conservation of electron
number,

N+(0)/vF+=N(0)/vF . (2.21)
(2.26)

In exploring F (0;H), we put the spin splitting of the
bands induced by the external field equal to
2il= VAM/pii+2piiH, where b,M is the change in mag-
netization due to the external field. The electron system
may be in the ferromagnetic state. In that case, 2q
represents the additional spin splitting of the bands due to
the external magnetic field. With r), Eq. (2.19) is rewrit-
ten as Ek (il)=Ei, +oi), and then the Fermi distribution
of electrons is given as

Retaining terms up to 0 (il ), we have

hp= —il+ [F+ (0)F' (0)+F2 (0)F'+ (0)]i12+ .
P p3

where for convenience we put

P=gF (0), II=+o.F (0) .

(2.27)

(2.28)

n Cn
(M) 0)

By putting the above b,p into Eq. (2.29), we obtain

F (0;il)=F (0) 1+5,

N (e)

/PB

N, (e)

+b +.8'

F'(0)F (0)
Fo (0)P

F"(0) F (0)
2P E (0)

F' (0) g F' (0)F' (0)
F (0) p

(2.29)

(2.30)

FICx. I. The ferromagnetic state is assumed to be with
n )n+ or M= —p&(n+ —n ) &0.

(2.31)
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where 8' is the width of the electron energy band; we
may use ez in place of W. Then if we rewrite Eq. (1.1) as
s ( il ) =s +hs ( rl ), from Eq. (2.20) we obtain

bs (il) 1 so

s 2 s 8 (3.1)

b,s(il)
s ' 8' 8'

2

(2.32)
1 F"(0)
2 F(0)

F'(0)
F(0)

2

2

Sp
gD F (0)b, (2.33)

FI
+ VF(0)DO F(0) (3.2)

1 ~p

2 s
2N (0)

P

If we note the relation,

V1+ ys paH =DppaH
2pg

(3.3)

—2 gD F (0)bi
P 2

'2

X —gD F (0)I VF (0)b, +b~
P

(2.34)
2 2

pgH $ sp
k = —— D()E . (3.4)8' '

2 s

gs =2p&F(0)/[1 —VF(0)] being the Stoner magnetic
susceptibility, we arrive at

b,s(H)
S

where we put

P=g F (0), D =1/[1 —VF (0)] . (2.35)

b,a„(ii )
2

g ~ +g ~ + ~ ~ ~' 8' 8'
L

(2.37)

g) =2
Sp

—1 f, +2+D VF (0)bi
'

P
a

(2.38)

As for g2, since its expression is too complicated, we give
it only for the paramagnetic state where g& =0,

'2
$ p

g2 =2
N(0)Sp

+2VF(0)g [b2 —VF(0)b i (2.39)

For the paramagnetic state, D reduces to Do = 1/
[1—VF (0)], the Stoner exchange-enhancement factor.

Starting from (2.17) we can similarly pursue how the
attenuation constant of sound wave depends on the (addi-
tional) sin splitting of the electron energy bands due to an
external magnetic field. If we put

a„(71)=a +ha (il), (2.36)

we obtain

In carrying out a numerical calculation on k, and other
magnetic-field-effect coefBcients, we use the simple model
electronic density of states given by

N(s) = E( W —s),6X
8' (3.5)

which is illustrated in Fig. 2. This density of states can
accommodate one electron per spin, per atom. We give
the result of our numerical calculation in Fig. 3, where
we assumed W=1 eV, VN(0)—:V=1.3, and /=2, and
chose the locations of Fermi energy at T=0 of the (hy-
pothetical) spin unsplit state at Ez/W =0. 1, 0.3, and 0.5.
Together with k, we also showed k/Dp, to demonstrate
that k ~ Dp. Being proportional to Dp, k varies in a quite
wide range. The characteristic features of the tempera-
ture dependence are remarkably different for cases with
different values of E~/W. Thus, it is not difficult to have

k~ —10 as in Ni, and k ——10 as in FeNi, with the
same common value of VN(0). Within the present simple
model electronic density of states of Fig. 2, Ni is
represented by the case of s~/W=-0. 5, and FeNi is
represented by the case of cz/$V—=0.3-0.4. For compar-
ison, in Fig. 4 we show the temperature dependence of
sound velocity without the effect of an external magnetic
field which is calculated from Eq. (2.16) for the same elec-
tronic density of states of Fig. 2 both for T & T& and

Based on the above results, in the next section we
proceed to discuss the effect of an external magnetic field
on the velocity and attenuation of sound wave separately
for the paramagnetic and ferromagnetic states of a metal.

III. MODEL CALCULATION
OF THK MAGNETIC-FIELD EFFECTS

A. Magnetic-field effect on sound propagation
in the paramagnetic state of a metal

1. Magnetic fteld e+ect on sound u-elocity for T )Tc

1.0—
+( cv

0.5

0 1.0

In the paramagnetic state, from Eqs. (2.33) and (2.30)
we find f, =0. Thus, we have

FIG. 2. The model electronic density of states given by Eq.
(3.5). 8'is the width of the band.
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—1.0—

1.0
(T —Td jTc

1.5

—30

1.0
(T —Tc) /Tc

1.5
—1.0'

0 1.0

FIG. 3. The temperature dependence of the coefficient, k, of
the magnetic-field dependence of sound velocity for T ) Tc as
defined by Eq. (3.4), for different locations of the Fermi energy
in the model electronic density of states of Fig. 2. We assumed
W= 1 eV, V= VN(0)=1. 3, and /=2. To illustrate that k is
proportional to Do, we show k/Do, (b), in addition to k itself,
(a) ~

FIG. 5. The magnetic-field dependence of sound velocity in
nonferromagnetic metals, for which V= VN(0) &1, calculated
from Eq. (3.4) with the Inodel electronic density of states of Fig.
2 at T =0, for difFerent values of V and cF/8'. To illustrate that
k is proportional to Do, we show k/Do.

T & Tc. For T ) T&, the effect of the difference between
electronic structures near the Fermi surface, which is
represented by the different values of eF /W, is very
small, and actually indistinguishable.

Since k ~DO, even in a paramagnetic metal where
V= VN(0) & 1, k can be significantly exchange enhanced
to make

~ k~ ))1. There, however, the temperature
dependence of k is expected to be much less important
than in a ferromagnetic metal. Corresponding to such
situations, in Fig. 5 we calculated k for T =0 by chang-
ing the values of V and Ez/W in the model electronic
density of states of Fig. 2 with 8'=1 eV. Un1ike in Figs.
3 and 4, here we used the approximations F'(0)-=—N'(0), F"(0)—=N" (0), which are valid for
(k~ T/e~) && 1, in Eq. (3.2).

A paramagnetic system in which the magnetic-field

effect on sound velocity was measured is the 215 corn-
pounds. In V3Si, for instance, it was observed that
b,s(H)/s—= —

l%%uo for H—=80 kG. To account for such
an observation from Eq. (3.4} with ~k~ =0 (1), we require
c.F =—8' & 10 eV. This fact was actually used to corro-
borate the linear chain model for the 3 15 compounds.
However, detailed band calculations have shown that a
conduction electron band with such a small width is un-
realistic; see, for instance, Klein et al. ' If W )0. 1 eV, as
various band calculations suggest, we need to have

~
k~ —= 10 . According to the result of Fig. 5, k can easily

take such a value with a moderate exchange enhance-
ment.

2. Magnetic field e+ect on -sound attenuation for T )Tc

If we write the attenuation constant in the presence of
an external magnetic field H as given in Eq. (2.36}, from
Eqs. (2.37)—(2.39) we obtain

2.0 —2D0 +G,

ba (H) /a„= v(p~H /W)

I s,
v=DoK

S
(3.6)

1.5 where X is given in Eq. (3.2), and

1.0—

0,4

0.3

0.1

1.0

G= VD,' F(0)

+3V'D,'
F(0)

F'(0)
F(0)

2

2

(3.7)

T t'Tc

FIG. 4. The temperature dependence of the sound velocity
calculated from Eq. (2.16) for different locations of the Fermi
energy in the spin unsplit state of the model electronic density
of states of Fig. 2. The same values of W, V, and g are used as in
Fig. 3. Note that for T ) T&, the differences between the
behaviors for different values of cF/W become indistinguish-
able.

Note that the magnetic-field effect is exchange enhanced
by Do. [In Refs. 2 and 5, there is an error in the expres-
sion for v; it should be corrected as in Eq. (3.6).]

In Fig. 6(a) we show our numerical result on the tem-
perature dependence of v for T )Tc of a ferromagnetic
metal which is obtained similarly to Fig. 3. To demon-
strate that v~Do, we also show v/Do in Fig. 6(b). Be-
sides the large exchange enhancement, we note the sensi-
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x10
2.0

x10

ZF —0

10

1.0—
1.0—

0-

1.0 1.5 1.0

0.3
0.5

(b)
I

1.5

00 1.0

(T Td iTc (T —Tc) /'Tc

FIG. 6. The temperature dependence of the magnetic-field
effect on the attenuation constant of sound propagation for
T ) T& as calculated from Eqs. {3.6) and (3.7) with the model
electronic density of Fig. 2 similar to Fig. 3. To illustrate that v
is proportional to Do, we show in addition to v, (a), v/Do, (b).

FIG. 8. The magnetic-field dependence of sound attenuation
in nonferromagnetic metals, for which V= VN(0) (1, as calcu-
lated from Eqs. (3.6) and (3.7) with the model electronic density
of states of Fig. 2 for different values of V and cF/8'at T =0. v
being proportional to Do, we show v/Do.

tive dependence on the value of eF /8; similar to the case
of k given in Fig. 3. For comparison, in Fig. 7 we show
the temperature dependence of the sound attenuation
without the effect of a magnetic field both for T & Tz and
T & T~. %'e again notice that the effect of the difference
in the electronic structure near the Fermi surface is drast-
ically amplified in the behavior of v compared in that of
a /a~ itself.

In Fig. 8, considering the case of nonferromagnetic
metals, we show how v at T =0 changes with the values
of V (& 1) and eF/8' in the model electronic density of
states. We see that since v ~ Dc, v can take a value much
larger than 0 (1} even with a moderate exchange
enhancement and reQect the difference in the electronic
structure in a drastically amplified form.

B. Magnetic-field eject on sound propagation
in the ferromagnetic state of a metal

1. Magnetic geld e-Qect on sound uelocity for T & Tc

b,s (g)
s ' W

Sp 4F+ (0)F (0)
F+ (0)+F (0)

(3.8)

Differing from the case of the paramagnetic state, in
the ferromagnetic state the magnetic-field effect begins
from the first order in g or H. Thus, here we retain only
up to the first-order terms. From Eqs. (2.32) and (2.33)
we obtain

where (s/sc) is given in (2.16), and we put

F(eF, V) =—X(0)1

3
10 F' (0)/F (0)

X o
I 1 —VF (0)I

E (0)

1 —VF (0)

(3.9)

0.5
In the ferromagnetic state, g is related to the external
magnetic field as

10 I

1.0

E+ (0)+E (0}
I=(1+ 2 Vyhf)PttH 4E (0)E (0) PhfP& (3.10)

/Tc
FIG. 7. The temperature dependence of the attenuation con-

stant of sound propagation without the effect of magnetic field
calculated from Eq. (2.17) with the model electronic density of
states of Fig. 2 for different values of c.F/8'. Note the large
jumps at Tc in the attenuation constant except for the case of
cF/8'=0. 5.

1 1 1 —2V
gqt 4 F (0)

Thus, we obtain

(3.11)

where yhz=p~yh& is the Stoner high-field magnetic sus-
ceptibility,
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x/0
2 I

210

0- ~F/W = 0.5

-4.0-

0

FIG. 9. The temperature dependence of the magnetic-field
effect on sound velocity for T & T& of ferromagnetic metals cal-
culated from Eq. (3.12) with the model electronic density of
states of Fig. 2 for different values of c+/W. We assumed 8'=1
eV, V= l.3, and /=2, the same values as in Figs. 3, 4, and 6.

1.0

IV. CONCLUDING REMARKS

0 0.5
'Tc

FIG. 10. The temperature dependence of the magnetic-field
effect on the attenuation constant of sound propagation for
T & Tz of ferromagnetic metals calculated from Eq. (3.13) with
the model electronic density of states of Fig. 2 similar to Fig. 9.

b,s(H) PaH=A

F+ (0)+F (0) f,
W 4F+(0}F (0} " W

(3.12)

In Fig. 9 we show the temperature dependence of A
which is calculated similarly to Figs. 3 and 6 with the
model electronic density of states of Fig. 2; we use the
same values, W=1 eV, V=1.3, and /=2, as in Fig. 3.
%"e Gnd the magnitude of A and its temperature depen-
dence very sensitively depend upon the value of ez/W; A

can take the value of O(10 ) as observed in FeNi, ' and
-O(1) as observed in Ni, ' if we assume, respectively,
-0.3 and -O. S for ez/W within the model electronic
density of states of Fig. 2. Of course, the real situations
would be quite different; the electronic densities of FeNi
and Ni are not as simple as that of Fig. 2.

2. Magnetic-field e+ect on sound attenuation for T (Tc

Retaining up to first-order terms in Eq. (2.37) we have

ha (H) @AH

a 8'

P(0) A Vght 3
F' (0)—1 + ~~D3

N(0) W y~' Fo(0) '

(3.13)

In Fig. 10 we present the result of our numerical calcu-
lation on Eq. (3.13) which was carried out similarly to
that of Fig. 9 for A. We again observe that the
magnetic-Geld e8ect on the sound attenuation for T & Tz
very strongly depends on the value of ez/Wand varies in
wide range.

In this paper, first we systematically derived general
expressions for the effect of a magnetic field on the veloci-
ty and attenuation of longitudinal acoustic sound for
T & Tz and T & Tz. Then, as an illustration of our re-
sults, we carried out a numerical calculation on the tem-
perature dependence of those magnetic-field effects by us-
ing a simple model electronic density of states. Our nu-
merical results shows how sensitively the electronic struc-
ture and electron interaction of a metal, particularly that
of a ferromagnetic one, would be reflected in those
magnetic-field effects. This implies the possibility of using
the magnetic-field effect as a sensitive probe of the elec-
tronic structure and electron interaction. Such impor-
tance of studying those magnetic-field effects on sound
propagation is not yet widely known.

The essence of the origin of those magnetic-field effects
is the spin splitting of the conduction electron bands pro-
duced by a magnetic Geld. In this paper we studied it
with the Stoner model. %'e now know that we have to go
beyond the Stoner model, by considering, for instance,
the spin fluctuation effect. Note, then, that our result in
this paper can be useful even there, since the spin fluctua-
tion effects are described in terms of Stoner-type magnet-
ic susceptibility.

A study of the magnetic-field effect on sound can also
contribute to the exploration of the fundamental mecha-
nism of itinerant-electron ferromagnetism. It is still con-
troversial whether the electron-phonon interaction is in-
volved in it in any important way. "The possible effect of
the electron-phonon interaction on magnetism derives its
origin in the magnetization dependence of phonon fre-
quency. How a phonon frequency depends on magnetiza-
tion can be inferred from how the phonon frequency
changes with a magnetic field. A study of the
magnetic-field effect on sound is also very important in
this respect.
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