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Spin difFusion on a lattice: Classical simulations and spin coherent states
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The results of computational studies of classical spin diffusion on a lattice are presented, and the
validity of these results in the quantum regime is explored using a general theoretical framework.
First, classical simulations of spin diffusion are used to identify conservation principles required for
adherence to a traditional diffusion equation. The breakdown of diffusive behavior for magnetization
in zero applied 6eld is tied to nonconservation of spin angular momentum by the dipole-dipole
interaction. The effects of dilution upon the spin diffusion constant are also studied for lattices of
various dimensionalities. At low concentrations and low dimensionality, the results are suggestive of
percolation. Next, with considerations of spin diffusion serving as a model, classical spin dynamics
on a lattice are linked to quantum dynamics using the interpolating properties of spin coherent
states. For systems with initial disturbances characterized by slow spatial variation, and in the
limit of high temperature and large particle number, a full quantum treatment of the spin diffusion
problem is shown to reduce to the classical paradigm used in numerical simulations. The equivalence
of quantum and classical behaviors under these conditions is shown to result from the cancellation
of quantum interference terms in the coherent-state representations of expectation values.

I. INTRODUCTION

Several approximate analytic theories for spatial spin
dift'usion exist and are in rough agreement with experi-
ment, but many of the details of the spin diffusion pro-
cess remain to be explored. As a consequence, a classical
simulation was recently developed to investigate the dy-
namics of spin difFusion in lattices. ' Using a model of
classical gyromagnets precessing in each others' dipole
fields, Tang and Waugh derived numerical values for the
spin diffusion constant in model lattices, and character-
ized several of the main conceptual and computational
issues for classical spin difFusion. Their results were gen-
erally in good agreement both with theory and with
experiment. Given the success of these initial calcula-
tions, we have undertaken to study aspects of spin dift'u-

sion which are not readily accessible to current analytic
theories but which shed light upon the microscopic foun-
dations of the phenomenon. The classical simulations are
here extended to new situations of interest in solid-state
NMR and condensed-matter physics, namely, the cases
of spin lattices in zero or small external magnetic field
(Sec. II), and of lattices randomly diluted with vacancies
or nonmagnetic impurities (Sec. III).

Section IV is devoted to reconciling quantum theories
with classical simulations using the quasiclassical proper-
ties of spin coherent states. Use of these states in formu-
lating the quantum spin difFusion problem afFords a di-
rect comparison with classical dynamical models, giving
credence to the results of classical simulations in situa-
tions where their validity is otherwise difficult to verify.
A study of the conditions under which classical results
are recovered &om the quantum formalism also serves
to indicate at what points quantum behaviors would be
expected to diverge &om their classical counterparts.

II. THE EFFECTS OF APPLIED MAGNETIC
FIELD UPON SPIN DIFFUSION

Tang and Waugh showed that in the presence of a
strong applied magnetic field, both longitudinal magneti-
zation and dipolar interspin energy display demonstrably
difFusive dynamics. That this is so is most easily ascer-
tained by observing the behavior of these quantities as a
function of spatial frequency. Given a diffusion equation
for spin magnetization,

cIM(r, t) ~. 8 M(r, t)
PP

P P
(2.1)

and its spatial Fourier transform

DAM(k, t) ).„2

kDkAM(k, t)—, (2.2)

an initial disturbance amplitude AM(k, t) at any given
spatial &equency II. is expected to decay exponentially
with a rate proportional to k . Here the difFusion equa-
tion has been written in the principal axis system of the
diffusion tensor D, with Cartesian axes labeled x~(p, =
1, 2, 3). The diffusion constant D& —P (k /k )D» de-

pends only upon the direction A: along which the ampli-
tude A~(k, t) is measured. A similar expression may be
written for the amplitude A~ of interspin energy. Tang
and Waugh demonstrated that the decays of both A~
and A~ scale appropriately as A: in high field. Both
quantities therefore obey a dift'usion equation, and in each
case a single difFusion constant D~ or D~ can be defined
for all wavelengths A = 2'/k of the initial disturbance.
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spins to the longitudinal spin magnetization) is efFectively
conserved.

In the absence of an applied magnetic field, the dipole
Hamiltonian takes its full untruncated form

gg untrunc1
2 .- )

2

1B,"""""'= ) [3(mi, i, i,)i,I, —mi, ].
~~. ~jA:

(2.5)

One might argue that the zero-field dipole coupling is a
purely internal interaction, which can exert no net torque
on the system as a whole. According to this argument,
the total angular momentum, and the magnitude of each
of its components, should be conserved. Nevertheless, the
form of 'R in zero 6eld is somewhat suspicious: it contains
all the elements of the traditional dipolar alphabet, in-
cluding terms representing uncompensated single or dou-
ble spin "flips" which do not preserve any single compo-
nent of angular momentum. Considering for the moment;
a simplified two-spin system, mi and m, 2, and writing
the usual Bloch equations with untruncat;ed dipole 6elds
from Eq. (2.5), we find that

dJspjn d

dt dt
= —(mi + m2) = p (mi x Bi + m2 x B2)

[mi x (3i12 (m2 . i'12) —m2)
12

+m2 x (3&12 (ml &12) ™1)]
37
3 m'1 &12 m'2 ' &12
12

+ (m2 x P12) (ml ' P12)]
0. (2.6)

For a general orientation of the two dipoles m, 1 and m2,
J p is not conserved. Under the action of the zero-field
dipole-dipole Hamiltonian, angular momentum conser-
vation cannot be maintained within the bounds of spin
space alone.

To recover the lost momentum, we must turn to co-
ordinate space. By a quick commutator calculation, or
else by an appeal to Ehrenfest's theorem, we can derive
a quantum result equivalent to that of Eq. (2.6). Then,
using the commutation relations of the relative position
and momentum vectors v 12 and p12, we find that

d~coor
dt

= —[&,V12 X @12]=-
dJtot

dk dt (~spin + &coor)

dJspin
dt

(2.7)

(2.8)

If the two spins were not held 6xed in space, the net
torque generated by the dipolar interaction between them
would serve to rotate their interspin vector v 12 so as to
compensate for the change in spin angular momentum.
These arguments can be generalized without complica-
tion to our many-spin lattice, for which we conclude that
spin angular momentum is not conserved in zero Geld,
but rather exchanges continually with the collective or-
bital angular momentum of the lattice (or is absorbed
through external torques if the lattice is held fixed). Spin

space and coordinate space are both represented in the
dipole-dipole Hamiltonian, and though these two spaces
are customarily considered separately, we cannot account
fully for the dynamics of our spins without appealing to
both.

The fact that the zero-Geld dipole coupling does not
conserve magnetization (or spin angular momentum) has
been appreciated for some time, and has been found to
have a significant influence on the critical dynamics of
dipolar ferromagnets. Not surprisingly, this elemen-
tary property also has important implications for spin dif-
fusion in zero 6eld. Diffusion, at least in the strict sense
embodied by the diffusion equation, is founded upon con-
servation principles. Diffusive transport is always driven
by a gradient in some globally conserved quantity. The
canonical example is the diffusion of gas along a concen-
tration gradient. There, the diffusion equation may be
derived directly &om the continuity equation for mass
flow through a given region of space. If the constraints
of mass conservation (or conservation of total particle
number) are lifted, the gas transport is no longer strictly
diffusive. Similar arguments can be adduced for spin dif-
fusion. In high field, Zeeman energy and interspin energy
are independently conserved. Both therefore difFuse ac-
cording to a classical difFusion equation. In zero Geld,
however, while interspin energy is still conserved, there
is no conserved Zeeman energy, and hence no conserved
component of spin angular momentum. Not only can net
magnetization in a given direction flow &om regions in
which it is abundant to other regions in which it is scarce,
but it can also disappear into the "sink" of lattice rota-
tion, or can equilibrate among the other magnetization
directions.

Simulations in fields of moderate strength, intermedi-
ate between the high-field and zero-6eld extremes, con-
6rm the importance of angular momentum conservation
in the bulk dynamics of the spin lattice. In this case,
neither Zeeman energy nor dipole-dipole energy is inde-
pendently conserved; only their sum, the total magnetic
energy, remains constant over time. The transport be-
havior of each of these three energies —Zeeman, dipole,
and total —is summarized in Fig. 3. For all of these
intermediate-field simulations, the untruncated dipole
coupliiig was supplemented by an external field (oriented
parallel to the diffusion axis in the z direction) at five
times the magnitude of the nearest-neighbor dipole cou-
pling. The total local dipole Geld felt by any spin is gen-
erally a few times larger than the nearest-neighbor field,
and the applied 6eld was chosen to lie in this range. At
short times (shorter than the induction time of roughly
one reduced unit), the amplitudes of both Zeeman and
dipole energy decay at a rate nearly independent of wave-
length, reminiscent of the decay of Zeeman amplitude in
Fig. 2. At longer times, the curves for different wave-
lengths do disperse, but not enough to de6ne a single
diffusion constant. The amplitude of total magnetic en-

ergy, on the other hand, adheres closely to a diffusive
pro6le.

Results at other intermediate Geld values show that
diffusion behavior continues to track conservation. At
very low fields, it is magnetization which "misbehaves, "
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FIG. 3. Wavelength dependence of disturbance amplitudes
A~...(t), Aa„, (t), and A&...(t) for Zeeman energy (a), dipole
energy (b), and total magnetic energy (c) in intermediate ap-
plied field. Other simulation parameters as in Fig. 1.

with a spin. Otherwise, it is left empty. The quantity
et,g,t therefore serves as a site occupation probability,
and the actual fractional concentration c = N,~;„,/N„t„
approaches et,g t as the number of spins becomes large.
Nolden and Silbey in 1993 performed dilution studies of
this sort in three-dimensional lattices and studied the
effects of various lattice parameters upon the computed
diffusion constants. In a forthcoming paper, they will
present their data &om lattices larger than the ones used
here.

The concentration dependence of the diffusion constant
for spin magnetization in a simple cubic lattice at high
applied field is plotted as open circles in Fig. 4. (Here,
the actual factional concentration c is used as the inde-
pendent variable, rather than the theoretical target con-
centration. ) The diffusion constant is seen to fall mono-
tonically as the lattice is diluted. This behavior is not
surprising, since the magnitude of the average local Geld
experienced by any of the spins falls off similarly as spins
are removed Rom the lattice.

The moment theory of RedGeld and Yu serves nicely
in a first attempt to understand the shape of the D(c)
curve, since moments can be expressed as lattice sums
whose concentration dependence is easy to ascertain.
RedGeld and Yu derive the following form for the dif-
fusion constant Dz of spin magnetization (or Zeeman
energy) in high field:

while dipole energy, which constitutes the bulk of the to-
tal energy, is nearly conserved and diffuses accordingly.
As the applied Geld grows, the Zeeman energy becomes
the principal component of the total, and the dipole en-
ergy begins to depart &om strictly difFusive behavior. At
very high fields, truncation of the dipole interaction takes
effect, and the Zeeman and dipole energies each behave
diffusively.

III. CONCENTRATION DEPENDENCE OF SPIN
DIFFUSION AND THE EFFECTS

OF LATTICE GEOMETRY

1
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The simulations described above demonstrate that
changes in the functional form of the interaction between
neighboring spins (effected by changes in the strength
of the applied magnetic field) can have profound effects
upon the bulk transport behavior of the lattice. In a
second set of simulations, the distribution of neighbor-
ing spins was varied by varying the population of the
model lattice —introducing vacancies at a random sub-
set of lattice sites. These simulations mimic the physical
conditions in spin lattices diluted by actual vacancies or
by nonmagnetic impurities.

It is not difIicult to modify the basic spin diffusion
simulation to study the effects of random lattice dilu-
tion. One Grst chooses a target lattice concentration
ct,g,q between 0 and 1, then one samples a random
number generator for each lattice site. If the genera-
tor returns a value less than ct,g,q, the site is populated

0
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FIG. 4. Concentration dependence of the spin diffu-
sion constant (high-field diffusion of magnetization) in a
three-dimensional simple-cubic lat tice. Open circles: simu-
lated data. Solid line: best fit of D(c) to Eq. (3.5). Dashed
line: exact results of the Red6eld and Yu moment theory
[Eqs. (3.6)]. The size of the lattice is 1V,;q„——16 x 16 x 16,
and the orientation of the applied field is [ill]. Diffusion was
measured along the [100] axis for an initial spin polarization
with A = 16. At each concentration, diffusion constants for 8
different runs were obtained as averages of the instantaneous
values D(t) over suitable time intervals, and these 8 average
values were averaged to yield the value shown in the plot.
The error bars indicate standard error of the mean of the 8
samples.
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tization disturbance. M2 and M4 are the second and
fourth moments of an appropriately defined absorption
line shape (cf. Ref. 5), and are related (though not iden-
tical) to the classic Van Vleck moments. i Some algebraic
manipulation yields the expression

ijk g, (3.2)

where the primed sums run over the occupied lattice sites.
x2 = (z; —x~) are the squared separations of spins i and
j in the direction of the initial wave vector, and

2
1 (3cos20~ —1) 1

3
~

2rs ) 3'~ (3.3a)

~;,-~ = —(8b,', (b'A; —b s) + 4b'~ b'~b, ~ (b'~ + b, A:)

—3b,'I.b,'I.) (3.3b)

(3.3c)

(3.4a)

(3.4b)

We may now argue, following Kittel and Abrahams,
that for a randomly diluted crystal with site occupation
probability c, each spin on average will see other spins
at only a &action c of the lattice sites, and each primed
sum in Eq. (3.2) will be smaller than the corresponding
sum over all sites by a factor of c. That is,

the simulated and the predicted shapes of the concentra-
tion dependence'? First of all, the Redfield and Yu mo-
ment theory is of course an approximation. There is lat-
itude, for example, in the choice of line shape leading to
an expression such as Eq. (3.1). Second, the finite lattice
size used in our calculations may be a limitation: the mo-
ments of Eq. (3.1) are evaluated in the long-wavelength
limit, while a lattice size of N = 16 and a wavelength of
A = 16 may fall slightly short of this limit. Also, the sum-
mation arguments of Eq. (3.4) become less accurate and
the lattice calculations themselves become less precise as
the particle number decreases for small c. Whether or
not these factors are sufBcient to explain the numerical
discrepancy, one may also note that the reasoning lead-
ing to Eq. (3.5) makes no reference to the dimensionality
of the lattice. The summation arguments of Eq. (3.4)
apply equally well whether the spins are arranged in a
line, a plane, or a cube. (Indeed, our moment theory
has the character of a "mean field" approach neglecting
fluctuations, and therefore no dimension dependence is
to be expected. ) We know, however, that the dipole in-
teraction falls off as the cube of the interspin distance:
although in three dimensions it is a borderline long-range
interaction (its volume integral for a constant spin den-
sity is logarithmically divergent), it does not remain so
in one or two dimensions. As the effective range of the
interaction is decreased, percolation theory would sug-
gest that diffusion should no longer scale uniformly with
dilution, but should instead show signs of a percolation
threshold.

Simulations in one, two, and three dimensions yield the
results displayed in Fig. 5. There is a marked difference in
the shape of the D(c) curves for the different dimensional-

(1+y2c) ' (3.5)

with

(3.6a)

Thus, we may write Dz in terms of c and the values
of the (unprimed) lattice sums at full lattice population.
The result is
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Figure 4 compares the simulated data with the predic-
tions of the Redfield and Yu theory. A nonlinear least-
squares fit of the data to the functional form of Eq. (3.5)
yields excellent agreement (solid line in Fig. 4). The best-
fit parameters yq and y2 do not match the predicted val-
ues from Eq. (3.6), however: the moment calculations
predict a smaller diffusion constant at full concentration
and a smaller initial slope than are observed in the sim-
ulations (dashed line in Fig. 4).

What accounts for the residual discrepancy between

FIG. 5. Concentration dependence of the spin diffu-
sion constant in one, two, and three dimensions. Error
bars indicate standard error of the mean; dotted lines are
drawn between data points to guide the eye. 3D: 8 runs,
1V„q„——16 x 16 x 16, A = 16, field orientation [111],diffu-
sion direction [100]. 2D: 16 runs, N„q„——64 x 64, A = 16,
field orientation [ill], diffusion direction [100]. 1D: 32 runs,¹~,——256, A = 16, field orientation and diffusion direction
[100]. The one-dimensional (1D) diffusion constant is greater
than its 2D counterpart at c = 1 because of the field orienta-
tion chosen. A [ill] field orientation could not be used in the
1D case, since all 1D couplings vanish for that orientation.
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FIG. 6. Comparison of simulated D(c) curves from Fig. 5
(normalized to unity at c = 1) with the predictions of moment
theory and of uniform scaling arguments described in the text.
(a) Three dimensional lattice. (b) Two-dimensional lattice.
(c) One-dimensional lattice.

ities. Dimension dependence may be introduced into the
spin difFusion problem in a preliminary (and highly ap-
proximate) fashion by way of a simple scaling argument.
If the lattice population is diluted by a factor c, then the
average effective volume occupied by any spin increases
by a factor of c, and the average nearest-neighbor dis-
tance ro increases by a factor of c ~", where d is the
dimension of the lattice. If we imagine that this averuge
efFect on interspin distances constitutes the primary ef-
fect of the dilution, then we may model the diluted lattice
as a fully populated lattice with the same geometry as
the original lattice but with an effective lattice spacing
of c ~~~re. The base coupling strength b(ro) oc ro is
then scaled by c ~", and all characteristic times, includ-

ing the decay rate rl, ——(k2D), grow by the inverse
factor c ~". The diffusion constant D, therefore, scales
with concentration as c ~".

Figure 6 compares the observed D(c) curves with the
predictions of the uniform scaling model on the one
hand and the Redfield and Yu moment theory on the
other. While the moment arguments, as we have already
seen, predict some of the essential features of the three-
dimensional curve, scaling arguments are much more suc-
cessful in one and two dimensions. Even then, however,
the fit is not perfect: especially in one dimension, the
simulated D(c) falls off significantly faster than cs, and,
of course, in no instance does the scaling model pre-
dict anything like a percolation threshold. Even though
scaling arguments do account for lattice dimension in a
somewhat artificial manner, they take no more account

of fluctuations in lattice spacing than does the moment
approach. In order to address the detailed dynamics of a
randomly diluted lattice, we should consider percolative
properties.

For our difFusing spin system, we would expect a per-
colation threshold to be marked by two kinds of efFects.
First, for moderate dilutions, a fallofF in the observed dif-
fusion constant at long times should accompany the onset
of restricted diffusion. Some behavior of this sort is ob-
served in the simulated diffusion constant data, though
the presence of an initial induction time and of statistical
fiuctuations in D(t) complicate these observations. Sec-
ond, when cluster sizes are small enough (with an average
length scale significantly smaller than the wavelength of
the magnetization disturbance, for example), spin difFu-
sion will be quenched. In this case, restricted clusters of
adjacent spins sit on small portions of the initial distur-
bance profile, and there is no significant local gradient to
drive magnetization transport.

Of course, terms such as "cluster size" apply only in a
relative sense to a system such as ours with interactions
of extended range. Even in a one-dimensional array of
spins, magnetization can cross gaps, incurring only the
penalty of a time delay. Fhuthermore, spin difFusion in-
volves continuous rotations rather than discrete jumps,
so that diffusion paths are not easy to define, not to men-
tion to enumerate. Even if such paths could be tallied
conveniently, they would have to be weighted by the par-
ticular magnetization gradients available to drive difFu-
sion. Thus, a full quantitative theory of the percolation
properties of our spin system promises to be exceedingly
difBcult. If we wish to determine with confidence whether
there is such a thing as a percolation threshold for dipolar
spin diffusion, we are forced to make simplifications.

Figure 7 compares the curves &om Fig. 5 with simula-
tion results for a simplified spin system in which nearest-
neighbor Heisenberg exchange couplings were used in
place of the dipole-dipole couplings. In the Heisenberg-
coupled system, quenching of spin difFusion at low con-
centrations is plain to see for all dimensionalities. In
two and three dimensions, the D(c) curve for nearest-
neighbor Heisenberg coupling travels with its dipolar
counterpart at high concentrations, then descends more
steeply toward a distinct threshold. As expected, the
quenching of diffusion occurs at higher concentrations in
two than in three dimensions, and the divergence be-
tween Heisenberg and dipolar behavior is more muted in
the planar lattice. The one-dimensional curves are barely
distinguishable, suggesting that nearest-neighbor influ-
ences are nearly sufIicient to explain the efFects of dilu-
tion in a line of spins. In short, the simplified Heisenberg
model reproduces many of the qualit~ative features of our
full dipolar spin system, while emphasizing the role of,
as it were, local demographics in the overall population
dynamics of the lattice. The concentration dependence
of dipolar spin diffusion may then be understood as a
kind of "smoothing over" of the percolative behavior of
truly local interactions.

It should be cautioned that the interpretation of a
macroscopic diffusion constant in diluted lattices is not
entirely straightforward, especially in one dimension. In
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the case of a line of spins subject to nearest-neighbor cou-
plings tas in Fig 7(c)], for example, the theoretical per-
colation threshold lies at c = 1, since the introduction
of even a single vacancy necessarily subdivides the sys-
tem into unconnected clusters. This fact presents both
theoretical and practical difBculties. In principle, diffu-
sion in the subdivided system is restricted, and the single
bulk diffusion constant should properly by replaced by a
distribution of diffusion constants for separate subsys-
tems. Our numerical calculation of the diffusion con-
stant, moreover, involves tracking the amplitude of a
single spatial Fourier component across the entire sys-
tem, but if separate clusters equilibrate to different aver-
age values (e.g. , if vacancies isolate difFerent segments of
the initial cosinusoidal disturbance), then the equilibrium
state of the system will contain discontinuities which may
yield spurious Fourier components at the spatial &equen-
cies of interest. Thus, we should not place undue quan-
titative trust in the calculated one-dimensional diffusion
constants at low concentrations, though the computa-
tional artifacts are expected to become truly significant
only in the range of concentrations for which spin diffu-
sion is already nearly quenched. The presence of long-
range dipole couplings, of course, serves to mitigate the
situation. In any case, the diffusion constants as mea-
sured do serve as a practical gauge of the rate of dissipa-
tion of an initial inhomogeneity, and the general trends
observed in this macroscopic index highlight the need for
more detailed accountings of the microscopic geometry
of the lattice.

IV. QUANTUM SPIN DYNAMICS AND SPIN
COHERENT STATES

To this point, we have concerned ourselves entirely
with classical spin diffusion. Our dynamical model has
been one of classical gyromagnets precessing continuously
under the in8uence of local magnetic fields. Neverthe-
less, the dynamics of interacting nuclear spins are, at
root, quantum mechanical. What account can be made
of the quantum origins of spin diffusion? The theoret-
ical models of spin diffusion against which our classical
simulations were tested are all quantum models. None of
these models, however, affords a direct microscopic com-
parison with classical computational procedures. None is
amenable to simulation at the level of individual spins.

We may make a preliminary case for the validity of the
classical results by using the moment theory of Redfield
and Yu (Sec. III and Ref. 5) to compare the predicted
classical and quantum values of the spin diffusion con-
stant for a fully populated lattice in high applied field.
The quantum result is found to approach its classical
counterpart rapidly with increasing spin quantum num-
ber, and even for spin-2, the quantum correction is only
on the order of 05%%uo to 4%%uo of the total value (the pro-
portion varies with the direction of the applied field). i
This fact, combined with the observed agreement be-
tween quantum theories and classical simulations in cer-
tain test cases, ' ' lends some credence to the classical
model. Still, as was discussed in Sec. III, bulk parame-
ters such as moments do not sufBce to characterize all of
the dynamics underlying spin diffusion.

In fact, the correspondence between classical and quan-
tum spin diffusion may be demonstrated even at the mi-
croscopic level. This section is devoted to reconciling
quantum theories with classical simulations using the in-
terpolating properties of spin coherent states. Use of
these states in formulating quantum dynamics affords a
direct comparison with classical dynamical models. In
the exposition to follow, a full quantum treatment of the
spin diffusion problem will be shown to reduce precisely
to the classical limit used in our simulations when the
high-temperature limit is applied to lattices containing
large numbers of coupled spins. Thus, we may have con-
fidence not only in the bulk predictions of our classical
simulations, but also in the underlying dynamical pro-
cesses which these simulations bring to light. It should
be noted that although the specific case considered here
involves spin diffusion mediated by dipole-dipole interac-
tions, the equivalence of classical and quantum behaviors
applies more generally for any set of interacting spins on
a lattice which satisfies the broad conditions we will de-
scribe in this section.

A. The classical dynamical problem

Consider a regular array of N nuclear spins with mag-
netic xnoments (rn~} (j = 1, 2, . . . , N). Let us suppose
that the spins in our model lattice are acted upon by a
constant applied magnetic field Ho ——Hoz, and addition-
ally are subject to dipole-dipole interactions. The energy
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~, (t) = ~, (t) x H, (t),

H, (t) =) H, (t). (4.1)

The local field Bz is made up of contributions B~y which
depend upon the relative positions and the instantaneous
relative orientations of spins m~ and mg.

(3) Calculate a diffusion constant from the rate of de-
cay of the initial disturbance [cf. Eq. (2.2)].

The results of Secs. II and III were generated using
this computational procedure. In fact, a wide range of
dynamical situations may be addressed using a procedure
of this general form, simply by altering the nature of the
couplings, the particulars of the initial condition, or the
measurable quantities to be computed.

B. The quantum dynamical problem

For a study of quantum spin dynamics, the classical
dipoles (rn~) of Eq. (4.1) must be replaced by spin op-
erators (I~) with the usual commutation relations:

x6j k E~pgIj ~ j, k = 1, 2, . . . , N

n, P, / = 1, 2, 3. (4.2)

Henceforward, we shall let h = 1 and the gyromagnetic
ratio p = 1, unless the context demands otherwise. The
spin quantum number, which we shall take to be the same
for all spins in the lattice, will be referred to simply as
I. The spatially inhomogeneous initial condition of the
lattice may be represented by the density operator

exp —
z ~ Iz

~(o) =
Tr exp — .

~ I~
(4.3)

where P~—:Ruo/k~T~, with Ruo a characteristic energy
(wo pBO in high field)—and T~ a local spin "tem-
perature" at lattice site j. In other words, we choose a
local Boltzmann distribution for expected magnetization
at each spin site, with site-to-site variations expressed as
variations in the Boltzmann exponent P~.

of such an arrangement is given in Eq. (2.3). Each spin,
therefore, evolves under the inHuence of a local magnetic
field which is the vector sum of the applied Geld and the
dipole fields &om all the other spins in the lattice. Under
the action of spin-spin couplings, an initial disturbance in
magnetization or interspin energy will diffuse across the
lattice in accordance with Eqs. (2.1) and (2.2) until equi-
librium is restored. A strategy for classical simulations
of this dipole-mediated spin diffusion may be constructed
as follows.

(1) Orient the spins (rn~) to produce an initial devia-
tion &om equilibrium. In Refs. 1, 2, and 10 a Boltzmann
distribution was sampled for each spin orientation, with
an effective local temperature which varied cosinusoidally
across the lattice.

(2) Solve the coupled classical Bloch equations for all
spins in the lattice. At each instant, the equation of
motion for a spin rn, ~ is

In order to characterize the transport of magnetization
across the lattice, we seek average spin trajectories rep-
resented by the expectation values ((I~) (t)f. The quan-
tum equations of motion corresponding to the classical
Bloch equations are

d (I') = i (['R, I,]) = (I, x H, ) . (4.4)

Due to the noncommutation of the operators I~, I~,
and I~, (I~ x H~) g (I~) x (H~) for a coupled spin sys-
tem [since both I~(t) and H~ (t) will in general depend
in a complicated fashion upon all the components of I~,
and noncommutation implies that the expectation value
of products of operators will not equal the product of
expectation values]. Consequently, classical differential
equations do not suf5ce to describe the dynamics. On
the other hand, it is not feasible to diagonalize quantum
Hamiltonians for the large numbers of spins needed to
model diffusion effects, and an alternative approach to
quantum simulations is needed. The beginnings of such
an approach can be constructed, and the connection be-
tween quantum and classical dynamics can be made ex-
plicit, by use of spin coherent states.

C. Spin coherent states

in) = D(n) [4'o),
D(n) = exp[i' (—sin/I + cosPI„)], (4.5)

where
i 40) is a state

i I, m) in the Zeeman basis. As
a consequence of this definition, it is clear that the
SCS wave packets undergo no spreading with rota-
tion. An arbitrary rotation T(R) maps one coherent
state in) smoothly onto a rotated coherent state iRn)
This mapping involves a phase factor discussed further
elsewhere, but no mixing of the SCS occurs.

If in particular we choose the stretched state iI, I) as
our fiducial state i@o), the Heisenberg uncertainty re-
lation for the components of I is saturated. In order
better to visualize these minimal-uncertainty states, we
may decompose them in the usual Zeeman basis:

Unlike the standard basis of Zeeman states iI, m), spin
coherent states are an overcomplete set of states
with the minimum uncertainty product allowed by the
Heisenberg uncertainty relations. In this and other re-
spects, they are analogous to the canonical coherent
states for the harmonic oscillator. Radcliffe identified
this class of states in 1971, following the introduction of
the canonical coherent states by Glauber in 1963.
Subsequent work has identified both of these state con-
structs as members of a family of "generalized coherent
states" which may be built around arbitrary symmetry
groups 25~26i30

The spin coherent states (SCS) are generated by
rotations of a single base state, called the "fiducial
state, " chosen &om the usual Hilbert space. They may
be parametrized by a unit vector n = sin8cosgm +
sin 8 sin Py + cos gx as follows:
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I = 0.5

m =0.5

I = 100

m =100

m=70

wave functions of minimal width centered about the clas-
sical vectors (In), and they maintain their coherent
character under unitary rotations. In these respects,
they are an appealing analogue for classical spins. They
may indeed be said to be the most "classical" of al-
lowed quantum spin states —the closest one can get while
still respecting quantum constraints. As such, they have
been used to explore the classical limit of quantum spin
systems ' and to formulate path integrals for interact-
ing spins.

Some useful features of spin coherent states are sum-
marized below (following Perelomov in Ref. 26 and Rad-
cliffe in Ref. 23):

1. Overcompleteness

( 8 8' . 0 . 8';(~ ~),))(n'in) =
i

cos —cos —+ sin —sin —e'( )
)

fl+n n')= exp[iIA (n', n, no)] i ) (4 7)

m =-70 A (n', n, no) is the area of the geodesical triangle formed
by the vertices n', n, and no = z.

2. Resolution of unity

m = -0.5
3l = dpi' YL)

m = -100 (4.8)

FIG. 8. Angular plot of the overlap of spin coher-
ent states with the usual Zeeman states. The function
i4' (8, (t))i = i(I, min)i (normalized to the unit sphere) is
plotted for various I and m.

8. Diagonal representation of' operators
Any bounded operator A in the Hilbert space admits a

diagonal representation in terms of spin coherent states

A= dp n n n. (4.9)

When A is equal to the spin operator I, the diagonal
symbol A(n) = T(n) takes a particularly simple form:

l' t' 0~+ (.(I, min) =
i I i i

cos —
i i

sin—kI™)I 2) E 2)
x exp[i (I —m) P]. (4.6)

X(n) = (I+ 1)n. (4.10)

4. Operator matrix elements in the spin coherent state
representation

In Fig. 8, the square magnitude of the overlap
(0, $)i = i(I, min)i is plotted as a function of 8

and P for a variety of I and m values. The function
(0, P) i

is a probability density function describing a
distribution of vector orientations peaked at cos0 =
One may observe that in the quantum limit (I = 2), the
distributions are broad, and a wide range of SCS vector
orientations are contained in iI, m), whereas i@ i

col-
lapses to well-defined cones in the classical limit of large
I. It can be argued that the cones define an expected
orientational distribution for pure states iI, m), and the
collapse of the overlap probability to this base distribu-
tion implies that in the vicinity of the classical limit, the
SCS are essentially angular delta functions, better known
as classical vectors.

In short, the spin coherent states (in)) represent spin

(ni I in) = In,

(n'i I in) = (n'in) I
= (n'in) Ir](n, n'),

(ni e ~ * in) =
i

cosh ——sinh —cos8
i

P . P

~(&) = f &y (~l & l~) = f&vA(~). (4.12)

(n'I e In) = (n'In)
I

cosh ——sinh —g I
(4.11)

2 2 )
5. Traces
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6. Product rule for traces
Tr pOIj t =Tr pOIj t xB~ t (4.14)

Tr (dH) = f do (ml AH lm)

dp'A(n') (n'i B in' )

dp'8(n') (n'i A in') . (4.13)
l{n)) —= &3 ln') (4.15)

Since the operators representing spins at di8'erent lattice
sites commute at time zero, we may decompose a state of
the lattice into a direct product of states for individual
spin sites. For spin coherent states in particular,

D. Spin coherent states and quasiclassical
quantum dynamics

Now we use the trace formulas of Sec. IV C, with the
notation d{p):—Q„dp), . The left-hand side of Eq. (4.14)
is

In order to compare classical and quantum spin dif-
fusion, we first express the quantum equations of mo-
tion (4.4) in terms of spin coherent states. Choosing the
Heisenberg picture, in which the states and the density
matrix are constant while the operators evolve, we write

pOIjt = d p n p0 n T~ n

The right-hand side may be expanded as follows:

(4.16)

(4.17)

T (o(o)1, &,) = fd(o) (( )I p(o)I (') "& (') I("))

d p d p' n pO n' T~ n', t x n' Bjt n

d p d p' d p" n pO n' n' n" n" n Tj n', t xBj n", t

d p' d p" n" pO n' n' n" T~ n', t xB~ n", t.
The final contraction in (4.17) is achieved by moving the factor ({n")

l {n))to the f'ront of the integrand and removing
a resolution of unity: f d{p) l{n)& ({n)l. Combining left-hand and right-hand expressions, and relabeling integration
indices, we arrive at the equation

d(o) ((m)l o(o) l(n))»Hm), t) = fd(o) dV) ((n)
I
(m')) ((n')I o(o) l(nH»Hn), t) x + Hn'), t) (418)

Solution of this integrodifferential expression for the spin symbols X~({n},t) constitutes a complete solution of the
problem, since with the symbols in hand we may immediately calculate the desired expectation values,

(I.)(&) = T'(o(o)1 (&)) = f d( 3( )(l p(o) l(~))»((~) &) (4.19)

Equation (4.18) as written is difficult to solve. If our initial lattice configuration is such that the density operator
p(0) admits the following approximation,

&{n) I
{n')) &{n')l s(0) 1{n)& = &{n) I

{n')& &{n')
l {n)& ({n)l ~(0) l{n)), (4.20)

a substantial simplification may be achieved. Inserting expression (4.20) into (4.18) above, and identifying a diagonal
representation of the local field operator H~(t) = Jd{p') Bz({n'),t) l{n')) ({n')l, we obtain

d(y) ((n)l p(o) l(~))»H~), ~) = fd(o) ((~)l p(o) I(n))»((~), s) x ((ra)IH, (t) l(n)) . (4.21)

The form of p(0) is arbitrary, at least within the constraints of the approxiination (4.20), so that we may equate the
integrands

({n),t) = +.({n),t) x ({n)I+ (t) l{n)) (4.22)

At time t = 0, the Heisenberg operators Iz(t) coincide with the usual spin operators I~, and the symbols are
simply Xz({n),0) = (I + l)n~. The diagonal matrix elements of the local field operator &{n)l H~(0) l{n)) reduce
to the classical functions H~({In), 0), with each spin component I), in the operator expression replaced by the
corresponding component of a classical vector InA, . The result is
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n~ (0) = n, (0) x B,((In), 0). (4.23)

This equation is just the familiar classical Bloch equation evaluated at time zero. Consequently, the time-dependent
functions In~(t) will evolve precisely as classical spin vectors rn~(t) for all tiine, subject to the classical equations of
motion

~, (t) = ~, (t) x B,(t) . (4.24)

With the determination of Z'
~(( n), t) [which simply equals (I + 1) n~(( n), t)] having proceeded along classical

lines, only integration against the weight function &(n) l p(0) l jnj) remains [cf. Eq. (4.19)]. Referring to Eq. (4.3) and
substituting the diagonal matrix eleinents of Eq. (4.11) gives

&(n) I p(o) l(n)& = ((")Iccrc (
—2, Al,;) l(~))

Tr exp — jIj.
2I

cosh ~2 —sinh ~2 cosHj
2I

2+ J'dcos8~ cosh~2 —sinh~2 cos8~
(4.25)

In the high-temperature limit (Pz « 1), this function reduces to a Boltzmann distribution

&( )lp(0) I( )& (4.26)

where Icos 8j plays the role of z component of a classical magnetization vector. We may then view the expectation
value expression as an ensemble integral over a classical lattice. Since we are ultimately interested in a bulk parameter
rather than the true ensemble average of any individual spin magnetization, we may select one or several representative
lattice con6gurations and evaluate the spin diHusion constant. The correspondence with the classical calculations is
now complete.

Under what physical conditions is the approximation (4.20) valid. Let us first consider the classical limit, in
which we naturally expect our quantuin model to yield classical equations of motion. The expression (4.11) for the
ofF-diagonal elements of an exponential spin operator gives

2I
)i. (cosh c

—sich c ch;
((~) I

(o')) ((~')I ~(o) l(~)) = ((~)1(~')) ((~')
l (o))

Tr exp — . jIj.
(4.27)

with the complex vector gz defined as in Eq. (4.11):

n, +n,'+i (n, x n,').
1+nj nJ

(4.28)

For large spin quantum number I, the prefactor l((n) l
(n')&l = g. (1+n~ n' )/2 vanishe-s for all n' which

are not very near n~, while the resolution of unity (4.8) guarantees a unit integral. Thus, the prefactor approaches a
product of delta functions g. h(n —n~), and gz, may be replaced by cos8~, justifying the classical approximation.
These arguments show how the disappearance of complex interference terms accompanies the classical limit. The
expectation value expressions for quantum spin operators in the SCS representation contract smoothly to classical
values as the spin quantum number is increased.

For small I, closer to the "quantum limit" of I =
2 realized in physical systems such as CaF2 crystals, there is

considerable latitude in the values of (n'), and the complex terms in g~, may not be ignored. Nevertheless, under
certain conditions, cancellations allow us to recover the classical results. At the high temperatures which are standard
in many NMR experiments (T 300, P 10 s for fields of several T), the exponential density operator may be
expanded to first order in P, yielding the following expression for the left-hand side of (4.20):

Tr exp — - jIj
l(n)&

1 —E, A~'.
Tr exp — . jI~

n n' n' n

&{n) I(n')& &(n')I p(0) l(n)& ': &(n) l(n')& &(n')l

(4.29)
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If the spatial variation in P~ is slow enough that many spins lie together in regions of nearly uniform spin temperature,
then the imaginary terms in g~ for difFerent spins in each subregion tend to interfere with one another, and the real
terms tend to accumulate to an average value somewhat less than P. cos gz. The result is that the sum is "bufFered"

against variations in (n'), and the predominant (n'f dependence lies in the prefactor ~((nf ~
(n )) ~

. At the expense
of a partial reduction in the efFective magnitude of P~. for each subregion of the lattice, we may replace (4.29) with

1 —
2 cos 0~

(&~) I
(~'j) ((~')I p(o) l(~j) = ((~)

I
(~')) ((~')

l &~))
Tr exp — -

~ Iz.
= (&~) I

&~')) (&~'&
l (~)) ((~) I p(o) l&~)), (4.30)

and (4.20) is satisfied. In the long-wavelength, high-
temperature limit, we expect the quantum results to be
well approximated by classical calculations, even for spins
as low as I = 1/2.

A more complete assessment of the size and charac-
ter of quantum corrections to the classical dynamical
model may be possible using the SCS formalism. For
example, one might imagine expanding expressions such
as Eq. (4.18) in powers of P. The resulting integrals
over (n') for corrections of first and higher orders sug-
gest a model of interacting "virtual lattices, " in which
spins respond not only to other spins in their home
lattice (n) but also to spins in a suitably chosen set
of accessory lattices (n'). Such a construction would
be reminiscent of the Trotter-Suzuki style of path in-
tegration for spin systems, which maps the quantum
problem to an equivalent classical problem of higher
dimensionality. Takano "' has designed a strategy
for path integration using the SCS, and this strategy
might well be modified to form a dynamical path integral
(though for reasons of convergence this strategy is likely
to be successful only for small numbers of interacting
spins). The work of Takahashi and Shibata4 ' (who de-
rive differential operator equations for spin distribution
functions using product rules for diagonal symbols) might
also be extended to large systems of dipole-coupled spins,
though substantial approximations might be required to
render the mathematics tractable.

V. CONCLUSIONS

Given the isotropic nature of the dipole-dipole Hamil-
tonian in zero applied field, the question of how an
anisotropic disturbance in a spin lattice will dissipate
might at first invite some speculation: will it merely de-
cay in amplitude with its anisotropy preserved, or will it
be dispersed in orientation as well? Our results suggest
that the answer depends upon the nature of the distur-
bance. If it is a conserved quantity that we perturb in
setting up our initial condition, then that quantity dif-

I

fuses along local gradients in a well-behaved fashion, with
its orientational character maintained over time. The
breakdown of diffusive behavior for longitudinal magne-
tization in zero field, and the corresponding orientational
mixing which dominates the dynamics in this case, is
explained by the simple observation that the zero-field
dipole Hamiltonian does not conserve spin angular mo-
mentum.

In lattices at high applied field, di6'usion is hindered by
dilution to a degree that depends both upon the concen-
tration of spins and upon their spatial distribution. Sec-
tion III demonstrates that the concentration dependence
observed in simulated lattices with various dimensional-
ities may be characterized at least in a qualitative fash-
ion using combinations of moment theory, simple scaling
arguments, and observations of percolation in simplified
systems.

Finally, in Sec. IV, we have overed theoretical evidence
as to why classical results should indeed be faithful guides
for our more quantum mechanical expectations. Under
physical conditions of some practical interest —namely,
in macroscopic lattices at or above room temperature—
spin coherent state expectation value expressions may
be manipulated to recover classical equations of motion.
The disappearance of quantum interference terms under
these conditions justifies the use of classical simulations
in studies of spin diffusion or similar magnetic phenom-
ena in lattices. In the context of the SCS formalism, the
nature and efFect of quantum interferences becomes par-
ticularly palpable. Thus, the SCS may be used to forge
a practical as well as a conceptual link between classical
and quantum spin dynamics.
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