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The spectral Huctuation properties of a quantum system are related closely to the dynamical
symmetries of the system. The equipotential lines of the system intuitively give information about
the symmetry of the system, indicating the degree of symmetry breaking as well as how symmetry is
lost. Chaotic motion appears when the curvature of the equipotential lines becomes negative. The
energy spectrum of a helium atom is calculated, and by analyzing spectral Quctuations, it is found
that the electron-electron interaction is not suKcient to change the integrable dynamical behavior of
the two electrons in the central field of a nucleus. Even when this interaction is artificially amplified
to the greatest possible extent below the dissociation limit, the Kolmogrov-Arnold-Moser theorem
still qualitatively governs the quantum system. This coincides with the indication of the curvature
of the equipotential lines that we discussed in this paper.

I. INTRODUCTION

The classical chaotic behavior of nonlinear dynamical
systems has exhibited intriguing phenomena which are
connected with the destruction of at least one integral
of the motion. By analogy with classical chaos, in the
search for quantum chaos it is natural to focus atten-
tion on systems with manifestations of broken dynamical
symmetry. A dramatic phenomenon was shown by Bo-
higas et al. , in which it is described that during the
transition of a classical analog of a quantum system from
regular to chaotic motion, the quantum behavior does
not manifest itself in a specific energy level or quantum
state, but in the statistical fluctuation properties of the
global energy levels of the system. The system whose
classical analog is integrable shows Poisson Buctuations
whereas the systems whose classical analogues are fully
chaotic show Gaussian-orthogonal-ensemble (GOE) Huc-
tuation patterns. Since both Poisson and GOE distri-
bution functions contain no free parameters, Bohigas et
al. conjectured that this phenomenon was generic. A fa-
mous example is the two-dimensional billiard. A billiard
consists in the motion of a free-point particle of mass
m, in a domain I of the plane of arbitrary shape. The
particle is elastically reflected when it hits the boundary
of I', according to the laws of specular reflection. The
circular billiard is integrable whereas Sinai s and Buni-
movich's stadium billiards are chaotic, since the latter
two cases do not conserve angular momentum. When
treating the problem as a quantum system one has to
solve the Schrodinger equation

(—5 /2m)V @„(r")= E„@„(r)

with the vanishing of the wave function @„(r) at the
boundary I'. A particle is moving in a potential well of
infinite depth, and the shape of the equipotential surface
of each case is the same figure as the type of billiards.
Their energy spectra exactly show a Poisson fluctuation
pattern for a classically integrable system, and a GOE
pattern for a classically chaotic system.

The hydrogen atom is a system possessing an abun-
dance of symmetry. The rotational invariance of the sys-
tem is destroyed when a hydrogen atom is in a uniform
magnetic field, so that the transition of the motion from
regular to chaotic behavior can be observed, if the mag-
netic Beld is strong enough. A helium atom has an extra
electron, and the interaction between two electrons has
also changed the spatial uniformity. Its spectral fluctu-
ation properties are calculated in the present work, but
a substantial deviation from the Poisson fluctuation pat-
tern is not found. By analyzing the characteristics of the
spectral Buctuation properties of diferent systems such
as the helium atom and hydrogen atom in a uniform mag-
netic field and other systems, some interesting phenom-
ena are observed: for some systems, their spectra have a
globally consistent Buctuation pattern, i.e. , any part of
the spectrum shows the same fluctuation properties as
those of the whole spectrum. For some other systems
the highly excited part of the spectrum may show differ-
ent fluctuation patterns than that of the low-lying part
of the spectrum. There may exist a boundary in the
spectrum, which divides the spectrum into two parts,
the subspectrum above the boundary and the other one
below the boundary showing diferent Buctuation prop-
erties. Or the energy levels may have to be rescaled in
some way in order to have a globally consistent mea-
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surement for the fluctuation property. Inspired by the
different behaviors of billiards with different boundaries,
we have noticed that the shapes of equipotential lines
for each individual system, as well as the distributions of
the equipotential lines, do oÃer some information about
symmetry breaking and the dynamical behaviors of the
systems. And since the evaluation of the equipotential
lines meets no new obstacles by increasing the number of
system dimensions, it is possible to overcome the multi-
dimensional complexity, and to approach the substantial
physics which is of interest directly.

In Sec. II the dynamical behavior of three example sys-
tems are qualitatively described. In each of them at least
one of the good quantum numbers is destroyed, and with
increasing disturbance their energy spectra show different
statistical fluctuation properties because their equipoten-
tial lines deform in different ways. In Sec. III the stability
of dynamics and the curvature of the potential are ana-
lyzed. The condition of negative curvature appearance
for the given examples is evaluated, and agreement with
dynamical calculations is found. Finally the conclusions
are given in Sec. IV.

2/3 - —1/3 (2.3)

in cylindrical coordinates the Hamiltonian of Eq. (2.2)
can be scaled and written as

2
~H=H= —P + —P + + —p

1 -2 1 -2 Lz 1

2 ~ 2 2p2 8

(
2 + 2) i/2 (2.4)

This equation shows that the classical dynamics only de-
pends on the scaled energy e de6ned by

(2.5)

while in the z-x and z-y planes they are stretched irregu-
larly to different extents. In Fig. 1 the equipotential lines
are illustrated for I = 0. It is shown that for the deep
part of the potential, i.e., the lower excitation region,
the rotational invariance remains and the equipotential
lines are still circles. With increasing excitation energy
the equipotential line begins to deform, and the higher
the excitation energy is, the more the equipotential line
becomes stretched. Using Friedrich's scaled coordinate
and momenta

II. THE SHAPE OF EQUIPOTENTIAL LINES
AND THE CHARACTERISTICS

OF DY'NAMICAI MOTION
4000

In the following we study three examples. In all ex-
amples at least one good quantum number is destroyed,
but their energy spectra show different fluctuation behav-
ior: With increasing strength of turbulence, for system
A always only a part of the highly excited energy spec-
trum shows GOE fluctuation; for system 8 the energy
spectrum transforms &om Poisson to GOE pattern as a
whole; for system C the energy spectrum always shows
Poisson pattern.

2000

A. A hydrogen atozn in a magnetic Beld

The problem of a hydrogen atom in a magnetic field
has been intensively studied. The Hamiltonian for a
hydrogen atom is

ci 0—

(2.1)

in atomic units with the number of good quantum num-
bers and degrees of &eedom being equal. The potential
is spherically symmetric. The energy spectrum of the
system shows Poisson fluctuations. The Hamiltonian of
the atom in a magnetic field is

H = ———+ L, + —(x'—+ y'),=p' 1
2 r 2 8

(2 2)

where p = B/B, is the reduced magnetic field (B,
2.35 x 10sT). Now the angular inomentum l is no longer
a good quantum number. Only its projection m remains
a good quantum number. Correspondingly the equipo-
tential lines in the x-y plane are still concentric circles,

—1000

X,y

1000

FIG. 1. The equipotential lines in the (x-z or y-z) plane
for a hydrogen atom in a uniform magnetic field.
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e = —0.54 and chaotic motion for e = —0.12. Friedrich
and Wintgen's results &om dynamical calculations in
a three-dimensional potential energy for these two cases
are consistent with the conclusion. So the characteris-
tic breaking of the dynamical symmetry of the system
is prominently characterized by the geometrical symme-
try of the system. The chaotic behavior demands a cer-
tain deformation of the equipotential lines of the sys-
tem, which characterizes the strength of the turbulence
demanded by the Kolmogrov-Arnold-Moser (KAM) the-
orem. The speciGc quantitative evaluation of the defor-
Ination needed for the transition of the dynamical motion
kom regular to chaotic type will be given in Sec. III.

B. A system with energy scale invariance

For systems with scale invariance, the chaotic volume
and the Lyapunov exponent are energy independent.
The equipotential lines of the system show difFerent pat-
terns. In Fig. 3 the equipotential lines are shown for
three-dimensional nonlinear oscillator with a Hamilto-
nian of the form

1.5:
Pz

1.0:
H = (P.'+ P„'-+ P.') + z'+ —y'+ 2z'+ ky'(z'+ z').

3

0.5 =
Moan'
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(2.6)
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In the case of k=10, z=0 the dynamics show chaotic
behavior. " Although the distribution area confined by the
equipotential lines is varying with increasing energy, the
shapes of them remain similar. The degree of the dynam-
ical symmetry breaking depends only on the parameter
A: and is independent of the potential energy. The po-
tential formalism in Eq. (2.6) is, in principle, similar to
that of Seligman, Verbaarschot, and Zirnbauer. ' They
have checked whether the fiuctuation measures are sta-
tionary for each part of the spectrum within the spec-
trum span considered, and the conclusion is positive. It
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FIG. 2. Poincare surfaces of section for a two-dimensional

billiard with the boundaries determined by equipotential lines
of the hydrogen atom in a magnetic field: above for e = —0.54
and below e = —0.12.

FIG. 3. The equipotential lines for the potential in Eq.
(2.6) at z=0, k=10.

This means that for the same scaled energy e the shape of
the equipotential lines for the system should be similar.
For a very strong magnetic Geld the dynamical behav-
ior could still be regular if the energy of the electron is
very low. On the contrary, in a very weak magnetic Geld
the dynamical behavior could be chaotic if the excita-
tion energy is high, indicating the extreme importance of
the determination of the scaled energy. Looking back to
the two-dimensional classical and quantum billiards, it is
not so abrupt to compare the shape of the equipotential
lines with the boundary shape for the billiards. In Fig. 2
the Poincare sections are shown for two-dimensional bil-
liards with the boundaries determined by the equipoten-
tial lines for a hydrogen atom in a magnetic Geld for the
scaled energy e = —0.54 (upper part) and e = —0.12
(below), respectively. The equation of the equipotential
lines is as s = sP2 —(p + z ) ~ with I,=O. The mo-
tions of billiards show a regular pattern for the case of
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will be proved later that as long as the shapes of the
equipotential lines for diferent energies remain similar,
the spectral properties of the system do not vary with
energy. Thus there is no boundary efFect. The symmet-
rical property of the equipotential lines wonderfully and
intuitively re6ects the Buctuation character.

C. Spectral statistical Huctuation properties
of a helium atom

Added to the nuclear central 6eld, the electron-electron
interaction destroys the single-electron rotational sym-
metry of a helium atom.

1. Calculation of the energy spectrum
of a heli22m atom

The helium atom is a three-body problem and it has
no precise solution. In a representation in Hilbert space
with 6xed angular momentum and fixed parity we have
given an analytical formula to calculate both the matrix
elements of the Hamiltonian and the corresponding se-
lection rules. The truncation of the invariant space, in
principle, depends on the precision needed.

The wave function in Hilbert space for a particular
total angular momentum J = L + S can be written as

~sy ~sg S~s TLyl1TA 1 ~1 n~l2rng &2

~81 l~S2

—[—1)"+" 2) .r. .(xi)2),x, (P2)]x . [1)2 [2)) (2.7)

where the p„i (r) are hydrogen-type atom wave functions and y2 are the spin-wave functions with spin — and
spin projection m, .

The wave function of the helium atom in the space of the C2 ~&+s
i of Eq. (2.7) is

@EM(»» )
ny, l1,ng, l g

JM JMLS
,i, .[,,r,s, ~, .~, ("& "2) (2.8)

which is the solution of the Hamiltonian

De6ne

I = —~~ /2 —2/r, —~2/2 —2/r2+ 1/r, 2. (2.9)

1, 2 1, 2 = p„,ii~, (rz)$„12&,~, (r2) p„2)2~, (r g)p„2)2~2 (r2) drgdr2
r12 T12

and

211 2, 1 = Q„1 )1,~1 (r g)p„1,)1,~1, (r2) p„,(,~, (rg)p„, ),~, (r2)drgdr2,
~12 ~12

(2.10)

with

l1 + l2 —L = l, l1 + l2 —L' = l'.

Then the secular equation becomes

1 n.2l ( e~+@» —E)+ - ) 22'l 22 l
JMLS

n~ lq nq l2 LS mL, mg fn'I m17ngfn1fn2

X ( 1)
—L—2221. I,' —222'I —l +l2—1' +I,'(2J + 1)(2I +—1)1 2(2L + 1)1 2

S Z &&I,'S' J )(l, l, I,
(mI, ms —M) (mL ms —M) (m] m2 m )1(m'] m2 —mL )

x[1 —(—1) )(1,2 1, 2 + [[—1) + —(—1) ] 2, 1 2, 1) = 2,
~12 +12

(2.11)
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where

»,» = — '/(2 i,2). (2.12)

The matrix elements can be analytically expressed as

+ 2~1+ 1 2l2+ 1 2l1+ 1 2t2+ 1 ~ 2~ ' 2b 2c 2
12

f l' A l ) 6 l' A l ) ( l' A l ) f l' A l

0 0 0 ) q
—mz mz —mq may ( 0 0 0

p ( —m2 mq —mI m2y

og, og, n)„nA, (2a)"'(2b)"'(2c)"'(2d)"'

1 2 3 4

(KA —A g)!(KC —s)!
X (c+ d)'+ (KA —Aq —s)!(a+b+ c+ d) + '+

s=O

KA —Ay+1 (KA+ A, + 1)!(KC—s)!
(c+ d)'+ (KA+ A) + 1 —s)!{a+b+ c+ d)~+ '+~

(ICA+ Aa + 1)l(ICC 1CA Ax 1)l

)(c + d) KA+Ag+2 (a + b) Kc—KA —A! (2.13)

where o. = n+ I + 1 a—nd P = 2l + 2, An evaluation of the expression 2, 1 —2, 1 then is

a), = o.(o+ I) (o. +k —1),

&~ = &(&+1) (&+ k —1)

(Z& ~ 2 (n+1)!
gao) n'j2! + l.)! (n —!—1)!)

straight forward.
About 300 energy levels have been calculated for a he-

lium atom. The accuracy of the results was checked by
means of two independent methods. First, the low ex-
citation energy levels were calculated by the variational
method. Second, we used the simple device of comparing
the eigenvalues obtained from matrices of varying size.
We found a satisfactory precision.

a= —,I
n2

KA = k3+ k4 + &1+ l

2. The spech. al atatistice

KC —k1 + k2 + k3 + k4 + l1 + l2 + l1 + lg +

k1 ——n2 —I
&

—1, k2 ——n2 —l2 —1, k3 ——n'1 t'1 1,

k4 ——n1 —l1 —1, (2.14)

with the selection rules
(1) Aq

—— maximum(~lz —lq ~, ~lz
—l2 ~) to mini-

mum((lz + lj), (l2 + l2)),
(2) lz + l q + Aq, l2 + l2 + A) must be even,
(3) m', —m, = —(m', —m, ).

After unfolding the calculated spectrum the distribu-
tion function P(s) for the spacing s = X;.+q —X; between
neighboring energy levels X;+1 and X; is shown in a his-
togram plot in Fig. 4(a). The long-range correlation of
the spectrum, the rigidity Ks(l) is illustrated in Fig. 4(b)
by dots. It turns out that the statistical Huctuation prop-
erties of a helium atom spectrum exhibit nearly a regu-
lar Poisson distribution as shown in the solid curves in
Figs. 4(a)—4(d). In order to know more about the func-
tion of the repulsive Coulomb interaction between elec-
trons in addition to the central, attractive Coulomb po-
tential, we multiply the term Ijrq2 in Eq. (2.9) by a
factor f At f 1.6 the .calculated nearest-neighboring
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FIG. 4. The statistical Quctuation prop-
erties of the helium atom. (a) The distribu-
tion function p(s) for the nearest-neighboring
spacings plotted as histogram. (b) A3 statis-
tics of the spectrum shown as dots. (c), (d)
P(s) and As with the condition that the elec-
tron-electron interaction is taken as f jrq2
with f=1 6 In. .(a)—(d) solid lines give stan-
dard Poisson Huctuation distributions and
dashed lines show standard GOE fiuctuation
distributions.

/
/
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spacing distribution and As(l) are shown in Figs. 4(c)
and 4(d), respectively. As indicated, the number of zero
spacing levels is considerably reduced. The level spacing
distribution shifts towards the larger spacings, indicating
that level repulsion emerges. But still the distribution is
closer to Poisson than GOE [dashed curve in Figs. 4(a)—
4(c)j. The distribution of As(l) also declined somewhat
toward a GOE distribution, but is still more like a Pois-
son distribution. At f ) 1.6 some positive levels ap-
pear, demonstrating the dissociation of helium. So the
electron-electron residual interaction is not sufIicient to
significantly break the dynamical symmetry of the cen-
tral nuclear field, even though the interaction is amplified
artificially.

The energy of each individual electron is not conserved
because the interaction between electrons is given by

ations only declined a little from Poisson to GOE types,
the KAM theorem qualitatively governs quantum system
of the helium atom.

To summarize, with increasing strength of turbulence,
three systems show difFerent dynamical behavior because
their equipotential lines have undergone difFerent ways of
deformation. The degree of symmetry breaking as well
as the way in which symmetry is lost are difFerent one
from another.

I

V

r12

(2.15)

in atomic units, where r&, r& denote the smaller, larger
of rq, rq, respectively. The potential thus depends on the
azimuthal angles of two electrons. Taking f=1.6, keep-
ing r j constant and placing rq in the fixed direction with
P = 0 where P is the angle between rq and rq, the equipo-
tential lines as a function of P are shown in Fig. 5. Due to
the repulsive correlation efFect between electrons the po-
tential changes very steeply on the right side of the plot
(corresponding to the direction of rq) and more gradually
on the left side. But the shapes of the equipotential lines
do not deviate much &om circles, especially in the region
of low excitation energies, indicating very mild pertur-
bance. Here only about 300 levels have been calculated,
and the high excitation energy region is not achieved. In
this slightly distorted potential field in which the fIuctu-

0—

—2

FIG. 5. The equipotential lines of the helium atom taken
by varying the angle between the radial vector r& of electron
1 (here the rq ——constant, at P = 0) and r2 of electron 2.
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III. THE STABILITY OF DYNAMICS AND THE
NEGATIVE CURVATURE OF THE POTENTIAL

In the previous section the dependence of the statisti-
cal behavior on the geometrical shape of the equipotential
lines was demonstrated, and the shapes of the equipoten-
tial lines were compared with those for the boundaries of
the two-dimensional billiards. To estimate the eKect of
shapes on the dynamical behavior quantitatively, one has
to estimate the rate of separation of neighboring trajec-
tories in the phase space.

det 8 V
8v~
8 V

8rg8r2

8 V
8v g8v g

8 V
8+i~

0

0

(3.8)

Its solution is

independent parameter. The problem is then greatly
simplified. For a system with two degrees of &eedom
the equation for the eigenvalues of the matrix I' takes
the form

A. The analysis of stability
of the classical trajectories

For a Harniltonian

H(J", r ) = p'/2 + V (r ), (3.1)

where

Ay 2 s 4 = +[ b+—gb —4c]

02V 02V
b = S„S(r")= ~ +

OP~ OP2

(3.9)

with the initially neighboring trajectories (rq(t), J7q(t))
and (r2(t), p2(t)), the linearized equations of motion for
the deviations

02V BzV
if

0 V
ri2 ~r~~ &Br,Br2)

(3.I0)

~(t) = (t) — (t) (t) = & (t) — (t) (3 2)

have the forms

&(t) =» &(t) = —S(t)& (3 3)

where S(t) is the matrix constructed &om the second
derivatives of the potential V(r), calculated along the
Mucial trajectory rq(t):

S;, (t) =
0 0 - -() (3.4)

0 I
—8(t) 0,

(3.5)

The stability of the motion of the dynamical system is
described in the N-dimensional case by the 2N x 2N
matrix

If we assume b ) 0, then under the condition that c ) 0
the solutions A are purely imaginary and the motion is
stable. For c & 0, one pair of roots becomes real, and.
this leads to an exponential separation of neighboring
trajectories. It turns out that c has the same sign as the
Gaussian curvature of the potential-energy surface.

For a system with more than two degrees of freedom,
which is often the case, it is rather complicated to calcu-
late the eigenvalues. Nevertheless, we may always start
by evaluating the curvature of the properly projected
two-dimensional equipotential surfaces. At the poten-
tial energies where the curvatures of equipotential lines
are all positive, the motion is regular. If the motion for
some time sweeps across the region where the curvature
of the equipotential line is negative, the motion at laager
periods will ultimately lead to a chaotic type.

(TI'(t)i' '),, = A, (t)b;, . (3.6)

If at least one of the eigenvalues A; is real, then the
separation of the trajectories grows exponentially, and
thus the motion is unstable. Imaginary eigenvalues cor-
respond to stable motion. In general, the eigenvalues and
therefore, the nature of the motion change with time.

To diagonalize the matrix I'(t) is equivalent to solving
the original equations of motion. Bolotin et al. assumed
that the time dependent S(t) can be eliminated by re-
placement of the time-dependent point rq (t) of the phase
space by a time-independent coordinate r. This reduces
Eqs. (3.3) to

6= ~, n = —S(r)(
in which the coordinate r is regarded as a time-

where 0 and I are zero and unit N x N matrices, respec-
tively. One can find a time-dependent transformation T
such that

B. Evaluation of the stability of the dynamical
behavior for given examples

(i) For the Hamiltonian of a hydrogen atom in a mag-
netic field, the values of c are plotted in Fig. 6 for diferent
scaled energies e = —0.8, —0.5, —0.4, —0.3, —0.2, —0.1 as
a function of p in solid lines, and the dashed lines show
equipotentia1 1ines for these corresponding r'8, respec-
tively, as functions of z and p. So the region for equipo-
teatial lines where c becomes negative is clearly found in
the figure. At e & —0.3 the negative curvature appears,
this leads to a chaotic behavior of the system, indicating
a quantitative limit for the KAM theorem about at what
amplitude the perturbance is strong enough to cause ir-
regular motion. Again the results are consistent with
the dynamical conclusion of Ref. 4. The appearance
of the negative curvature depends on its scaled energy
e = Ep ~ . For definite e, for example, for the case of
e = —0.3, the negative curvature of the equipotential line
just begins to appear. Since the energy of the hydrogen
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atom E is negative, the highly excited part of the energy
spectrum corresponds to smaller absolute value of E, so
weaker magnetic-field strength (small p) is needed to ful-
fil e = —0.3. On the contrary, for the lower excited part
of the energy spectrum, stronger field strength (bigger p)
is needed to achieve e = —0.3 in order to cause chaotic
motion. For difFerent parts of the energy spectrum, GOE
statistics demands diferent p. Comparing Figs. 2 and 6,
at e = —0.54, the curvature of the equipotential line is
always positive, so the motion is regular. At e = —0.12
the negative curvature appears in the equipotential line,
and the motion is chaotic.

(ii) For a system with II given by Eq. (2.6)

1 4V = x + —y + 2z + ky (x2 + z2),
2

(3.11)

the sign of the curvature of the equipotential lines in
Fig. 3 is evaluated as follows: b = 2(6 + k)(x + y ),
which is positive; c = 12k(2x4 + y4) + 12(6 —k2)x2y2.
At K=O, c = 72x y, c is positive. Then A

—12(x2 —y2) + gx4 + y4 is always purely imagi-

nary, and the motion is regular. At A: & 0 since the nega-
tive curvature apparently would erst appear at the point
around the line x = y, the properties of the eigenval-
ues of the potential are calculated at x = y, and some
results in the region of x & 0 and y & 0 are shown below:

k 1 2 3 4 5 6 7 8 9 10
b/x2 28 32 36 40 44 48 52 56 60 64
c/x2 96 96 72 24 —48 —144 —264 —408 —576 —768

A Im Im Im Im Re Re Re Re Re Re

6-

ilz.C i
L~

'l

'l

l
\

where Im means that A's are all imaginary and Re means
that at least one pair of A'8 is real. Thus, at k & 5 the
sign of the curvature becomes negative and chaotic mo-
tion appears. This is in accordance with the dynamical
results calculated in Ref. 6. This conclusion has no re-
strictions for any magnitude of potential V.

(iii) For the system of the helium atom, the informa-
tion about the sign of the curvature of equipotential lines
considered above is listed below as a function of energy
E in atomic units at P = 0 (P is the angle between radial
vectors of two electrons) where the negative curvature
would appear most probably:

E —5 —4 —3 —2.5 —2
b 93.83 66.9 52.7 49.8 49.6
c 420.7 324.7 267.3 214.3 201.8
A Im Im Im Im Im

.3 Since c is always positive, the eigenvalues A are all imag-
inary. As a consequence a GOE-type statistical fluctu-
ation has not been found for the helium atom. Again
notice that 6 and c are all energy dependent.

IV. CONCLUSIONS

1

I
1
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FIG. 6. The c values of the potential for a hydrogen atom
in a uniform magnetic 6eld are shown for diferent scaled en-
ergies e = —0.8, —0.5, —0.4, —0.3, —0.2, —0.1 as a function
of p, and are plotted as solid lines. The dashed lines are the
equipotential lines for corresponding e values indicated in the
plot.

By comparing the dynamical properties of a quan-
tum system with those of its analog of classically chaotic
system, it is found that within the classical limit the
quantum system manifests itself in fluctuation proper-
ties of global energy levels. The destruction of any good
quantum number is responsible for the dynamical fluc-
tuation properties. Chaotic behavior is associated with
the breaking of the dynamical symmetry of the system.
The dynamical symmetry can be divided into two parts:
One is the geometrical symmetry of a set of equipotential
lines. The appearance of the negative curvature is neces-
sary for the instability of the motion, and the chaotic
motion may start at zero curvature. To some extent
this gives a quantitative measurement demanded qualita-
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tively by the KAM theorem. The second part is demon-
strated by the way in which the geometrical equipotential
lines are distributed, which re8ects the speci6c form of
the potential. It turns out that the dynamical behavior
of the system is determined by the former geometrical
symmetry. The electron-electron residual interaction, in
addition to the central 6eld of the helium atom, is not
strong enough to change the curvature of its equipotential
lines &om positive to negative, even if the interaction is
amplified artificially to the greatest possible extent (short
of dissociation). Therefore, the energy spectrum of the
helium atom shows Poisson Buctuations. We have shown
that the equipotential lines give information about the
symmetry of the system, indicating the degree of symme-

try breaking, as well as the way in which the symmetry
is lost.
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