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The problem of internal soliton oscillations or soliton-magnon bound states occurring in the quasi-
one-dimensional antiferromagnet (CH3)4NMnCL3 (TMMC) is studied by approximated analytical
methods. Above T&, besides the well-known Goldstone mode, we found a second bound state which is
due to the coupling between in-plane and out-of-plane components of the spins when going beyond the
sine-Gordon limit. For typical experimental conditions the frequency of this second bound state is very
close to the bottom of the magnon band. Below T& using an interchain mean-field approach we also
found two bound states: the Goldstone mode and a second state which originates from the pairing of m

kinks described by a double-sine-Gordon equation. Out-of-plane effects for this mode are also included
by means of perturbation methods. In contrast to the situation above Tz the frequency of this mode can
be located in the whole gap between zero and the continuum. Both above and below T& the polarization
of these second bound-state modes has the same orientation, which differs significantly from that of usu-
al magnon modes.

I. INTRODUCTION

During the last 15 years there has been great theoreti-
cal and experimental interest in solitons in magnetic sys-
tems. ' A thermal gas of these excitations has been ob-
served in several quasi-one-dimensional magnets by
means of neutron-scattering experiments, nuclear mag-
netic resonance ' (NMR), electron spin resonance
(ESR), and in other experiments. Corresponding
theoretical models usually consider systems of weakly
coupled classical spins' and are based on the Landau-
Lifshitz equation or its approximations such as sine-
Gordon or double-sine-Gordon (DSG) equations. ' Al-
though, the sine-Gordon equation and several special
cases of the Landau-Lifshitz equation belong to com-
pletely integrable systems in the sense of the inverse
scattering method, " there exists also a class of magnetic
models leading to equations which are not completely in-
tegrable. ' The remarkable feature of these models is
the presence of non-Goldstone soliton-magnon bound
states' ' that have never been observed in completely in-
tegrable systems. These bound states can be interpreted
as internal oscillations of solitons and the frequency Q~b~
of these oscillations is in the range between zero and the
frequency of the uniform spin precession 0~k o~. The ex-
istence of such bound states can inhuence the thermo-
dynamic properties of the collective soliton-magnon
gas.

In this work we consider the problem of bound states
in the well-known soliton-bearing antiferromag net
(CH3)4NMnC13 (TMMC). This material has the remark-
able property that a soliton gas occurs both aboUe ' and
below its Neel temperature T&.' ' ' We show that
non-Goldstone bound states also exist above and below

T&, but their properties are completely different.
The paper is organized as follows. In Sec. II we intro-

duce the Hamiltonian describing TMMC above and
below T& and present the corresponding equations of
motion. Section III is devoted to the problem of the
internal oscillations of m kinks existing in TMMC above
T&, while Sec. IV presents results on internal oscillations
of 2m kinks existing below T&.

II. THE MODEI.

The quasi-one-dimensional antiferromagnet
(CH3)~NMnC13 is well described by a Hamiltonian of
weakly coupled antiferromagnetic spin chains' ' '

with

0' =g [J(~S S +)+ A(SJ ) D(S~ )—
gptt8 S gptt8 S" ],

where H-' describes the Hamiltonian of a single chain la-
beled by j=(j„jz)and the sPins S are classical vec-
tors localized at lattice sites (j&,j2, m ). For TMMC we
have the following characteristic material parameters
an antiferromagnetic intrachain exchange constant
J~~ /k~ = 13.4 K, a ferromagnetic interchain constant
J~/kit =0.9 mK, a planar anisotropy 2 /k~ =0.3 K, an
in-plane anisotropy D/k&=0. 05 K, the spin quantum
number S=—,', and the gyromagnetic ratio g=2.01. B
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denotes the external magnetic field which is applied per-
pendicular to the chain direction Z. We assume that
temperature and material parameters fulfill the condi-
tions k~T &&gp~BS && AS and J~S &&(gp+B) /(4JII).
Moreover, we have D « 3 « Jll. Above the Neel tem-
perature T~ interchain interactions are negligible, and
the system can be described by the one-dimensional (1D)
Hamiltonian (2). Below T&, it seems reasonable' ' to
describe the dynamics of the system in terms of an inter-
chain mean-field approach, ' and as a result, instead of
the three-dimensional Hamiltonian (1), we obtain the
effective one-dimensional Hamiltonian' with an inter-
chain mean field Bz

MF

H, ff =+ [JIIS S +)+ A(S ) D(S —
)

gp B S gp B S gp B

gp~B~" —( —1) S"] .

Here we assumed saturation of the interchain mean field
rB& r =6J&S/(gp~ ). Its direction depends on the

MF

amount and orientation of the external field B=(B,B )

with respect to the in-plane anisotropy D, i.e., the field
Bj is directed along the easy axis of the effective anisot-

MF

ropy. Using the standard parametrization' for odd and
even spins,

[S,m I
'=+S[sin(8 +8~ )cos(P ky ),

2m+1 j

sin(8~ k8 )sin(P +y ),
cos(8 k8 )], (4)

where 8 and P denote the mainly antiferromagnetic
order of the two spin sublattices while 8 and y de-
scribe a slight canting of the staggered spins towards the
direction of the magnetic field (r8 r, ~p ~

&&1), we get
four equations for the evolution of the angles 8,y, 0
and P . After performing the continuum limit, making
use of the relations between the material parameters, and
eliminating the small variables 8 and y, we obtain in
leading order the following coupled equations for 8(z, t)
and P(z, t):

JO
4J S

II

pBB= —6J~ cos8 cos(P —y~) — sin 8cos(P y)P—,
II

(P, )' (gIM&B )'—2A+ cos (P —y) —2D cos P
4JIIS' 4JIIS

(5)

4n gpaBJ P„— = cos(P —y)8, +D sin(2$) —2cot8 J 8,$, —
4J S 2J S 4J S

II II il

sin(P —y~)+6Jj
sin8

(geaB)' .

8JS sin(2$ —2y) . (6)

Here, the distance z along the chain is measured in lattice
constants, and the parameter y (y~) describes the angle
between the field B (B~ ) and the X axis.

MF

III. SOLITON-MAGNON BOUND STATES ABOVE TN

A. Eigenvalue problem

and is given by

sin(2P) =(B/B,ff) sin(2y),

cos(2P) =(B/B, )ffcos(2y) —8S DJII/(gp~B, ff)

Linearizing (5) and (6) around the n. kink, i.e., putting
P(z, t)=P (z)+5/(z, t) and 8(z, t)=8 +58(z, t) with

Above T& the effect of interchain interactions can be
neglected, i.e., we put J~ =0, and the exact static solution
of (5) and (6) is obtained in the form of a static unkink:.
8 =m/2,

sin[/ (z) —p] =tanh[gp+B, ffz/(2JIIS)],

which corresponds to a ~ rotation of spin vectors in the
XF plane. Here, the parameter B,ff ()0) is the value of
the "effective" magnetic field defined by

B,ff=B [16S DJIIB /(gp~) ]c—os(2y)

+64S D JII /(gP&)

while p denotes (see Fig. 1) the angle between the direc-
tion of this effective field in the XF plane and the X axis

FIG. 1. Orientation of antiferromagnetic spin chain (Z), easy
axis of anisotropy (X), and resulting effective field B,&.

Ground-state orientation of spins is perpendicular to B,ff.
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LgpBBQ
(sech/ cosh, +tanhg sink)5$

2(JiiS)

—58 f(z)—2A
(7)

15&I I581«1 and assuming for 5P and 58 a harmonic
time dependence with frequency 0, we obtain the two-
dimensional eigenvalue problem

Q(58)„+ 58
4(J,~S)'

Q
zz

4(J S)z
II

(gIJaB n}
(2 sech g —1)5$

4(JiiS)

IgPBBQ+ ( sech/ cosh. +tanhg sinb, }58,
2(JiiS)

(8)

where g= gP&—B,rrz/(2' S ), b, =y —P, and the function

f (z) reads

sech g

(gI ~B ) 2D «PaB}' . , 2D . ,+ sin(25)+ sin(2p) sech/ tanhg+ sin b, — sinzp .
4(J,S) 4(JiiS)

tgPBBQ
58(g) = cos[P (g) —y]5$(g) .

43JIIS

Inserting (10) into (8) we get

(10)

—(5$)&&(g)+ [1 [2+aco co—s(2b )]sech g+ V&(g)]5/(g)

=co (1+a sin b, )5$(g), (11)

Usually' this type of equation is decoupled by setting ei-
ther 58 or 5$ equal to zero, i.e., by considering in-plane
and out-of-plane oscillations separately. However, for
the corresponding problem of a soliton-bearing ferromag-
net' the coupling between in- and out-of-plane spin com-
ponents essentially influences the eigenvalue spectrum.
We consider the inhuence of this coupling on the oc-
currence of soliton-magnon bound states in terms of a
perturbation method and focus on the properties of low-
lying (Q&gp~B, s) weakly dispersive eigenmodes of (7)
and (8). Thus the leading order of (7) reads

=1/(1+a sin b, ), and a number of bound states with
co~b~ & 1/(1+a sin b, ).

B. Number of bound states

Since we have assumed that a «1, we get a~,'b) &&1
and in this case the Poschell-Teller potential has only one
bound state for cos(25) &0 and two bound states for
cos(26) & 0. It is easy to check that the sign of cos(2b, ) is
equal to the sign of

(gp&B) /(J~~S ) —8Dcos(2y) .

Thus the number of bound states is determined by both
the magnitude and the direction of the external field B
(Fig. 2). The single bound state existing for cos(2b, ) &0
and the lower bound state occurring for cos(2b, ) &0 cor-
respond with the G'oldstone mode of a m-kink soliton,
and their existence is related to the translational invari-
ance of (5) and (6). Their frequency and shape are given
by m~ i) =0 and by

where we introduced the reduced
co =Q/(g pzB,cr },th—e perturbation potential

V& ( g }=——aco sech/ tanhg sin( 2h ),

frequency 5$~&~(g) = 'Qgp&B, s/(J~~S—)sech/ .

C. Frequency of the second bound state

and besides the angle 6 there is only one parameter
a—= (gp+B) /(2AJ~~S ) &&1 which determines the prop-
erties of (11). First we solve (11) for V& =0 and then we
will show that the inhuence of the "potential" V& is negli-
gible. In this case the limit a —+0 corresponds to the ei-
genvalue problem appearing in the stability analysis of a
sine-Gordon equation while for nonvanishing a the re-
sulting equation is related to a modified Poschel-Teller ei-
genvalue problem which can be solved exactly. In fact,
we find a continuum of delocalized (scattering) states
5/~k~(g) with frequencies starting from co~k —p)

co ='1—2
(2)

2
(2m+1) +8—3

2K+ 2

=[1—
—,'a cos (2b, )]/(1+asin b, ),

5g~z~(g) =~X sinhg(cosh/)

(12)

(13)

In order to find the second bound state existing for
cos(2b ) & 0, it is convenient to introduce the parameter
le=a cos(26)/(1+a sin b, ). After some algebra the fre-
quency and shape of this mode can be written as
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D. Polarization

Q
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-6—20
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0
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FIG. 2. Diagram of the numbers of bound states in TMMC
above T&. When the external magnetic field B is inside the 00-
like figure there is only one bound state, the Goldstone mode.
Otherwise there are two bound states.

The second quantity characterizing the bound state
which can be probed in experiment is its polarization, i.e.,
the direction of the oscillating part of the magnetization
(5S) carried by such a mode. To calculate this value we
started from the parametrization (4) and found that the
mean values of components of magnetization for any dis-
tribution of angles 8, P, 8, and p can be written as

(S ) =S(8 cos8cosg —ysin8sing),

(S ) =S(8 cos8 sing+ @& sin8 cosP ),
&S'&= —S&asin8& .

(16b)

(16c)

In order to calculate the change of net magnetization
connected with bound states, we have linearized (16)
around the static soliton solution. After some algebra we
obtained that the mean values of all components of the
magnetization vector (5S)~» carried by the Goldstone
mode 5$~, ~

are equal to zero. This fact can be interpreted
in the following way: the Goldstone mode 5$~ & ~(z) is pro-
portional to the spatial derivative of the soliton shape

where

't/(2m+1) +8—3 acos(26)
2K+2 3

(14}

and the constant

E—= [2 ' '8(ff e) —2 '+'8(@+1 ff+1}]

Xg p~Bgff /(2J(~S)

[B(x,y) denoting the beta function] is to ensure the nor-
malizing condition for 5/~2~(g).

For estimating the influence of the perturbation V&(g)
on the spectrum of (11) one should consider the fact that
the resulting first-order corrections to the eigenvalues co(&)

and co~2~ are vanishing for symmetry reasons. On the oth-
er hand, since the perturbation term V& is proportional to
co, its off-diagonal matrix elements, which include the
ground-state function 5$~, ~(g), also disappear. Thus the
results (12) and (13) are exact up to second-order correc-
tions in V, (g).

It is interesting to note that, similarly to the case of
out-of-plane effects in the easy-plane ferromagnet, ' the
second bound state ~z emerges from the continuum
threshold co(k o). This means, however, that for typical
experimental conditions in TMMC this state occurs very
close to the broad uniform mode of spin precession
co(k o) and can hardly be detected. In fact, using the pa-
rameters for TMMC we obtain from (12) that the relative
shift of the second bound-state frequency with respect to
the bottom of the magnon band is given by

10 20 30 40 50
B (kOe)

(b)
B=P,O kOe

0
~(k =O) ~(&) l= —,', a cosz(2b, )

~(k =0)

=(0.8 X 10 )cos (2b, ) (B/kOe) (15)

angle

FIG. 3. Dependence of polarization angle o. of the bound
state on magnitude and direction of the external magnetic field
B.
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P (z), and the soliton essentially represents the propaga-
tion of the Gipping of antiferromagnetic sublattices. It
follows that spatial shift of the soliton along the spin
chain should not induce any changes of total magnetiza-
tion of the chain. On the other hand, we found that the
components of mean magnetization &5S&I&I carried by
the normalized second bound state 5/I&I read

&5SY

gpgB
cos(2P —y )J

II

gPaB
sin(2P —y )J

(17a)

(17b)

&5s & =0 (17c)

where the angles p and y have been defined above and the
constant J is given in Appendix A. Equations (17) im-

ply that the polarization of the magnetization connected
with the bound state 5/I&I(z) is confined to the XFplane,
making an angle o =2(p —y) with the direction of the
magnetic field B. The dependence of this angle on the
value of B is presented in Fig. 3.

IV. SOLITON-MAGNON BOUND STATES BELOW T~

and

g=[1+(gP~B,ff) /(24JIIJis )]

g=[6J i/JII+ ,'(gpsB, ff—) /(JIIS) ]'~ z .

Below the Neel temperature TN neighboring spin
chains become correlated and the interchain mean field
B~ has a nonzero value. The direction of this field is

MF

defined by the value of the angle yi appearing in (5) and
(6) and should be perpendicular to the effective field B,ff
resulting from the competition between the external mag-
netic field B and the in-plane anisotropy D. This way we
get the relation yi= p+m /2. A static solution of (5) and
(6) can be written in the form of a static 2n. kink which is
the solution of a double-sine-Gordon equation. ' This 2m.

kink has the shape of a pair of coupled ~ kinks:
Oi„(g) =m/2,

sin[/&„(g) —P]=1—2/(1+g sinh g),
where

Linearizing (5) and (6) around this solution in a similar way as for deriving (10) and (11),we obtain

ig p~BQ
50(g)= z cos[Pz (g) y)] 5—$(g),

4A JIIS

sinh g
—cosh R hz sinh g —cosh R—5 ++ sech R z z +tanh R 2

sinh /+cosh R sinh /+cosh R

(18a)

—1 5$(g) =co [1+aV~(g)]5/(g), (18b)

solution ((tz (g). The second bound state corresponds to
an internal oscillation of the 2m kink, where the center of
mass of the 2m kink does not move but the distance be-
tween the centers of both ~ kinks oscillates in time. The
corresponding frequency ranges from zero up to the
lower edge of the spin-wave continuum. The first limit
corresponds to the situation where the interchain mean
field disappears and the gas of 2~ kinks dissociates into a
gas of ~ kinks at the ordering temperature TN. "-16The
approximate expression for the shape of such a bound
state, which is valid for intermediate and large distances
(R ~ 1) between the centers of m-kink pairs, can be writ-
ten using results of Ref. 21 as

where the reduced frequency is given by

co= 0[ gP~B,ff) —+24JIIJiS ]

2
coshR sinhg

cosh R+sinh g
Vz(g) —=sin b, +4cos(2b, )

coshR sinhg'(cosh R —sinh g)—2sin 25
(cosh R+sinh g)

the parameter R defined by sinhR =gpsB, ff/—
(2S+6JIIJi ) denotes half the distance between the
centers of both m kinks forming the 2m. kink Pz (g), and
the perturbation potential Vz(g) reads

For a=0 the eigenvalue problem (18b) is equivalent to
the scattering problem between phonons and a 2m. DSG
kink, which has been considered in several papers. ' It
was shown that the spectrum consists of a continuum of
scattering states and two bound states. The first one
again has zero frequency and corresponds to the transla-
tional Goldstone mode of the system. As above TN its
shape is given by the spatial derivative of the 2~-kink

sech(g —R ) —sech(g+R )

2[1—R csch(2R)]'~

X [6Ji/JII+ 4(gP~B,ff) /(JIIS) ]' (20)

The infiuence of the potential Vz(g) can be taken into ac-
count by means of a perturbation method. The resulting
perturbed frequency co~2~ reads in the first-order approxi-
mation
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3sinh R —[sinh(2R)+2R ]cosh R /[sinh(2R) —2R ]
1+a[cos(26)g(R)+sin b, ]

(21)

where the nominator of the above expression corresponds
to the square of the unperturbed bound-state frequency of
the DSG model ' while the function g(R) is defined in
Appendix 8 and takes its maximal value —, in the limit
R —+ ~. The frequency of long-wave magnons, on the
other hand, can be written in a similar way as in the
paramagnetic phase, i.e., co(k ())=1/(1+a sin 6). Below
we present plots of the bound-state frequency (in physical
units)

+(2) @(2)[(gwB~eff)'+24J))Ji~']
and of the corresponding frequency of the long-wave
magnons Q&k 0] as functions of the strength and direc-

tion of the magnetic field 8 (Fig. 4). One can easily see
that, in contrast to the behavior of 0[k 0&, the bound-
state frequency 0[2] is nearly independent of B. The
reason for this fact is a balance of two competing effects
arising from the increase of 8: (i) the increase of the Lar-
mor frequency which is proportional to 8; (ii) the soften-
ing of the bound-state frequency due to the increasing of
the distance R between m. kinks in a soliton pair. The
third effect, the frequency softening due to out-of-plane
effects (21), plays only a minor role.

As above T& the bound state (20) carries a nonzero
value of uniform magnetization (5S). Calculations were
performed in a similar way as for deriving (17). The final
results differ from (17) just by a constant J2 which is
defined in Appendix A, while the angle o. describing the
direction of this magnetization is the same as above T&.

10
V. CONCLUSIONS

2
0

I I I I I I I I I

10 20 30 40 50
B (koe)

(b)

I

M
4

CO

b=2

Hb 2

I

7T 2
angle y

FIG. 4. Dependence of the frequency of long-wave magnons
and of the second bound state below T& (a) on the magnitude of
the external magnetic field B for the orientation y =~/2 and (b)
on the orientation of B for 8=20 kOe (solid line) and B=40
kOe (dashed line).

%e have discussed the properties of i~ternal oscilla-
tions of kink solitons occurring in the quasi-one-
dimensional antiferromagnet TMMC. These oscillations
can be interpreted as non-Goldstone soliton-magnon
bound states. Although these states can exist above and
below the three-dimensional ordering temperature T&
their origins and properties are different. Above T& it is
the effect of coupling between in-plane and out-of-plane
spin components which causes the appearance of the (m.-

kink-)magnon bound state. Such a state can exist if the
magnitude of the external magnetic field B exceeds some
critical value which depends on the orientation of the B
with respect to the easy axis. One can interpret this state
as emerging from the bottom of a band of extended mag-
non states, and for typical experimental conditions its fre-
quency is very close to the bottom of this band.

Below T& the existence of the (2~-kink-)magnon bound
state results from the interaction between the m. kinks
forming the 2m soliton. En fact, it has been shown for the
double-sine-Gordon equation ' that in the limit when the
distance R between the centers of m. kinks tends to
infinity and their interaction is negligible, the correspond-
ing bound state reduces to an additional Goldstone mode.
In contrast to the situation above T& the frequency of
this mode is not close to the bottom of the spin-wave
band for typical experimental conditions and is nearly in-
dependent of the magnitude and direction of the external
magnetic field B.

Both bound states considered carry some nonzero net
magnetization which can be probed in standard ESR ex-
periments. The polarization of this magnetization de-
pends on the direction and magnitude of the external
magnetic field B and is the same for both of these states
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but differs significantly from that of the usual spin-wave
modes (especially the uniform ESR modes). Thus, apart
from different resonance frequencies, the polarization of
the experimentally excitable resonances represents a sig-
nature for those types of modes. Taking into account the
high frequency resolution and sensitivity of electron spin
resonance, which recommends this as an appropriate tool
for probing such bound states, we hope to stimulate fu-
ture experiments confirming these theoretical findings.
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APPENDIX A

The constant appearing in (17) is given by the integral

J = f sin[/ (z)—P]cos[P (z)—P]5$(z~(z)dz = ' V'&
00 g@~Be~ 2 ' 2

3+a 3+g
2 '

2

~here we used an explicit form of the solution (13) for the eigenfunction 5pz(z) and the constant g is given below Eq.
(14) Similarly, below T& the polarization amplitude is determined by the constant

J2 =— "sin
2 z — cos 2 z —

(2) z

—2(~ 2sinh(2R )

[1—R csch(2R)]'i
24J~ (gp~B,(t)+ , 6+p '—12p +4p

&4p+ 1
ln p Qp+ —„'+1+

2p

where p=6Jt J~(~S (gpttB, tt) and the expression (20) was used for 5/2(z).

The function g (R) appearing in (21) is defined by

g (R ) = f + "[5y(,)(g) ]'cos'[y,.( g) —P]d g,

APPENDIX 8

where the eigenfunction 5$(2~(g') is given by (20). The explicit form of g (R) is

g(R) = 8 1+ 1

4p
3 4p + 4p (3+ 10p)ln[ [ 1 +2p+( 1 +4p) ]/'2p]

3 1+4p (1+4p)»~
R

sinh(2R )
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