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The diffusion of positive muons was studied in the normal and superconducting states of aluminum.
Large differences were observed, indicating that the difFusion mechanism depends sensitively on the in-

teraction between the muon and the conduction electrons. The samples were high-purity aluminum

doped with controlled amounts of lithium. The lithium impurities act as traps for the muons, leading to
a loss of muon polarization. However, the time and temperature dependencies of the muon depolariza-
tion function 6 (t) could not be satisfactorily explained using a simple diffusion limited trapping model.
In particular, in the superconducting state the measured G(t) requires a more complex model for a
reasonable fit. These data can be described, in a first approximation, with two fractions, one correspond-
ing to muons stopped in the defect potential created by the doping element and the other representing
muons which diffuse freely without being trapped. In this model, which supports a microscopic theory
by Kagan and Prokof'ev taking into account static as well as dynamic effects on the tunneling of positive
particles in a conducting medium, a large fraction of the muons is practically immobile below 0.3 K in
doped samples. The data can also be fitted by assuming that the spatial distribution of doping elements
leads to a distribution in trapping times and that the fraction of diffusing muons is described by a so-
called stretched exponential time dependence. The relative merits of these two types of interpretation
are discussed.

I. INTRODUCTION

The study of diffusion of light particles in metallic ma-
trices has been the subject of numerous studies involving
a number of experimental techniques during the last
three decades. Proton diffusion has been studied using,
primarily, NMR and inelastic neutron scattering and
these studies have been complemented with muon
diffusion studies using the muon spin-rotation (@SR)
technique. In parallel with the experimental progress, a
development of theoretical models has taken place. In
most processes the proton motion is thermally activated
and can be described in terms of an activation energy and
an attempt frequency. Due to the lower mass of the
muon (about 1/9 of the proton mass) its motion is more
susceptible to quantum phenomena. The diffusion of
muons in metals at low temperatures can therefore, under
certain conditions, be dominated by quantum-mechanical
tunneling. Furthermore, since the lattice can be
represented as a bath of phonons and electrons with
which the particle interacts, such diffusion can be regard-
ed as an example of quantum-mechanical phenomena in

dissipative systems. ' For the interaction with the elec-
tron bath, the presence of a Fermi surface and the close
connection with the orthogonality catastrophe is of par-
ticular interest. Earlier experimental results on muon
diffusion in copper and in aluminum have demonstrated
that below a certain temperature T* (typically a small
fraction of the Debye temperature), the muon diffusion
rate increases with decreasing temperature according to a
power law ( T ) where a is about 0.6.

This behavior is consistent with theories developed in-
dependently by Kondo and Yamada for a simple metal
for which the power a is expected to lie between zero and
one depending on the strength of the muon-electron cou-
pling. In a metal the muon charge is screened through a
conduction-electron redistribution. The diffusion process
depends on to which extent the screening electrons can
follow the motion of the muon and this is governed by
the muon-electron interaction strength K. If the muon
moves predominantly by tunneling, its motion is
influenced by a "friction" with energy being dissipated to
the electron bath.

Kondo and Yamada considered the quantum
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where a is the distance between octahedral sites and I is
the gamma function. The temperature dependence D ( T)
for a normal metal originates from a T factor coming
from the squared matrix element and a T ' factor from
the electrons available for scattering, i.e., totally T
Therefore, the empirical parameter u corresponds to
2E —1. Another effect of the muon-electron interaction
is that, in normal metals, the coherence time is so strong-
ly restricted by inelastic collisions with the conduction
electrons that the coherence is lost after each tunneling
transition.

For the superconducting state one should replace the
width I with the expression '

I,= [4nKk~ T j [1+exp(b,, /kz T) j

where 6, is the superconducting energy gap. The elec-
tron density at the Fermi surface is then drastically re-
duced due to the formation of the energy gap 6, below
T, . The T ' term in the Kondo-Yamada theory has to
be multiplied by, in a first approximation,
exp( —6, /kz T). A strong infiuence on the diffusion rate
is expected when the gap develops.

The first investigation testing this aspect of the theory
was performed on Al, ' which is one of the systems most
thoroughly studied by the pSR technique and which is
known to undergo a superconducting transition at 1.2 K.
In pure Al, the muon spin depolarization is negligible due
to the very rapid diffusion which motionally averages the

Al nuclear dipole fields. Since all information about
mobility from pSR measurements is derived from depo-
larization rates, it is necessary to work with a certain
number of impurity atoms that trap muons to make stud-
ies of muon mobility in Al possible. For the first test a

diffusion of a "heavy" positively charged particle in a
metal taking into account the interaction with the con-
duction electrons. Within the framework of the small po-
laron theory they found strong renormalization of the
tunneling matrix element J (which already contains the
renormalization with respect to local elastic distortions of
the lattice), for the transition between neighboring
equivalent sites

J,tt= J(ok~ T. /s~ )

where ~F is the Fermi energy. In later work by Kagan
and Prokof'ev (see below) it was shown that Ez should be
replaced by the energy ficoo corresponding to the muon
zero-point vibration energy (of the order of 0.1 eV). The
values of K and coo depend on the metal under investiga-
tion.

Electron scattering in a normal metal gives rise to a
dynamical energy width I =2mKkz T for the muon levels
since the number of electron states at the Fermi surface
available for scattering is proportional to T. With
&z J,tt ( I (z is the coordination number; z = 12 for
muons in an octahedral site in a fcc lattice) the quantum
diffusion coefficient has the form

sample with a Li concentration of 75 ppm was chosen
and a marked difference in the diffusion rates of muons in
aluminum in the normal and superconducting states was
reported' providing direct evidence of the important role
of the conduction electrons. There was, however,
insufficient data to make a quantitative comparison with
theory. These measurements were later extended to com-
plete the temperature scan as reported in Ref. 11. In the
present paper we report on a more detailed study of the
muon depolarization rate in lithium-doped aluminum in
the normal and superconducting state.

II. EXPERIMENTS AND DATA REDUCTION

The present experiments were performed on the M15
beam line at TRIUMF which provides a beam of nearly
100% spin-polarized positive muons of momentum 28.6
MeV/c. Muons were stopped in a high-purity (6N) poly-
crystalline aluminum sample and also in the same materi-
al doped with nominally 75 at. ppm of Li, later analyzed
to 76 (4) ppm, as well as two samples with lower Li con-
centration: nominally 10 and 20 ppm and with analyzed
composition of 8.3 and 17.5 ppm, respectively. The 75
ppm sample was cut from the larger sample used in Ref.
10 and details of the sample preparation can be found in
Ref. 12. The samples, which measured 14X22X5 mm,
were bolted to the cold finger of a top loading Oxford In-
struments He- He dilution refrigerator. The @SR spec-
tra in the normal state were taken with an external field
of 13 mT (10 and 20 ppm) or 20 mT (75 ppm), applied
transverse to the initial polarization direction. The criti-
cal field at T =0 K is H, = 10 mT so that a 13 mT field is
sufhcient to quench the superconductivity. Measure-
ments in the superconducting state were made in zero ap-
plied field (the stray field at the sample position was less
than 0.01 mT). Any residual stray field is automatically
excluded in a type-I superconductor due to the
Meissner-Ochsenfeld effect. Application of a weak trans-
verse magnetic field of 5 mT (well below H, ) revealed a
precession of low amplitude attributed to 15% of the
muons stopping outside the sample. The data were fitted
with this background contribution included but in the
displayed spectra the background contribution has been
subtracted out.

III. DATA ANALYSIS BASED ON TRAPPING MODELS

The time differential pSR spectrum measures
2 (t)= AG&&(t), where A is an experimental asymmetry
parameter determined by the properties of muon decay
and detector geometry, and G&&(t) is a relaxation func-
tion. In order to compare the temperature dependence of
the pSR spectra in zero (P=z) and transverse fields
(P=x) the data were, initially, fitted within the restricted
time range (0—5 ps) with a common relaxation function
G&p(t) =exp[ (At )r], where y is a free pa—rameter with a
value close to 2 in the zero-field data at the lowest tem-
peratures. The depolarization rate parameter A may be
interpreted, in a frequency representation, as a linewidth
and is related to the trapping rate and the diffusion con-
stant. In an undistorted lattice, like in very pure Al, the
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linewidth is proportional to o. v., if co~, &&1, where z, is
the correlation time (of the order of the muon life time)
and cr is the static dipolar broadening. For a complete
evaluation of the time spectra, however, a more elaborate
model has to be used (see below).

In the normal state, A shows a slow monotonic in-
crease with decreasing temperature as reported previous-
ly. ' This is shown in Fig. 1 for the 75 ppm sample. The
temperature dependence of A in the superconducting
state is clearly different. In particular, a steep increase in
A is observed below 0.5 K and the damping rate saturates
at about 0.35 ps ' for temperatures below 0.2 K. (This
value should be divided by v'2 in order to make a com-
parison with the transverse field data. )

The trapping model used for the first analysis of the
muon spin depolarization rates is the same as the one
used for muon diffusion in impurity doped aluminum in
the normal conducting state and it should be noted that,
because of the trapping, an increased diffusion rate leads
to a larger depolarization, which is contrary to conven-
tional motional narrowing observations. In this model,
the muons stop at random sites in the lattice and then
start to diffuse with a diffusion coefBcient D„. After a
certain time t, a fraction of the muons is within a radius
r, (the trapping radius), of a lithium impurity where it is

trapped and depolarizes. The remaining fraction, P(t),
still diffuses. According to Waite, '

P(t)=expI v, t[1 2r, (~—D„t—) ]I, (4)

0.4

where v, =4m.cr,D„ is the trapping as t~ oo, and c is the
impurity concentration. The muon spin-relaxation func-
tion is then given by'

Gt3t3(t) =P(t) f (dP/dr)gtrti—(t r)dr, — (5)

where P=x if an external magnetic field is applied per-
pendicular to the initial polarization direction (transverse
field geometry), in which case g „(t) is a Gaussian func-
tion. This is because there is a Gaussian distribution of

randomly oriented nuclear dipolar fields at the trap site.
With observation along the initial polarization direction,
P=z and zero applied field, the relaxation function takes
a different form and a full recovery to one third of the ini-
tial value is expected at long times. '" Figure 2 shows ex-
amples of both zero- and transverse-field pSR time spec-
tra at 0.2 and 0.5 K and the fits obtained using the trap-
ping model.

The diffusion limited trapping model allows a good fit
of the depolarization data for the normal conducting
state as demonstrated earlier for the 75 ppm sample. "
The present study shows that the model also works well
at lower concentrations in the normal state. For the su-
perconducting state, however, the evaluation of the data,
based on this model, leads to relatively poor fits (in par-
ticular in the range 0.2-0.5 K, as demonstrated in Fig.
2). Also one notices immediately from Fig. 1 that the
steep increase in A in the superconducting state occurs
around 0.3 K instead of just below T, =1.2 K, which
would be expected from the Kondo-Yamada theory ac-
cording to Eqs. (2) and (3).

Even if the model can explain the 75 ppm data reason-
ably well in at least part of the temperature range the
discrepancies are very pronounced for the lower Li con-
centrations. The @SR spectra measured at 0.10 K in the
superconducting state for the different Li concentrations
are presented in Fig. 3 in which the shape A (t) suggests
one fraction a, of rnuons with the characteristic shape for
immobile muons, superimposed on a Hat background
with amplitude af„, corresponding to fast moving muons.
Figure 3 also shows how the data can be fitted with such
a two-component model, and how the trapped fraction a,
depends on the doping concentration c. A physical basis
exists for such a decomposition into a trapped and a free-
ly diffusing fraction (the Kagan-Prokof'ev theory, 's

see Sec. IVA below). This leads to the trapping rates
displayed in Fig. 4. In an earlier publicati. on by Ka-
dono' it was shown that the same experimental A (t)
data can also be fitted with a one-component trapping
model in which there is a random distribution of trapping
energies. The two approaches to interpret the data will
be compared in Sec. IV.
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FIG. 1. The linewidth (depolarization rate) A for the 75 ppm
sample as a function of temperature in the normal state (filled
symbols) and in the superconducting state (open symbols).
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As already noted above, the temperature dependence
of A in Fig. 1 shows a large discrepancy when compared
to the Kondo-Yamada theory for a perfect crystal; the
steep increase in A in Fig. 1 does not occur at T, but at a
much reduced temperature. Even more abrupt changes
are observed for the low-doped samples around 0.3 K for
the depolarization of the fraction a„when a two-
component separation is done in the fit. Such sharp tran-
sitions are indeed expected in the Kagan-Prokof'ev
theory.

A. The Kagan-Prokof'ev theory
FIG. 3. Decomposition of the measured zero-field time spec-

tra at 0.10 K into a depolarizing and nondepolarizing fraction
for Li concentrations of (a) 75 ppm, (b) 20 ppm, and (c) 10 ppm.
(d) The same information for high-purity aluminum ( & 6N) at
0.07 K. The nondepolarizing fractions are & 5, -50, -75, and
—100 %, respectively.

Kagan and Prokof'ev' developed a detailed theory of
the tunneling diffusion in a metal taking into account also
the effect of a distribution of energy levels due to crystal
defects. They showed first, as mentioned in the Introduc-
tion, that the nonadiabatic interaction between the muon
and the electrons is restricted to the energy interval
Acoo « E+ near the Fermi surface.

Below the superconducting transition the tunneling
matrix element J,z should then be replaced by'

J,rr
=J(b., /2A'coo)

0.1
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0.01 0.1

Temperature [tq

Secondly, the quantities I and I, in Eqs. (2) and (3) are
modified due the presence of the static distribution over
the energy levels which is measured by the parameter g.
For the superconducting state when (g, l, ),„)h„b,,
being the coherent bandwidth in the pure crystal, I, has
to be replaced by (I,+g )/I, .

The local diffusion coefficient is then expected to have
the temperature dependence

J,trl, ( T)
D(T) =

g +I,(T)
(7)

for g& k~T.
As the temperature decreases below T, one easily

meets the condition I, «g', in regions close to impuri-
ties, which leads to the limit

0,1
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0.01 0.1

Temperature [Ki

In these regions, the local diffusion coefficient decreases
exponentially with increasing T [see Eq. (3)]. It should be
pointed out that the temperature dependence of D given
by Eq. (7) is quite difFerent from the one in Eqs. (2) and
(3), in particular in the superconducting state where I,
becomes small. Further reduction of the temperature
leads to the fulfilment of the condition I, «g over large
regions around the impurities and a strong restriction of
the muon mobility in most of the sample volume.

FIG. 4. The trapping rate as a function of temperature for
Al-doped with Li concentrations of 10 (upper) and 20 (lower)
ppm. For the superconducting state the rate displayed corre-
sponds to the trapping fraction. (Same notation as in Fig. 1).
The absolute values of the trapping rates depend sensitively on
the choice of relative fractions.

B. Analysis of the experimental data
in terms of the Eagan-Prokof'ev theory

The existence of an energy-level distribution in a doped
sample is thus of crucial importance for the muon depo-
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larization in the superconducting state. Two important
consequences are

(1) One would expect to observe two fractions of
muons that differ in their depolarization behavior. The
first fraction corresponds to muons thermalizing inside a
region of radius rz around each defect in which the ener-

gy shift is larger than the coherent band width of the
muon b, With T/T, «1 the muons in this first region
are localized [Eq. (2) is valid for r &rz only]. For the
second fraction, corresponding to rnuons therrnalizing in
the rest of the crystal, one expects a band motion to de-
velop since, with the superconducting gap present, there
would be no inelastic muon-electron collisions that could
lead to loss of coherence. Once a band motion has
developed, the transition probability into the region of lo-
calization must involve inelastic processes due to thermal
electron excitations and this probability is, for these tern-
peratures, small. Thus, the muons initially stopped in the
first region are expected to be static and will depolarize,
while the polarization of the other rnuons is essentially
preserved when T~O since a bandlike motion does not
lead to depolarization. As has been noted already, the
G„(t) data in Fig. 3 for the low-doped samples are com-
patible with a "static muon" fraction superimposed on a
constant background.

(2) At the trapping radius r„w ehre the dopant induced
interaction energy g' is of order kz T and g & I „we ex-
pect, according to Eqs. (2) and (3), an increase in the
diffusion rate as the temperature is lowered from T, .
This leads to increased trapping and, consequently, an in-
crease in the depolarization rate according to Eq. (5). At
slightly lower temperatures the diffusion coefficient at the
trapping radius takes the form of Eq. (8) and the trapping
rate decreases (exponentially) with decreasing T. There is
an indication of a weak maximum in the depolarization
rate at T,„=O.8 T, in the low-doped material which can
be explained by this interplay between inhomogeneous
and thermal broadening of the energy levels for the initial
and final states.

(3) At still lower temperatures, the radius around the
defect within which rnuons show static depolarization in-
creases rapidly when lowering the temperature. This is
due to the exponential dependence of l, (T) (which
should be compared to the actual g at this radius). A lo-
calization radius r&„can be defined as the radius at which
the jump rate v., is equal to the full depolarization rate
o (i.e., or, =1). Muons stopping inside this radius are
practically immobile. With realistic assumptions of the r
dependence of g and the band width b,, it is possible to
calculate r&„and therefore the expected temperature for
complete localization in the defect region. As will be
shown below an almost complete localization (and static
behavior of the muons inside rz ) is expected below 0.2 K
for all Li concentrations. Between this temperature
range where "direct localization" occurs and T,„ there
will be a minimum in the depolarization rate A( T) as the
localization radius r&„coincides with the trapping radius
r, .

An estimate of the extent to which inhomogeneities
due to imperfections will affect the rnuons can be made

by considering the mean distance l;; between impurities
at a specific impurity concentration c (in ppm). With lat-
tice constant a one obtains

l'" =40acII

~EE(l;;/2)~ =1.3c peV . (10)

An estimate of h, =4 peV for the muon coherent band-
width in superconducting aluminum can be obtained.
from the results of Ref. 5. Comparing the asymmetry ac-
cording to Eq. (10) with the bandwidth zh, =50 peV one
finds that the asymmetry term exceeds the bandwidth at
c=40 ppm which leads to Anderson localization, in
reasonable agreement with the experimental observation.
Also at lower Li concentrations there is a large region
around a defect where g & I'( T, ) and, in particular, where
g& l, (T) in the superconducting state so that the muon
is effectively trapped.

This is also the concentration range where the un-
damped fraction in the experimental data starts to disap-
pear. The actual depolarization functions G„(t) expected
from the Kagan-Prokof'ev theory can be obtained
through Monte Carlo type simulations. These simula-
tions, although too time consuming to be used in fitting
procedures, seem to be able to reproduce the experimen-
tal depolarization curves using only two parameters [5,
and g(r =a)] which in the present case take on the values
b,,= =4 peV, g(a)=40 meV. The basic features of all
the depolarization curves G„(t,T, c) are thus reproduced
using only two parameters in the Kagan-Prokof'ev
theory.

In a previous paper by some of the present authors the
diffusion of positive muons in normal-conducting Al,
doped with several different impurities, was analyzed in
great detail. Trapping radii and sites, the effective small-
polaron matrix elements J,z for the tunneling of the
muons in the unperturbed Al regions, and elastic strain
tensors around the impurities were also calculated. The
trapping radius for Li, a weak trap, was derived to be
1.1(1) a (a is the lattice parameter) for the low Ttrapp-ing
process. The trapping radii data were normalized to that
of an octahedral site at a Ag trap (radius 0.5a), since Ag
showed the weakest trapping of the dopants investigated.
A typical energy variation due to elastic strain over the
first few lattice distances around a Li atom is 0.5 meV
(see Fig. 8 of Ref. 5).

Differences in potential energies for neighboring muon
sites are also caused by the oscillations in electron density
around each impurity. This is, actually, a larger effect
proportional to the Friedel-Kohn oscillation amplitude
VK„. At the muon-impurity distance I;;/2, where
should have a minimum, the difference between the single
impurity Friedel-Kohn potential at adjacent muon posi-
tions can be determined if the corresponding amplitude
VK„ is known. Electron structure calculations by Maha-

jan and Prakash' arrive at VKF =30 meV which gives,
using the r dependence of the distortion potential,
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C. Alternative interpretations of the data

A(t)

0.20

0.10
~~a ah*lb~~~QQ~~ T T ) $ p

0.00
10

A(t)

0.20

0.10

0.00
T=0.50 K

time [)is]

FIG. 5. Time spectrum of the 20 ppm sample at 0.10 K and
the 75 ppm sample at 0.50 K fitted with a single fraction using
the modified trapping model. The parameter P is 0.3, respec-
tively, 0.5.

A feature that distinguishes the above interpretation of
the depolarization data from earlier ones is that below 0.3
K a large fraction of the muons are immobi1e from the
moment they are stopped after implantation, i.e., the
trapping model as expressed by Eq. (4) is not applicable
to this fraction. Above 0.3 K some of the muons can be
released and go through a normal trapping process.

It should be remarked that a11 experimental data
presented can actually also be fitted by a trapping model
based on Eq. (5) if the fraction of difFusing muons P(t) is
not taken from Eq. (4), but instead takes on the stretched
exponential form P(t)=exp[ —(vot)~)]. Such functions
have earlier been applied to random systems, like H
difFusion in amorphous silicon. ' The physical back-
ground is an assumption about a distribution of energy
levels between which the particles (or spins) can relax.
The fitting parameter P (one usually finds values 0 &P & 1,
where P=1 corresponds to the simple trapping model)
wi11 be temperature dependent and further analysis of
P( T) can give information on the width of the distribu-
tion of the site energies: the theory predicts, for instance,
for random systems that P should increase linearly with
temperature P=T/To where kiiTO is a measure of the
width of the distribution in question.

Fits to the polarization decays for the 20 ppm as well
as those for 7S ppm I.i sample are shown in Fig. 5, leav-
ing both parameters P and vo free. For 75 ppm doping,
where the largest energy spread is anticipated, the ex-
tracted P actually turns out to be a linear function of tem-
perature for T & 0.3 K corresponding to an energy spread
kz To =0. 1 meV. The same procedure for the 20-ppm-
doped sample results in an average spread of 0.04 meV,
both functions having a saturation value of P=0.4 below

about 0.3 K (see Fig. 6 in Ref. 18). In this model, the
trapping rate v has a distribution f (v), e.g., for P= T'

given by f (v) = —,
' vo(v/~vo)' exp( —vo/4v), having

greater spectral density at smaller v for smaller P. ~

Thus, the saturation would be due to the limiting contri-
bution from a nontrapping muon (v-0) which is in a
tunneling state (i.e., corresponding to the region g& b,, ).
For temperatures above 0.4 K for the 10 and 20 ppm
samples, a simultaneous fit of vo and P in the stretched
exponential model was not meaningful since the two pa-
rameters are closely correlated.

It should be noted that particle diffusion and trapping
in the oscillating Kohn-Friedel potential created by ran-
domly distributed impurities (especially at large distances
from defects) indeed resembles the situation with a wide
distribution of trapping energies and trapping rates. This
might explain why the formal description of the G„(t)
shapes based on the temperature-dependent parameters
vo and /3 above, and the G„(t)'s obtained in the Monte-
Carlo simulations based on the Kagan-Prokof'ev model,
both are in reasonable quantitative agreement with the
data.

V. DISCUSSION

The experimental results reported here have revealed
several new aspects of the effect of superconductivity on a
diffusing particle. Furthermore, it has been clearly recog-
nized that it is important to distinguish between quantum
tunneling in a perfect crystal (as discussed in the Kondo-
Yamada theory) and in a crystal with static disorder lim-
iting the tunneling. A delicate interplay between static
energy distribution effects and temperature-dependent
effects in the particle-bath interaction has been demon-
strated. For a fully quantitative comparison it is neces-
sary to model a three-dimensional distribution with ran-
domly placed impurities. The probability for the oc-
currence of the condition o.~, + 1 can then be determined
over the whole sample as a function of temperature. This
is a rather straightforward procedure but requires consid-
erable computing time.

The variation of the muon depolarization with doping
concentration has also shed new light on the conditions
for delocalization of a particle in disordered structures in
general. For those experiments that were made in the su-
perconducting state there is a strong indication that there
is a fraction of muons a&„, developing true delocalization,
i.e., a coherent, extended wave function.

For the normal-conducting state it was pointed out by
Kagan and ProkoPev' and by Kondo, and later dis-
cussed in detail by Hedegkrd, that the time between in-
elastic collisions with conduction electrons (destroying
coherence) r„h, is always shorter than the "residence
time" =tii/J, a between two consecutive tunneling events,
except possibly at very low temperatures. The process is
then always of hopping type. For the superconductor it
is not necessarily so since the coherence time gets longer
when the probability for inelastic scattering against elec-
trons is decreased due to the gap. In the low-temperature
region studied here, where the phonon creation probabili-
ty is negligible over the time range considered, most
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scattering processes for the muon are likely to be elastic
and thus preserving coherency. Therefore, extended
muon states, limited only by the disorder in the local en-
vironment, could develop. Such states can exist in re-
gions far from impurity centers, which can be considered
as an analog of the "weak localization" of electrons in
certain disordered materials with low conductivity.
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