
PHYSICAL REVIEW 8 VOLUME 52, NUMBER 9 1 SEPTEMBER 1995-I

Ergodic-nonergodic glass transition and enthalp3t relaxation of a supercooled liquid
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The nonstationary enthalpy relaxation associated with the ergodicity-breaking glass transition as well
as the dynamic specific heat, which characterizes the dynamics of the system in equilibrium, were inves-
tigated for a supercooled liquid [Ca(NO3)2]04(KNO, )06. Dynamic specific-heat data show that serial
decoupling of various relaxing modes does not occur in the glass transition region. It is demonstrated
that the nonstationary enthalpy relaxation in the ergodic-nonergodic glass transition is accountable in
terms of the equilibrium relaxation function if the latter is properly extended.

In recent years particular interest has been focused on
the nature of the glass transition from a liquid to an
amorphous solid. ' Although liquids under equilibrium
conditions are considered as disordered arrangements,
lacking a long-range order, of molecules, they still possess
structures in the short range. However, these orders are
not of static nature and consequently they appear as
structural Quctuations. When the temperature of a liquid,
for example, is changed, the structure of a liquid changes
according to the new equilibrium condition. While this
structural relaxation occurs on a microscopic time scale
in ordinary situations, slow relaxation manifests itself
when a liquid is sufficiently cooled below the freezing
temperature. Then the glass transition can be considered
as a phenomenon of the relaxation time becoming longer,
as the temperature is lowered at a certain rate, than the
experimental time scale set by the cooling rate. The glass
transition, therefore, describes the process in which a sys-
tem falls out of equilibrium; the transition is from an er-
godic state to a nonergodic one.

Since this ergodicity breaking occurs due to the elonga-
tion of the time scale of the underlying dynamics, the
glass transition phenomenon offers an opportunity to
study the relationship between the fluctuations of an ob-
servable, enthalpy for instance, in equilibrium and its re-
laxation under the nonequilibrium condition (falling out
of or recovering equilibrium). Since statistical mechanics
rests on the ergodic principle, this constitutes a problem
of fundamental interest.

In this letter, we report our investigation on this prob-
lem. Specifically, we measured the equilibrium isobaric
dynainic specific heat C (co) of supercooled
[Ca(NO3)2]p 4(KNOs)p s (CKN) as a function of tempera-
ture and frequency, and also obtained the enthalpy relax-
ation data of the glass transition at constant cooling and
hearing rates using a differentia1 scanning calorimeter
(DSC). We will show that the nonstationary, instead of
nonlinear, enthalpy relaxation of CKN in the process of
ergodicity breaking or restoring can be accounted for if
the equilibrium response function is properly modified.
CKN is a binary mixture which becomes an ionic liquid
when melted. Since potassium and calcium ions have

spherical charge distributions and nitrate ions are of tri-
gon shape, CKN represents one of simple systems which
can stay undercooled for days without crystallization.
This good glass-forming ability was essential for time-
consuming dynamic specific-heat measurements. The
sample preparation was done in the usual way.

We first set up the theoretical framework within which
the above two types of measurements can be described.
The general equation for the response e(t) of a system to
an external perturbation o (t) can be written as

e(t)= f Ki(t, t')a(t')dt'

+ f f K,(t, t', t")o(t')cr(t")dt'dt"

+ 0 ~ ~

Here e is any strain quantity, o. is an externally applied
stress quantity, and E& and K2 represent the response
functions. Equation (1) was derived under only two as-
sumptions, causality and analyticity, and therefore is ap-
plicable to a variety of linear and nonlinear situations.
From the statistical-mechanical point of view, all the
equilibrium or near-equilibrium properties of the system
are described as a function of &o/kti T, where &o, kti,
and T are the Hamiltonian of the system, the Boltzmann
constant, and the temperature, respectively. For the tem-
perature variation 5T, the perturbing term in the Hamil-
tonian can be obtained from

&o/k~(T+5T) =&o(1 5T/T)/ktt T —.
Thus, the external perturbing Geld o. in our case is
represented by 5T/T which couples to the Hamiltonian
of the system. For the glass temperature of a few hundred
degrees, 5T/Tis small and thus only the first term in Eq.
(1) is necessary not only for the dynamic specific-heat
measurements where we keep 5T intentiona11y small but
also for the rate-scanning experiments where the constant
cooling or heating can be considered as a succession of
small temperature jumps.

For the isobaric thermal responses e is equal to the
enthalpy deviation from the equilibrium value, 6H, per
unit volume and Eq. (1) becomes
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5H(t) = f KH(r, r')5T(t')dr'+C, "5T(t), (2)
tion and b,C =R(0). Then the complex dynamic specific
heat may be expressed as

where V denotes the volume. Here we have taken 6T as
the perturbation instead of 5T/T following the usual
definition of the specific heat. C~ represents the contri-
bution from the fast degrees of freedom such as phonons
and ICH is the response function due to the slow relaxa-
tion of the system. One can also represent Eq. (2) in
terms of the relaxation function
R(t, t')= f' KH(t, t")dt". It is quite straightforward
to show that Eq. (2) becomes

=DC~ f [I p(r, r—'))5T(t')dr'+C "5T(r), (3)

where hC =R(t, t) and P(t, t') =R(t, t')/R (t, t) and the
dot stands for the derivative. A couple of remarks on the
nature of this equation are in order. First, the derivation
is general enough that Eq. (3) may be regarded as a phe-
nomenological equation applicable to general situations
including rate-scanning measurements. Second, although
Eq. (3) appears to be linear, it can become mathematical-
ly nonlinear if the function P(t, t ) itself changes in time.
It is emphasized that this nonlinearity occurs as a result
of the loss of stationariness, for example due to the
elongation of the system dynamics, even for a small 6T
and will be called nonstationary relaxation. It is con-
trasted to the nonlinear response to a large perturbation
represented by higher-order terms in Eq. (1). It is the
nonstationary relaxation that may be dealt with by modi-
fying the equilibrium relaxation function to account for
the nonstationariness.

For the system in equilibrium the relaxation function
has the additional property of being stationary, i.e.,
R(t, t')=R(t —t'). From the linear-response theory,
R(t) =(5Hz(t)5Hz(0))/ks T V where 5Hz represents
the enthalpy fluctuation associated with the slow relaxa-

C(co)=C +icobC f P(t)e' 'dt, (4)

where C =C +AC denotes the static specific heat.
For the measurements of the isobaric dynamic specific

heat of CKN we used the fully automated dynamic
calorimeter developed in this laboratory and the techni-
cal details will be reported elsewhere. The calorimeter
adopts the 3' technique which was originally developed
by Birge and Nagle. ' The 3' technique is an ac
method that uses a heater, which is in contact with a
liquid sample, as a sensor s™ultaneously. By measuring
the temperature oscillation of the heater due to an oscil-
lating ac power in it as a function of frequency, one can
measure a certain combination of the specific heat and
the thermal conductivity depending on the geometry of
the heater. The frequency range covered was from 0.01
Hz to 5 kHz and it means that we had a frequency win-
dow of more than five decades. By using line and planar
heaters, we were able to obtain the specific heat C~ and
the thermal conductivity ~ of CKN independently. x of
CKN did not show any appreciable change or any fre-
quency dependence in the whole glass transition region
and ~=5.9 mW/cmK. ' This suggests that the heat car-
rying modes, probably high-frequency phonons, are not
a6'ected at all by the glass transition.

In Fig. 1 shown are the real (C~) and imaginary parts
(C") of the dynamic specific heat of CKN versus logf
(heating frequency f =co/2m). As is easily seen from the
data, the dynamics of the system slows down with de-
creasing temperature (T) and the shape of C" is asymme-
trical. These features are typical of many glass formers;
since it has been found that the Kohlrausch-Williams-
Watts (KWW) function adequately describes the dynam-
ics for them. , the data at each temperature were fitted to
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FIG. 1. The real and imagi-
nary parts of C (cu) of CKN as a
function of frequency. The solid
lines are fits to the data with
a Kaulrausch-Williams-Watts
function, exp[ (t/ )r], with-
P=0.53 (344 K), 0.57 (351 K),
and 0.62 (358 K).
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Eq. (4) with P(t)=exp[ (—t/r)"]. To enhance the pre-
cision we have used the set of real and imaginary data
simultaneously in fitting; it is noted that since Cz does
not vary with T, the fitting was done with three parame-
ters, i.e., hC~, r, and P. The best-fit curves drawn
through the data indicate that the KWW function is
reasonable in describing the enthalpy relaxation of CKN.

In the upper inset of Fig. 2, the relaxation time ~ ob-
tained from the fitting is shown against 1/T. The data il-
lustrate that ~ is not behaving in an Arrhenius fashion,
but in a Vogel-Fulcher one. The solid line represents the
best fit to the data using the Vogel-Fulcher form,
r=ro exp [b./( T —To ) ]. The fitting procedure yielded
the values for parameters: ~0=10 ' sec, 6=1800 K,
To =288+8 K. These are reasonable physical values and
To is probably close to the Kauzmann temperature. Al-
though the crossover from a Vogel-Fulcher to an Ar-
rhenius behavior at low temperature was noted from the
viscosity data, "we were not able to see the crossover in
~ from our data alone, which represent the lowest-
frequency dynamic characterization of CKN to date.
The lower inset of Fig. 2 shows the KWW fitting parame-
ter P versus T. From the figure it is found that P varies
linearly in T. The significance of this behavior is that the
width of Cz'(co) increases as T decreases and thus any
analysis based upon the fact that P=const, for instance
time-temperature superposition, is not correct. This will
also be of importance in analyzing the nonequilibrium
data. It is of value to note that if we attempt the linear
fitting of P versus T, we obtain, within experimental er-
ror, P=a( T —To ) where a is a constant. With the reser-
vation that the temperature range for the data is very far
from To it is worth pointing out that there exists a
theory predicting such a behavior. ' The relaxation
strength, AC, also varies with T. Since C remains con-
stant for this particular system, the AC variation rejects

the change in C of the liquid, the significance of which
is discussed below.

One important consequence of our equilibrium mea-
surements in CKN is that we can test a very interesting
idea of serial decoupling of various relaxing modes in the
glass transition region. ' The idea is that while on short-
time scales (or at high temperatures) the shear, volume,
and enthalpy relaxation times are all the same, the shear
modes decouple from the rest and the shear relaxation
occurs at a faster rate as T is reduced toward the glass
transition. To check the occurrence of decoupling, we
plotted together, in Fig. 2, the enthalpy relaxation time
(solid circles) and the shear relaxation time (= shear
viscosity/infinity-frequency shear modulus, open circles)
taken from Ref. 11. As is clear from the figure, the two
kinds of relaxation times coincide reasonably well and no
evidence of decoupling is seen within our time window.
Thus, if decoupling did indeed occur, it should do so at
longer times than —10 sec.

Now that we have the full characterization of the equi-
librium relaxation, we may attempt to explain the rate-
scanning results. In the inset of Fig. 3, we show the DSC
trace (solid lines) of CKN, as a function of T, taken at
cooling and heating rates of 10 K/min with a Perkin-
Elmer DSC-7 calorimeter. The DSC data on cooling
show a typical transition from the value of the liquid
specific heat (C~&) at high temperatures to that of the
glass specific heat (C ) at low temperatures, while the
data on heating are the result of the system recovering
equilibrium For comparison we have overlayed the dy-
namic specific heat measured at 100 Hz (open circles).
Also plotted as solid circles in the figure is C from the
KWW fitting of C~(co). It should be noticed that C
varies with T, while C does not show any appreciable
variation as illustrated by the broken line in the figure.
This can be understood if we remember that C is the
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FIG. 2. The relaxation times
of CKN on a log scale, vs T
The solid circles denote the re-
laxation time from the dynamic
specific-heat data, while the
open circles denote the shear re-
laxation times from Ref. 11.
The upper inset displays the
Vogel-Fulcher fit of ~ from the
dynamic speci6c-heat data and
the lower inset shows P as a
function of T.
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FIG. 3. The open circles
represent the normalized specific
heat, [C~(T) C~~—(T)]/[C»(Tf )
—C~~(Tf)], and the solid lines
are from the calculation. (See
text. ) Inset shows the DSC data
on cooling and heating at 10
K/min (solid lines) and the dy-
namic specific-heat data at 100
Hz (circles). The dots in the inset
denote C~" values of the equilib-
rium liquid, while the broken
line denotes C~g.
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specific heat of the equilibrium liquid probed at high fre-
quency and thus the structure of the liquid, which ap-
pears frozen to high-frequency thermal excitation, con-
tinues to change with T, while that of the glass does not
vary much in T.

To understand the DSC results, we recall that the
essence of the data lies in the broken stationariness; as
the system is cooled at constant rate, the characteristic
time of the relaxing modes gets longer and at some point
the relaxing modes split ofF from other fast degrees of
freedom which set the system temperature, T. (The con-
verse is true in the case of heating. ) To deal with this sit-
uation in a phenomenologically simple way, the
configurational (or fictive) temperature Tf, which itself is
a function of T, is defined through

H(T)=HI(Tf )
—I C (T')dT', (5)

T

where H(T) is the measured enthalpy and H&(T) is the
enthalpy of the equilibrium liquid. ' ' Since C
represents the contribution from the fast degrees of free-
dom, Eq. (5) states that the enthalpy due to the relaxing
modes is that at T& while the temperature of the fast de-
grees of freedom is T. Thus, TI signifies the temperature
of the structural configuration of the relaxing modes. It
is easy to show that dTI/dT is the normalized specific
heat due to the relaxing components, i.e.,
dTf/dT=[C (T)—C (T)]/[C &(Tf)—C (Tf)]. Then,
noting that the relaxation strength AC in the nonequili-
brium situation is determined by the configuration tem-
perature and C is due to the fast degrees of freedom,
Eq. (3) is transformed to the one for Tf (Ref. 17)

Tf(t) = T;+I [1 P(t, t')]5T(t')dt', — (6)
0

where T; is the initial temperature.
To evaluate Eq. (6), one need to specify P(t, t') which,

however, is known only for equilibrium situations, where

P(t, t')=P(t —t') =exp[ —[(t t')/—r]1'] .

Moynihan et al. ' developed a theory, building on previ-
ous works, ' to deal with this situation and had great
success in interpreting their DSC data of various glass-
forming materials. However, one of the key assumptions
they made in the absence of the equilibrium data, that is,
P is constant, does not seem to be valid and therefore the
theory must be improved. Since we do not have a univer-
sally accepted theory for the equilibrium KWW function,
not to mention the nonstationary case, we resort to the
idea of distribution of relaxation times and seek to extend
it. The KWW function is expressed as

P
t —t' = JdrDg(rn)expexp

if T& deviates from T. The latter assumption can be
justified, as shown by Scherer, ' by remembering the
Adam-Gibbs theory: r=roexp[const/TS, ], where S, is
the configurational entropy of the system. Thus the
temperature-dependent barrier b /( 1 —To /T) of the
Vogel-Fulcher law is determined by S, and if TXTf Tf
determines S, ( Tf ) which in turn fixes the barrier.

The distribution of the relaxation times can be
represented either by the prefactor distribution with the
barrier given by S,(Tf ) or by the barrier distribution
around b, /(1 —To/Tf). While the physical interpreta-
tion of the former representation is not easy compared to
the latter, it gives the best results and so we used the

where g (rn ) is the distribution function. Now we as-
sume that the characteristics of the KWW function, P
and v., are determined by T&, since T& is the efFective tem-
perature of the relaxing modes; p=a( Tf —To) and

1~=~0 exp T 1 —T0/TI
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former in the present calculation. Now that each ~D is
time dependent via Tf, each Debye relaxation of Eq. (7),
exp[ (—t t '—) l~n ], is replaced by
exp[ —f,',dt" le(t")].Note that this is equivalent to as-

suming the exponential decay at each instant with ~z of
that moment. The time-varying nature of P is taken into
account by making the distribution function g (~D ) time
dependent. It is noted that when P is constant, this be-
comes equivalent to the Moynihan method, i.e.,
P(t, t')=exp[ —( f ,',dt" i~)~]. With these ingredients, we

solve numerically Eq. (6) with the same initial conditions
as in actual experiments and calculate dT&ldT. The re-
sults are shown, as thick solid lines, in Fig. 3 along with
the properly normalized data points. The coincidence is
striking. The main features of the rate-scanning, cooling

as well as heating, data are faithfully reproduced. We
have also calculated for the cases with different thermal
histories with equal success. Therefore, we have shown
that the glass transition is basically a phenomenon due to
the splitting off of the slow relaxing modes from the rest
and the associated nonstationary relaxation can be de-
scribed in the theoretical framework for the equilibrium
relaxation if the latter is properly modi6ed. Currently in-
vestigation of the nonlinear relaxation due to a large tem-
perature jump, which would include higher-order effects
in addition to nonstationariness, is underway.
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