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A real spin-charge separation scheme is found based on a saddle-point state of the ¢-J model. In
the one-dimensional (1D) case, such a saddle-point reproduces the correct asymptotic correlations
at the strong-coupling fixed point of the model. In the two-dimensional (2D) case, the transverse
gauge field confining spinon and holon is shown to be gapped at finite doping so that a spin-charge
deconfinement is obtained for its first time in 2D. The gap in the gauge fluctuation disappears at
half-filling limit, where a long-range antiferromagnetic order is recovered at zero temperature and
spinons become confined. The most interesting features of spin dynamics and transport are exhib-
ited at finite doping where exotic residual couplings between spin and charge degrees of freedom
lead to systematic anomalies with regard to a Fermi-liquid system. In spin dynamics, a commen-
surate antiferromagnetic fluctuation with a small, doping-dependent energy scale is found, which
is characterized in momentum space by a Gaussian peak at (7/a, 7/a) with a doping-dependent
width (o< v/8, & is the doping concentration). This commensurate magnetic fluctuation contributes
a non-Korringa behavior for the NMR spin-lattice relaxation rate. There also exist a characteristic
temperature scale below which a pseudogap behavior appears in the spin dynamics. Furthermore,
an incommensurate magnetic fluctuation is also obtained at a finite energy regime. In the transport,
a strong short-range phase interference leads to an effective holon Lagrangian which can give rise
to a series of interesting phenomena including linear-T' resistivity and a T2 Hall angle. We discuss
the striking similarities of these theoretical features with those found in the high-T. cuprates and
give a consistent picture for the latter. Electronic properties like Fermi surface and superconducting
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pairing in this framework are also discussed.

I. INTRODUCTION

The normal state of high-T. cuprate superconductors
has shown peculiar properties in both charge and spin
channels. In the transport aspect, the resistivity! ex-
hibits a linear-temperature dependence up to 1000 K and
down to a temperature ~ T, which can be as low as
10 K. This temperature dependence has been related to
a scattering rate? that behaves like n’—“fT with n ~ 2
for all the optimally doped cuprates with 7. ranging
from 10 up to over 100 K (a linear-frequency depen-
dence of the scattering rate at frequency > kpT' /% is also
found in infrared spectroscopy? up to 0.15 eV). Such a
linear-7T" longitudinal resistivity is also accompanied by
a Hall coefficient® which implies holelike charge carri-
ers and shows a 1/T dependence in contrast to the 7T'-
independent Fermi-liquid case. A Hall-angle experimen-
tal analysis*® has demonstrated that the 1/T behavior
in the Hall coefficient is due to an additional scattering
rate in the transverse channel, which behaves like T2.
Most recently, the magnetoresistance has been found to
have a T~* temperature dependence,® at variance with
Kohler’s rule. Furthermore, the thermopower has shown
a strong doping dependence,” which decreases with the
increase of doping and even changes sign in the over-
doped regime. All of these transport results are anoma-
lous with regard to the canonical phenomena in a con-
ventional Fermi-liquid (FL) system.

Spin magnetic properties have also exhibited a num-
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ber of anomalies, which persist into the superconduct-
ing phases. Two powerful probes of spin dynamics in
the cuprates are nuclear magnetic resonance® (NMR)
and neutron scattering.® In the cuprates, the NMR
spin-lattice relaxation rate T !, which probes a very
small energy scale (~ 10~% meV), has shown a strong
enhancement® at low temperature for planar Cu nuclei,
in contrast to the usual Korringa behavior in a Fermi
liquid. On the other hand, 77! for planar O nuclei®
is more or less close to the Korringa law. The sharp
contrast of the NMR 7, ! between the planar Cu and
O nuclei strongly suggests!®!® that the non-Korringa
behavior at Cu sites should be caused by antiferromag-
netic (AF) correlations among the Cu spins whose ef-
fect could be effectively canceled out at O sites. AF
spin fluctuations have been also directly measured by
inelastic neutron-scattering experiments® at higher en-
ergies in Lay_[Sr, Ba],CuO4 (LSCO) (Refs. 16-18) and
YBa;Cu3O07_5 (YBCO) (Refs. 19-21) materials. How-
ever, in contrast with more or less universal behav-
iors in NMR spin relaxation rates, neutron-scattering
data have shown distinctive characteristics among these
compounds. For example, commensurate AF fluctua-
tions are observed in insulating LSCO systems!®7 and
underdoped YBCO compounds®?° with characteristic
energy scales much smaller than the exchange energy
J =~ 120 meV. But incommensurate AF correlations
have been found!® in metallic LSCO down to an energy
scale as low as 1 meV. Nevertheless, recent analyses have
revealed??2® that the NMR relaxation rates in LSCO
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are inconsistent with an incommensurate AF structure
at w ~ 0. This is because the effect of incommensu-
rate fluctuations could not be well canceled out at O
sites, and a large non-Korringa signal would leak to the
latter, in contradiction with experiment. In optimally
doped YBCO, the absence of low-energy AF fluctuations
in neutron-scattering experiments?' is also inconsistent
with NMR measurements.® Thus a consistent explana-
tion of the NMR data and a reconciliation of NMR and
neutron scattering are two essential issues in spin dynam-
ics.

Given these anomalous transport and magnetic prop-
erties, one would naturally question if a single type
of elementary excitation carrying both charge and spin
could explain them without leading to any intrinsic con-
tradiction. Since the sharp Fermi edge has been well
identified in the cuprates by angle-resolved photoemis-
sion measurements,?42% such low-lying electronlike exci-
tations, if they exist, should always be located near the
Fermi surface, whether it is a Fermi-liquid or a marginal-
Fermi-liquid (MFL) (Ref. 26) system. The main differ-
ence between FL and MFL systems lies in their energy
spaces (the broadening of the quasiparticle in the MFL
system is linear in energy?® as compared to w? in the FL
case). But in phase space (momentum space), they are
facing essentially the same problems.?” Low-lying states
as labeled by momenta are uniformly distributed in mo-
mentum space around Fermi surfaces. The only conceiv-
able structure would come from the topology of Fermi
surfaces. The question is whether such a structure of
Fermi surface (maybe with nesting and a Van Hove sin-
gularity) is capable of explaining so many experimental
anomalies. In the transport channel, one of the key prob-
lems is how to get hole-type charge carriers, since the
elementary excitation is of electron type. Even though a
special curvature of Fermi surfaces may explain the hole-
like sign indicated by the Hall effect, the total charge
carrier number could by no means coincide with the hole
number as measured with regard to the half-filled insulat-
ing parent compound. Many other problems could arise
within such a framework. For example, a monotonic de-
crease of the thermopower” from over 100 £V /K down to
0 and even changing sign, when doping is increased from
zero to an overdoped level, is difficult to understand here
because the phase space is too limited. Even with the
presence of a Van Hove singularity, an overall change as
estimated by theory [~ 8 pV/K (Ref. 28)] is too small
as compared to the experimental value. Without addi-
tional structure, a second scattering rate implied*° in the
Hall-angle measurements is even more difficult to com-
prehend, especially the different ways by which it gets
into the transverse and longitudinal channels.

In the spin channel, a number of FL and MFL
theories?®>2” have been proposed in terms of the ge-
ometry of Fermi surfaces. The topology of Fermi sur-
faces determines the essential characteristics of spin
dynamics through a Lindhard-type response function.
These theories provide an explanation of incommensu-
rate AF structure'® in metallic LSCO, but fail to ac-
count for other equally important issues. One is about
the NMR relaxation rates whose aforementioned distinc-

tive behaviors at planar Cu and O nuclei are difficult to
reconcile.?%27 The fundamental reason is that a Lindhard
response function cannot produce a sharp enough AF
peak near (7/a, 7/a). Furthermore, the overall width of
the AF peak in these theories is generally not sensitive to
doping concentration, and one cannot find NMR anoma-
lies at low temperature to be sufficiently enhanced with
the decrease of doping as indicated by the experiments.?
Most seriously, the itinerant picture fails to provide a
small AF energy scale, as the only characteristic scale is
the Fermi energy er. Although a peak at small energy
may be introduced by a Van Hove singularity,?® it is dif-
ficult to relate it to a magnetic energy. The exchange en-
ergy scale ~ J as indicated in various magnetic measure-
ments, and an even smaller doping-dependent magnetic
energy scale found by inelastic neutron scattering,6720
is a strong indication that the local spin description of
AF fluctuations may be more appropriate than an itin-
erant picture. This is further supported by the high-
temperature T, ' measurement in LSCO (Ref. 30) which
shows that the doping effect is basically evaporated when
T > 600 K, where T, ! at finite doping coincides with
that of an insulating antiferromagnet, described by lo-
calized spins under the Heisenberg model.3!

Therefore, the phase-space limitation in an itinerant
description, which becomes inevitable in a system where
fermionic elementary excitations carry both spin and
charge, prevents a consistent explanation of the rich phe-
nomena in the high-T,. cuprates. This implies that an
electron in the cuprates may be a composite particle, con-
sisting of more elementary excitations which carry spin
and charge quanta (spinon and holon) separately. In this
way, spinons and holons may find enough phase spaces of
their own to account for the experimental anomalies. A
spin-charge separation scenario for the cuprates was pro-
posed by Anderson.32:3% Under this idea, a strong on-site
Coloumb repulsion can lead to a split of the energy band
with a large Hubbard gap, and thus real charge carriers
(holons) in the conduction band will have an equal num-
ber as that of doped holes controlled by experiments. It is
a significant first step towards understanding the trans-
port properties. However, in order to reconcile with a
sharp Fermi edge found by angle-resolved photoemission,
a fermionic spinon with a similar Fermi surface has to be
assumed.32 Thus, at least in the spin channel, basic prop-
erties should not be very different from conventional FL
or MFL theory, which is a serious setback. Later it was
further realized3* 37 that there actually exists a strong
coupling among spinons and holons, known as a gauge
interaction, and such a gauge force plays a role essen-
tially to confine®® spinons and honons together, like the
quark confinement3® in quantum chromodynamics. In
other words, whether there is a real spin-charge separa-
tion in a two-dimensional (2D) strongly correlated model
is still unclear.

So we are in a paradox situation. Experimental mea-
surements, on the one hand, point to the possibility of
a spin-charge separation. Strong-correlation theories, on
the other hand, lead to spin-charge confinement. This
awkward situation is actually caused by an oversimplified
choice to let spinons to have a large Fermi surface, which
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undermines a local description for spins. One may argue
that in order to recover a correct electron Fermi surface—
an experimental constraint—a large spinon Fermi surface
would be necessary. But this is not the case even in
one dimension, where a real spin-charge separation ex-
ists in the Hubbard model and an electron Fermi sur-
face (points) still satisfies?® the Luttinger volume theo-
rem. Even though usually people may be used to the
thinking#! that a spinon Fermi surface is the reason for
an electron Fermi surface in 1D, the various correlations
have never been correctly derived under such a picture.
In fact, a FL description of spinons is a too rough approx-
imation in 1D. In the strong-coupling (large-U) regime,
a correct spin-charge separation description? has been
established in a path-integral formalism,*® where an elec-
tron is described as a composite particle of a spinon and
a holon, together with a nonlocal phase-shift field. It is
this phase-shift field that helps to recover the right Fermi-
surface position. In this formalism, spinons are described
by a local spin representation without a Fermi surface,
and both spin and density, as well as various electronic
correlation functions, have been correctly obtained.*? An
important lesson learned here is that the electronic Fermi
surface is no longer essential in a spin-charge separation
scheme, and it can be reproduced from a phase shift in a
correct spin and charge separation scheme. (We note
that in 1D another powerful method is the bosoniza-
tion method**™*7 in the weak-coupling regime. There
the non-Fermi-liquid-like low-lying spin and charge pro-
cesses can be directly described near the electronic Fermi
points. But its possible generalization to two dimensions
has many difficulties and is still under investigation.)
This leads to a new 2D spin-charge scenario for the
cuprates. In this scenario, spinons would be free of
“duty” to be responsible for the electron Fermi surface,
so that they could get sufficient phase-space freedom to
describe anomalous spin dynamics. Electronic Fermi sur-
faces would be produced by an extra phase-shift field
associated with the fermion statistics of electrons, and
should not be directly related to holons and spinons.
This provides a fundamental reason for the Luttinger
theorem to be valid even in strong correlations. It also
means that a Fermi-surface topology is no longer cru-
cial in determining spin and charge dynamics. That is,
the shape of a Fermi surface due to the detailed band
structure, which may vary from one material to others in
the cuprates, should not be so relevant to the basic spin
and charge anomalies in a spin-charge separation frame-
work. Therefore it may well justify using a simple one-
band t-J model3?48:4° to describe the realistic cuprates
if a spin-charge separation is indeed present there. It is
noted that several interesting experimental features are
already known for the ¢t-J model. For example, the spin
degree of freedom is described in a local spin represen-
tation, which reduces to the Heisenberg Hamiltonian at
half-filling and well describes®®:°! the magnetic behaviors
in the insulating cuprates. On the other hand, charge car-
riers in this system are naturally holes as measured from
the half-filled insulating phase, which is also a strong in-
dication of the experimental relevance for the model. A
spin-charge separation is already well known for such a

model in the 1D case.

It is the purpose of the present paper to establish the
above-described spin-charge separation scheme within
the t-J framework. Like other approximations, we can-
not directly prove that this 2D spin-charge separation
state is the solution of the ¢-J model. But such a state
will satisfy the following important criteria. The trans-
verse gauge fluctuation will be found suppressed in the
long-wavelength and low-energy regime so that spinons
and holons are indeed deconfined at finite doping (i.e.,
spin-charge separation). This is in contrast to singular
infrared gauge fluctuation® 37 in the case of a uniform
resonating-valence-bond (RVB) state. At the zero doping
limit, the gap of the gauge fluctuation will vanish such
that the spinons become confined again to form spin-
wave excitations. In this case, a long-range AF order will
emerge at zero temperature. Furthermore, the present
state can also reproduce the correct results in the 1D
case, which is an important check of the theory because
only in 1D does one have an exact solution.>?

In the present paper, the effective Hamiltonian describ-
ing the spin-charge separation saddle point will be de-
rived in the following form:

H.g = H, + Hy, (1.1)
where H, and H}, are the spinon and holon Hamiltonians,
respectively, defined by

H, =—J, Z (eiaA?J') b;rdbja + H.c.,

(ij)o

(1.2)

Hyp=—tyy (ei[_¢?j+A:j]) hih; +H.c. (1.3)

(23)

Here b;, and h; are called spinon and holon annihilation
operators, respectively, which are connected to the elec-
tron operator in Eq. (1.6) below. H, and Hj, in Egs. (1.2)
and (1.3) would resemble a standard tight-binding Hamil-
tonian if there are no phase fields Afj, ?j, and Af; ((25)
refers to two nearest-neighboring sites on the lattice).
Here ¢; [as defined in Eq. (2.45)] represents a 7 flux
threading through each plaquette. A tight-binding model
under ¢Y; can be easily diagonalized.>® The most promi-
nent feature in Egs. (1.2) and (1.3) is the presence of Aj;
and A%, the so-called topological phases. Al is defined
by

1 2, — Z
h = i i h
Al = 3 #Eijlm In [Zj — zz] ny, (1.4)

with complex coordinate z; = x; + iy; in 2D, and n} =
h;rhl as the holon number operator. A;; is given by

s _ _]; Z; — 2] b
A= 3 Z Im In [zj — Zz] (; crnh,) ) (1.5)

I#4,5

with n} = b;fo,bla as the spinon number operator.
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The usual gauge coupling, which otherwise would con-
fine spinons and holons together, will be shown to be
suppressed and has been neglected in Eq. (1.1). Thus
the residual interaction between spinons and holons are
solely mediated through Af; and A in Egs. (1.2) and
(1.3). In the 1D case, the complex coordinate z; is re-
duced to a 1D variable, and it is easy to show that Afj
and Af; vanish in Egs. (1.4) and (1.5). Thus spinons and
holons are decoupled in 1D, and behave just like free par-
ticles on their own tight-binding lattices. In the 2D case,
however, A?j and Af; can no longer be gauged away. A:‘j
in Eq. (1.4) describes fictitious w-flux quanta attached to
holons which are seen only by spinons in H,. Hence A?j
will play the role to introduce a doping effect into the
spin degree of freedom. On the other hand, Af; repre-
sents m-flux quanta bound to spinons which can be only
seen by holons. Af; will then play the role of a scattering
source in holon transport. So in the spin-charge sepa-
ration scheme, new types of scatterings are present, and
we will show in this paper that it is due to these uncon-
ventional forces that magnetic and transport anomalies
are produced, consistent with those found in the high-T,
cuprates.

Finally, let us outline how an electron is composed of
the elementary excitations, holons and spinons, in this
scheme. For both 1D and 2D, the electron annihilation
operator ¢;, will be rewritten as

Cio = hlbig [e74 Tims 6O —Eeonia®) ()7, (1.6)

where 6;(l) is defined in Egs. (2.19) and (2.20). The
decomposition (1.6) can be understood as a process by
which annihilating an electron is equivalent to creating
a holon and annihilating a spinon, and, at the same
time, inducing overall nonlocal phase shifts [in the brack-
ets of Eq. (1.6)]. There are several ways to interpret
the involvement of phase-shift fields in Eq. (1.6). Since
the nonlocal fields appearing in Eq. (1.6) resemble the
Jordan-Wigner transformation in both the 1D and 2D
cases,>»%® one may interpret them as statistical trans-
mutations. Here hz is a hard-core bosonic operator, and
b;, also satisfies the bosonic commutation relation for
the same spin index o but the anticommutation relation
for opposite spins (for details see Sec. II). Thus these
nonlocal fields in Eq. (1.6) are to guarantee c;, obeying
an electronic commutation relation. A deeper physics
behind this is related to the phase-shift idea, whose im-
portant role in a strongly correlated system was realized
by Anderson.32:41:47 In 1D it has been explicitly shown5®
that an overall adjustment of the system occurs when a
hole is doped into a large-U Hubbard chain, in order to
retain the Marshall sign rule®? in the spin degree of free-
dom which is decoupled from the charge degree of free-
dom. This adjustment is found to be just represented by
a phase shift shown in Eq. (1.6), and it can lead to the
correct Luttinger-liquid behavior of the single-electron
Green’s function. Furthermore, a phase shift in 1D can
also be interpreted as reflecting the fact that each holon
carries a spin domain wall (see Ref. 42 and Sec. III).
Here one important distinction from Anderson’s origi-
nal phase-shift idea is that a many-body phase shift in

1D will not only give rise to the right non-Fermi-liquid
behavior, but also shift the Fermi surface to a position
satisfying the Luttinger theorem. In other words, there
is no need to assume a right Fermi surface at the very
beginning. In the present scheme, the form of Eq. (1.6)
can ensure a large electron Fermi surface for both 1D
and 2D. But we shall discuss these electronic properties
in a separate paper for the sake of clarity. In that same
paper, we also show that when holons and spinons are
both Bose condensed, the phase-shift field in Eq. (1.6)
will lead to a long-range pairing correlation of electrons
(i.e., off-diagonal long-range order), and determine the
symmetry of the superconducting order parameter. In
the present paper, we mainly focus on the spin-charge
separation formalism and explore the corresponding spin
dynamics and transport properties.

The remainder of the paper will be organized as fol-
lows. In Sec. II, we construct the above-described spin-
charge separation scheme®® based on the t-J model. At
the half-filling limit, a long-range AF order can be recov-
ered in 2D, while the well-known spin-spin correlation is
also obtained in 1D. At finite doping, the gauge fluctu-
ation is shown to be suppressed so that one has a real
spin-charge separation. In Sec. III, the spin dynamics in
this scheme is studied at finite doping. In 1D, the correct
spin correlation is to be reproduced. In 2D, a number of
interesting properties are discovered which provide a con-
sistent picture for the anomalous spin properties in the
cuprates. In Sec. IV, the transport properties are investi-
gated. We show that there exists an interesting scattering
mechanism within the present framework which leads an
effective long-wavelength, low-energy Lagrangian. Such
a Lagrangian can give rise to a series of exotic transport
properties, in excellent agreement with the experimen-
tal measurements. Finally, a conclusive summary will be
given in Sec. V.

II. SPIN-CHARGE SEPARATION: FORMALISM

In this section, a mathematical formalism of the spin-
charge separation state will be constructed based on the
t-J model.

A. Slave-boson formalism and mean-field states

According to Anderson3? and Zhang and Rice,*® low-
energy physics in the cuprates layers may be properly
described by a single-band t-J model. The t-J Hamilto-
nian reads*®

H, ;=H;+ Hjy, (2.1)
with a hopping term

H; = —t Z c:-racj, + H.c.
(ij)o

(2.2)

and a superexchange term
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Hy=J% (s,--sj - ""4”"),
(i3

(2.3)

in which S; = 1 °_ ¢! (6)00rcior (6 is the Pauli matrix)

and n; = 3, ¢! ci,. The Hilbert space of the Hamilto-

o o
nian (2.1) is restricted by the no-double-occupancy con-

straint
Z c:-roci,, <1,

(-4

(2.4)

which imposes a strong correlation on electrons.
By using the slave-boson decomposition of the electron
operator®9-60

Cioc = h;,!‘fiaw (25)

the no-double-occupancy constraint (2.4) can be replaced
by an equality constraint

Rlhi+ > flfie =1, (2.6)

where hz is a bosonic creation operator and f;, is a
fermionic annihilation operator, known as holon and
spinon operators, respectively. In this formulation, the
hopping and exchange terms of the ¢-J Hamiltonian be-
come

Hy=—t Y hihfl fio + He.

(i)

2.7)

and
J t t
Hy=-3 Y fiotiofjofio (2.8)

(ij)o,o’

In obtaining Eq. (2.8), a term oc J§2 (4 is the doping con-
centration) has been neglected®® as usual for simplicity.

The advantage of using the slave-particle formulation
for the t-J model is that once the initial state satisfies the
constraint (2.6), the no-double-occupancy condition can
be always preserved under the Hamiltonians (2.7) and
(2.8). Thus the constraint (2.6) in the slave-particle rep-
resentation will not play a crucial role as the constraint
(2.4) does in the original Hamiltonians (2.2) and (2.3).
Furthermore, in the slave-boson formulation the natural
mean-field decouplings usually have a simpler structure
at finite doping than those in the so-called slave-fermion,
Schwinger-boson formalism.5!

Various RVB-type mean-field states have been ob-
tained in the slave-boson formulation.®? The mean-field
decoupling of the Hamiltonians (2.7) and (2.8) may be
realized by introducing the mean fields

x5 = (L fia), (2.9)

H;; = (hih;). (2.10)

By neglecting higher-order fluctuations around x{; and
H;;, the mean-field versions of H;-; can be obtained in
the form of HMF = HMF + HMF | where

HYF = —t Y x%hlh; + He,
(id)o

(2.11)

H}ﬂF:—g Z

(x;-’,- + §H,~,-> fl fie + Heo (2.12)
(idyoo’
The constraint (2.6) should be simultaneously relaxed at
this level to a mean-field one (hlh;) + 3 _(f] fio) = 1.

As shown by Egs. (2.11) and (2.12), both HMF and
HMF have similar hopping forms decided basically by one
mean field x7; (usually H;; oc x7; at the saddle point).
Since x{; is responsible for both the hopping and antifer-
romagnetic superexchange strengths in Egs. (2.11) and
(2.12), an optimization of these two competing charge
and spin processes may be relatively easy within this
framework.

The simplest mean-field state can be obtained by
choosing Xi; = Xo and H;; = Hop, known as the uni-
form RVB state.®2 Such a state recently has attracted
intensive attention, as one has been able to go beyond
the mean-field (or saddle-point) approximation by in-
cluding the phase fluctuations of x{; and H;; in terms
of the gauge-field description.3™37 A lesson learned from
the gauge-theory approach is that a singular transverse
gauge fluctuation could become very important, which
implies that spinons and holons are usually confined3®
by a gauge field, as opposed to the artificial decomposi-
tion of the electron operator in scheme (2.5). Noncon-
ventional transport phenomena have been discussed3%-37
in this framework which are both theoretically and ex-
perimentally interesting.

The uniform RVB state is presumably energetically
favorable at a sufficiently large doping. On the other
hand, when it is close to half-filling and the doping con-
centration 4 is low, the uniform RVB state may not be
an appropriate saddle-point state because the antiferro-
magnetic energy could be underestimated. For exam-
ple, at the half-filling limit with 6 — 0, the variational
superexchange energy of the uniform RVB state, which
can be computed by using the variational Monte Carlo
(VMC) method with the no-double-occupancy condition
(2.6) being exactly implemented, is found®? to be —0.53J
(per site), about 20% higher than the best ground-state
energy —0.6692J.%* Furthermore, no AF long-range or-
der would appear in this limit as it should be present in
the true ground state of Hy- ;.

A substantial improvement of the variational ground-
state energy at half-filling can be realized by introducing
a phase to x7; in Eq. (2.9), i.e.,

X7 = x0€%. (2.13)

(Note that H;; = 0 at § = 0.) Here the phase 6;; cannot
be simply reduced to a difference like 6; — 8; or, in other
words, the summation of 8;; along the closed bonds of a

plaquette,
QEl = Z 0ij7
&

is nonzero. ®p may be regarded as some fictitious flux

(2.14)
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threading through the plaquette. At half-filling, the vari-
ational energy is optimized at &5 = 7, known as the -
flux phase,>® whose VMC value of the exchange energy is
—0.623J,% only 5% higher than the exact ground-state
energy. However, the absence of a long-range AF order in
the w-flux phase implies that the long-wavelength, low-
energy AF correlations are still underestimated which
should predominantly account for the 5% energy miss-
ing at this saddle-point state. On the other hand, the
high-energy properties of the Heisenberg model, like the
temperature dependence of the specific heat, may be well
explained in terms of the m-flux phase, as discussed in
Ref. 65. (In Ref. 65, the w-flux phase is obtained from
a different formulation, involving a 2D Jordan-Wigner
transformation®® of spin-1 operators, instead of the spin-
% operators used in the present framework.)

Thus, by comparing with the uniform RVB state at
half-filling, the short-range AF correlation in the m-flux
phase has been substantially improved as a result of the
fact that the transverse gauge fluctuation in the former
is condensed as the static uniform flux in the latter case.
Nevertheless, a lack of long-range AF order in the latter
means that the long-range AF correlation is still not ap-
propriately accounted for here. In the following, we will
consider a new type of saddle-point state which could re-
tain the high-energy characteristics of the w-flux phase,
while properly including the long-wavelength AF corre-
lation in the low-energy regime.

B. Flux binding: New saddle point

In the m-flux phase discussed above, the mean-field
Hamiltonian describes a noninteracting fermion gas un-
der some uniform fictitious magnetic field. However, ac-
cording to exact diagonalizations on a small lattice,®®
such a type of state is generally not energetically favor-
able as compared to a state in which the uniformly dis-
tributed lattice flux is quantized into infinitesimal-size
flux tubes, and each of them is bound to an individual
particle. The former may be regarded as a “mean-field”
version of the latter. In general, the latter is known as an
anyon system®” as the new composites of particles and
flux tubes obey different statistics, depending on the flux
strength of each flux tube, as compared to the statistics
of the underlying particles.

This numerical result is very suggestive here, as in the
slave-boson formalism there exists a gauge (phase) degree
of freedom which can allow the above flux-binding pro-
cedure to happen if it is indeed energetically favorable.
This gauge freedom is manifested in the decomposition
(2.5), where one may always associate phases €*® and e—%
to hz and f;,, respectively, without changing c;,. Such
a freedom reflects the arbitrariness of the decomposition
(2.5). A gauge field will then play the role of confining
any nonphysical spinons and holons together as an elec-
tron. Only when one finds a correct spin-charge decom-
position, can the gauge fluctuation be expected to get
suppressed. Our strategy in the following is to optimize
the flux phase by exploiting such a gauge freedom. The
main procedure is to regard the uniform fictitious flux

as a “mean-field” version of the system where fluxes are
quantized and bound to the particles. This latter system
may be generally called a flux-binding state. Given the
above-discussed uniform 7 flux, there can be two ways to
construct the corresponding flux-binding states at half-
filling, as will be outlined below.

Scheme 1. All of f;,, no matter their spins, are
bound to the same type of flux quanta. When these flux
quanta are uniformly smeared out in space, one should
recover the uniform flux in 7-flux phase. At half-filling,
the total number of spinons is one per plaquette on aver-
age. Thus each flux tube has to be quantized at 7, such

that
D0 =m0 i,
O

led o

(2.15)

with n{a = ff;fh,. On average (3 50;;) = m. In this
scheme, since each flux tube is quantized at =, spinons
are effectively turned into semions®” (an exchange of
two semions gives rise to a phase +i¢). Scheme 1 has
been already discussed in detail in Ref. 68. Away from
half-filling, the mean-field version of this flux-binding
state corresponds to the so-called commensurate flux
phase (CFP).%® And the gauge theories’® 73 based on
the CFP has a close connection with such a flux-binding
state. In both cases, superconducting condensation is
found in the ground state, and is related to the semionic
condensation.®” It has been shown in the flux-binding
state®® that there is no explicit time reversal and par-
ity symmetry broken due to the cancellation between
charge and spin degrees of freedom. The most interesting
features show up in the normal state,”* which can well
explain the anomalous in-plane transport properties in
cuprates, including resistivity, the Hall effect, and ther-
mopower. But such a state still has trouble recovering
AF ordering at half-filling.

Scheme 2. In this scheme, spinons with opposite
spins may not see the flux tubes carried by each other.
Thus the flux quantum of each flux tube has to be dou-
bled in order to recover the w-flux phase in the mean-field
limit. In this case, the phase 6;; as seen by the spinons
with spin index o has to satisfy the condition

Ze;’j = 2%211{0,
O

leO

(2.16)

such that (3 67) = m at half-filling. Equation (2.16)
means that each spinon is bound to a 2w-flux tube,
which would effectively change the spinon statistics from
fermion into (hard-core) boson, for spinons with the same
spin index o. In this second flux-binding scheme,®® the
experimental features of the transport properties found
in scheme 1 will be essentially retained, while interesting
magnetic properties can be also obtained here. As an
example, AF long-range order can be recovered at half-
filling. Furthermore, the correct 1D behavior is to be
reproduced naturally within this framework. All of these
suggest that scheme 2 may be a better approximation
than scheme 1 for the same physical state. Therefore, we
shall fully focus on the saddle point of scheme 2 later,
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and explore its various properties in the remainder of the
paper.

1. Mathematical scheme: Half-filling

At half-filling, H; has no contribution.
rewrite H; in Eq. (2.8) in the form

Hy = —:21 Z (eiAgjfiija) (eiAfif;gfiﬁ) ’ (2'17)
(ij)oB

One may

e

where a phase A7;, which will play a role similar to 67;
in Eq. (2.16), is introduced:

Ag =0 3 [6:0) = 6;(0] (nf, = 8,

I#4,5

(2.18)

which depends on the positions of spinons nonlocally.
This nonlocality is introduced through the multiple-
valued phase 0;(!):

0;(1) = Im In(z; — z1), (2.19)
with z; = z; +1y; in 2D. A vorticity 27 can be obtained
in 8;(1) if the coordinate z; has been continuously changed
around z; once. In the 1D case, 6;(I) in Eq. (2.19) will
reduce to

0:(l) = £70(l —7), (2.20)
where 6(z) on the right-hand side is the step function. In

obtaining Eq. (2.17), the constraint condition (2.6) has
been used, i.e.,

donl =1, (2.21)
at § = 0.
The identical transformation in Eq. (2.17) has no real

physical meaning until the mean-field decoupling scheme
is introduced. One may define a hopping operator

X% = el fio. (2.22)

Then under the mean field xo = ()2;’3), the saddle-point
Hamiltonian of Eq. (2.17) is found as

H, = —Jxo Z e A% f;rofja + H.c.
(i5)o

(2.23)

Now the nonlocal field Af; appears as a phase in the
hopping matrix, which is equivalent to the role of 6;; in
Sec. ITA.

Two-dimensional case. In terms of Egs. (2.18) and
(2.19), a summation of the phase Af; along a plaquette

gives
Z Aj; =270 Z n{a —2még 1.
o len

(2.24)

Besides a (—27) lattice flux for o =1, which has no real

physical meaning, the right-hand side of Eq. (2.24) im-
plies that each spinon of spin o carries a flux tube quan-
tized at 2w, with a sign o = +1. Since (nlfa) =1/2, one
has 7 (A7) = —m. That is, the “mean-field” version
of the saddle-point Hamiltonian (2.23) just corresponds
to a w-flux phase Hamiltonian as required (note that —n
and 7 fluxes per plaquette are equivalent).

As pointed out before, the flux-binding procedure dis-
cussed here is related to a statistics transmutation which
is easy to see after introducing a new operator b;,,

bio = fiae_io pITY ei(’)(nxfa_‘svf)_ (2.25)
Then H, is reduced to
H,=-Jxo0 Y (-0)bl,bjs + H.c. (2.26)

(i3)o

One can easily check that b;, satisfies the hard-core
boson commutation relations (for the same index o):
[Biss Bl ] = 0 (i # j), etc. Of course, for opposite spins
one still finds anticommutation relations.

Equation (2.25) resembles the Jordan-Wigner transfor-
mation in both the 1D and 2D cases®*%% which changes
the statistics of a fermion into that of a hard-core boson.
Thus the presence of a uniform lattice flux in the m-flux
phase is a precursor for a fermionic spinon to become a
boson. Such a “bosonization” tendency for spinons in the
flux phase has been already noted before.”> The bosonic
representation has been known generally to be superior
in the description of spin AF correlations.

Equation (2.26) can be further written in the form of
a standard hopping Hamiltonian

H,=—-Jxo0 Y bl,bjo + Huc. (2.27)
(i)
by redefining
bio = (—0) big, (2.28)

in which o = +1 and (—1)* = +1 for the even sublattice
and —1 for the odd sublattice of a bipartite lattice. A
spin operator like S;" = fiTT fiy can then be expressed in
terms b;, as
SF = (=1)"bL,byy. (2.29)

One also has S;” = (S;")*, and S7 = 1% ab;rl,b,-a.

The Bose condensation of b;, at zero temperature as
determined by Eq. (2.27) means

(SF) = (~1) (bl ) (b} # 0.

In other words, an antiferromagnetic long-range order in
the z-y plane can be indeed obtained in the present flux-
binding scheme. The direction of the magnetization in
the z-y plane will be determined by the relative phase
between the up and down spinons in Eq. (2.30), and
could be arbitrary. The evaluation of the magnetiza-
tion value in Eq. (2.30) needs a detailed knowledge of
the hard-core boson behavior governed by H,. Since we

(2.30)
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do not know the exact solution of the hard-core boson
Hamiltonian (2.27), we cannot directly estimate the vari-
ational ground-state energy of the Heisenberg Hamilto-
nian Hj in the present saddle-point state. Nevertheless,
the ground-state energy for a hard-core boson system like
Eq. (2.27) is generally lower as compared to the uniferm
w-flux system in the fermion representation, which has
been discussed by Gros et al. in Ref. 76. As pointed
out by these authors, the ground-state energy of a hard-
core boson system described by H, could be as much as
11% lower than that in the w-flux phase. Of course, one
still needs to check the variational energy of the orig-
tnal Hamiltonian H; in the present saddle-point state.
By using a trial bosonic wave function for H, given in
Ref. 76, which is obtained by taking the absolute value
of the known fermionic n-flux-phase wave function and
gives a 7.4% higher variational energy than the best es-
timate for H,, we found analytically that the variational
energy of H; is just identical to that in the w-flux phase.
The latter is already known from the VMC calculation,
i.e., 5% higher than the exact value of the Heisenberg
Hamiltonian. Since the above-mentioned bosonic trial
wave function does not have a long-range order (Bose
condensation), one may attribute the 5% higher ground-
state energy to it. A better bosonic trial wave function of
H, should further improve the variational ground-state
energy of Hj.

We note that beyond the present mean-field approx-
imation, a gauge fluctuation should be considered. As
will be discussed in Sec. IIC, such a gauge fluctuation
"is not gapped at half-filling and thus could become very
important. In fact, spin-1/2 spinons will presumably be
confined by the gauge field to form spin-1 excitation (spin
wave) at half-filling. This bosonic description is differ-
ent from the Schwinger-boson representation. The latter
has been found®! to well describe the low-lying spin ex-
citation in 2D half-filling, even at the mean-field level.
In contrast, the present scheme will become more pow-
erful in spinon-deconfined cases. For instance, it will be
shown later that the gauge fluctuation is to be suppressed
at finite doping, and with the presence of spin-charge
separation there, the present bosonic representation can
become quite convenient to include doping effects. An-
other spinon deconfinement case is in 1D, which will be
discussed below.

One-dimensional case. As a further check of the
present saddle-point state, we now turn to the one-
dimensional case where the asymptotic spin-spin corre-
lation of the Heisenberg chain has been known for many
years.””

Under the saddle-point Hamiltonian (2.27), one can
write

(S (8)S7(0)) = (—1)" 77 (bl (£)b;1(0)) (b (£)b] (0)).
(2.31)

In order to evaluate the averages on the right-hand side,
the behavior of the hard-core boson described by b;(t)
has to be determined first. A trick which has been of-
ten used in 1D is to transform the bosonic operator b;
into a fermionic operator again. By using the expression

(2.20) for 6;(1) in 1D, b;, is expressed in terms of f;, in
Egs. (2.25) and (2.28) as

bis = fige™ ™ Lini Mo (2.32)
One also finds that A7, = 0 in Eq. (2.23), and thus
in the fermionic representation H, simply describes a
free lattice fermion gas. Then a correlation function like
(b:.rT (t)bj+(0)) in Eq. (2.31) can be straightforwardly cal-

culated in long time and distance as™®

i nf i, nf,
(81 (b3 (0))= (£ ()6 Coos b @ Tom Sy mlo ) (o)
1

2.
R RS E (239

with vy = Jxoa. The average (bu(t)b__‘;i(O)) shows the
same asymptotic form. Finally by using (—1)*7 =
cos X(z; — z;) and rotational invariance, one obtains

cos Z(x; — x;)
[Gei — 23)? 377"

(Si(t) - S;(0)) (2.34)

which describes the correct asymptotic spin-spin correla-
tion in 1D and was first derived by Luther and Peschel
from the X X Z model.””

Thus the present flux-binding saddle-point state has
produced a correct result in 1D, even though it is orig-
inally constructed in 2D. This is in contrast to the
Schwinger-boson approach,5! which works rather success-
fully for the 2D Heisenberg model, but could not predict
the correct behavior for the 1D spin-1/2 case. This may
be attributed to the fact that spin-1/2 excitations ex-
ist in 1D Heisenberg chains, but not in 2D. The present
bosonic representation properly describes these spin-1/2
spinons.

We note that in the present approach the spin-spin
correlation in the z axis cannot be evaluated at the same
level of approximation as in the z-y plane. The reason
is that (S7 - S%) ~ izu(nfan?a) basically involves the
density-density correlation of spinons with the same spin
index, while (S;" - S;7) is related to the single-particle
propagators of spinons under the saddle point (2.27).
The former is generally much harder to evaluate because
of the hard-core condition of b;,. The 1D correlation
(87 -8%2) ~ (—1)*"9 /|z; — x;| could be obtained with the
hard-core condition being accurately treated through the
Jordan-Wigner transformation.

One final point we like to stress here is that H, in
Eq. (2.23) is formally the same as that in the uniform
RVB saddle point, since AZ; = 0 in 1D. In other words,
flux binding, or statistics transmutation, has no effect on
the Hamiltonian in 1D as is well known. What is different
between these two saddle-point states is the boundary
condition for the fermion f;,: In the present saddle point,
fio appearing in Eq. (2.32) will become multiple valued
at the boundary once the 1D chain is closed as a loop.
As discussed by Shastry,” such a boundary condition
decides why a hard-core boson system is energetically
more favorable than a fermionic gas.
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2. Fluz binding: Finite doping

For a small doping concentration, one expects the anti-
ferromagnetic correlation still to remain dominant, even
though it may be strongly modified by doped holes. It is
very interesting to see the evolution of the flux-binding
saddle-point state in this finite doping case.

We may follow the procedure shown in Sec. IIB1,
starting with the identical transformation of Hjy in
Eq. (2.17). At finite doping, the form of Af; in Eq. (2.18)
will be slightly modified because the constralnt equation
(2.21) now is replaced by the full equation (2.6). It is
easy to show that Af; is given as follows:

45 = 0 3100 = 0501 (dy = 8o + 30l ) (239

1#4,5

which keeps the identical transformation in Eq. (2 17)
unchanged. In Eq. (2.35), an additional factor nl'/2 is

introduced, with nf‘ = h;rh, as the holon number opera-
tor.
At finite doping, the hopping term H; in the H, y will

also contribute, and it may be rewritten in the form

= —¢ Z eZA‘]hTh]XJl’

(ij)e

(2.36)

where X7, is defined by Eq. (2.22) with A7, given in
Eq. (2.35). Aifj in Eq. (2.36) is a rearranged form of
AZ; after using the constraint (2.6):

A{j=

D [6:(1) — 6;()] (Z onf, — 1) (2.37)
l;ﬁm
Note that Aifj in Eq. (2.37) has no explicit o dependence.
Now we may take the mean-field decoupling of H; in
Eq. (2.17) and H; in Eq. (2.36), by introducing the mean
fields xo = (%) and Ho = (Hi;) (here Hi; = e*4%ihlh;).
At the same time, the constraint (2.6) has to be relaxed
up to a global level, as outlined before. Then the saddle-
point Hamiltonian at finite doping is found to be

HMY = H, + Hy, (2.38)

in which the spinon degree of freedom has the same form
as in the half-filling case:

Hy=-J, Y e*ifl fio+He,

(t3),o

(2.39)

with J, = Jxo + tHo.
described by

The holon degree of freedom is

Hy = —t Z oAl hih; + Hec.,
(i7)

(2.40)

with t;, = 2txo. tn and J, have to be determined self-
consistently. Since the averages xo and Hy actually do
not depend on t; and J,, the self-consistency should be

always satisfied here, even though an actual determina-
tion of the values for t;, and J, is nontrivial. Generally
one can estimate t;, ~ t and J, ~ J at small doping. In
the bosonic representation of Egs. (2.25) and (2.28), H,
can be further expressed as

H,=-J, Y €450} b, + He, (2.41)
(id)e
where the topological phase Af‘j is defined by
1
Ak = 5 D 16:(1) — 0;(1)] nf (2.42)
I#i,5

In one dimension, one will find Aﬁ’j = Aif .= 0 in Eqgs.
(2.40) and (2.41) according to Eq. (2.20). The holon (de-
scribed by h;) and spinon (described by b;,) degrees of
freedom are thus decoupled at this saddle-point state. In
two dimensions, however, the holon and spinon are cou-
pled with each other through the nonlocal fields Aifj and
Afj in Hp, and H;. The topological gauge field Al’-']- can
be interpreted as describing fictitious m-flux quanta at-
tached to holons, but only seen by spinons. This becomes
clear if one considers an arbitrary loop C, and counts the
flux enclosed, which is given by

ZA?J« :wan‘.
c

leC

(2.43)

A{j in Eq. (2.37) may be rewritten as Aifj = Af; — ¢”,
where

gy = 2 S16:(0) - 6;0)

1#4,5

(Z an,d> , (2.44)

and ¢Y; is defined by
1
L= 1Y o - o0, (2.45)
I#4,5
which describes a lattice 7 flux with Y5 ¢2; = 7. The

topological gauge field A, describes fictitious =-flux
tubes carried by spinons which are seen by holons. In
Secs. IIT and IV, we will investigate how the couplings
induced by the nonlocal fields A?j and Af; will lead to
highly nontrivial spin and charge properties in the 2D
case.

To end this section, we would like to give a different
perspective about the construction of the flux-binding
state. Recall that one has a gauge degree of free-
dom in the slave-boson decomposition: ¢;; = h;rb,-,, =
(hle®)(firef), where 05 and 6 can be any phase sat-
isfying 0 + 65 = 0. Particularly, if 65, and 0 are chosen
as the topological phases in the Jordan-Wigner transfor-
mation, statistics transmutation can happen so that one
may end up with a slave-fermion or, more generally, slave-
anyon decomposition.®® This is not surprising because
all of these formalisms are mathematically equivalent. A
very complicated decomposition can be also constructed.
Distinctive physics is involved here only when one makes
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the mean-field decoupling. In this way, different decom-
positions mean different saddle-point states. The usual
slave-boson and slave-fermion formalisms are the sim-
plest ones, but not necessarily the appropriate ones for
the correct saddle point. The present saddle-point state
corresponds to 0, = 1/23,,6:(D[o(1—n}) + 3, anf )
and 0y = —i0 Y, Gi(l)nlfa. It is easy to check that
0r + 65 = 0 in terms of the constraint (2.6). Correspond-
ingly, ¢;> may be rewritten as in Eq. (1.6) where b;, is
defined by Egs. (2.25) and (2.28). In this new decom-
position, an electron is composed of two bosonic holons
and spinons, together with some nonlocal fields. A spin
operator like Sj’ = f;rT fiy can also be expressed as

i = (=1)b], by e T OO0 (2.46)

Its physical meaning will be explored in Sec. III. In the
following, we will go beyond the mean-field approxima-
tion and show that a real spin-charge separation can be
indeed realized with the decomposition (1.6).

C. Gauge-theory description: Spin-charge separation

It is now a well-recognized fact3%37 that any saddle-
point-state properties of the t-J model could be substan-
tially modified by the low-lying gauge fluctuation around
the saddle point. So it is very important to check the
gauge fluctuations around the present saddle point. Here
gauge fluctuations are to be related to phase fluctuations
of the mean fields (%;;) and (H;;). The main idea behind
the construction of flux-binding saddle-point states is to
incorporate the most singular transverse gauge fluctua-
tions into the saddle point via flux binding so that ad-
ditional phase fluctuations become insignificant. These
singular gauge fields are represented by the topological
gauge fields A?j and Af; in the saddle-point Hamiltonians
H, and Hj. In the following, we will show that the trans-
verse gauge fluctuation around this saddle point is indeed
suppressed at finite doping, and therefore we have a real
spin-charge separation whose low-energy physics will be
determined in terms of the effective Hamiltonians H, and
H,,, defined by Egs. (1.1)—(1.5) in the Introduction.

An effective Lagrangian, with the constraint (2.6) en-
forced and the (phase) gauge fluctuation around the
present flux-binding saddle-point state included, can be
written as36.68

i

Leff = Z (Z b;!.a(a"' - lt)b,;,, + h:(a.,. — /‘L)hz> + Heﬂ',

(2.47)
where
Heg=—J. Y e@stoA0p] b, + cc.
(id)e
—tn Z ei(a‘j+Azi"¢?i)hIhj +c.c. (2.48)
(i5)

Here a;; in Eq. (2.48) describe an internal gauge

field. Originally the no-double-occupancy constraint
(2.6) [with f;, changed to b;, by the transformations
(2.25) and (2.28)] is implemented through a Lagrangian
multiplier field, whose fluctuating part is then absorbed
by the longitudinal part of a;; in Eq. (2.48) due to gauge
invariance,®® with p left in Eq. (2.47) enforcing the con-
straint at a global level.

The existence of a gauge freedom in L.g will guaran-
tee the following current constraint between spinons and
holons:36-68

J,=-J,. (2.49)

It is noted that Eq. (2.49) in a longitudinal channel is a
simple reflection of the density constraint (2.6), but its
transverse channel has nothing directly to do with the no-
double-occupancy constraint, and is related to the prop-
erty of the t-J Hamiltonian. It is the transverse gauge
fluctuation that becomes singular in the long-wavelength,
low-energy regime in the uniform RVB state.36:37 This
transverse field would serve as a confining force in a
usual non-spin-charge-separation state. The current con-
straint (2.49) is also connected to the Ioffe-Larkin combi-
nation rule3® of the response to an external electromag-
netic field,

K.=[K;'+K; ', (2.50)
where K, and K} are the response matrices of spinon
and holon systems under effective Hamiltonians H, and
Hj, in Egs. (1.2) and (1.3).

In gauge theory, the dynamics of the gauge field a;; is
determined after the spinon and holon degrees of freedom
are integrated out.3%3¢ When the gauge fluctuation is
weak, one may use the Gaussian approximation, and the
gauge-field propagator Dg, = —(Traua,) (p, v = x, y)
in imaginary time can be determined by3:36

D® = —[K, + Kz]™* (2.51)
in imaginary-frequency space. In the present system,
holons are under some fluctuating flux described by A%,
(cf. Sec. IV), and its response function will follow the
usual metallic q and w dependences:3® iwoy, — xpg?. The
most interesting behavior will come from the spinon part
K, as discussed below.

In the spinon part of H.g, there is a sign o = %1 in
front of the topological phase A:’J This sign means that
spinons with 1 and | spins see the fictitious flux quanta
carried by holons in opposite directions. Since there is no
such sign in front of the gauge field a;;, a nonzero a;; will
then polarize the spinon system with regard to spin o.
This polarization is generally energetically unfavorable,
and we expect a suppression of the gauge field a;; to
stabilize the system.

A mathematical demonstration is straightforward. As
will be discussed in Sec. III, one may rewrite Af‘j as

Az’-‘j = /ﬂ‘j + JA%, where /E'j is a “mean field” with the
flux quanta uniformly smeared out in space. A uniform
fictitious magnetic field B, = 7d/a? will correspond to
such a vector potential fifj On the other hand, JA?]- will

be correlated with the holon density fluctuation. If one
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integrates out the spinon degree of freedom (under the
“mean field” A:‘J) in L.g, an effective action for quadratic
fluctuation of the gauge field is found by

S,[a,6AP] = % Z (a + a&Ah) I, (a + U5Ah) , (2.52)
o
where II,, is the response matrix of spinon ¢ under a ficti-
tious magnetic field c B®. K, will be determined through
S, = %a.K".;a,,"0 and one needs to further integrate out
§A" in Eq. (2.52). As a first step, if one neglects the § A"
dynamics, by directly integrating out § A" in Eq. (2.52),
the following expression for K, can be obtained:
-1

K, =407t + n;l] . (2.53)

The key thing here is that the up and down spinons see
the opposite fictitious magnetic fields, and the Hall con-
ductance terms in II+ and IT| will have opposite signs. As
shown by Wiegmann® in a generic situation, due to the
same amplitude but opposite signs of the Hall conduc-
tances, K, in Eq. (2.53) must exhibit the “Meissner ef-
fect” in the transverse channel: i.e., K}t = 1/4wA% # 0 at
w = 0 and the q — 0 limit. Here we find 1/A? = wBJ,.
Such a “Meissner effect” implies that the gauge field
will get suppressed in the spinon system. In the long-

wavelength and low-energy limit, K, becomes dominant
in the transverse channel of D® as K; ~ 0, and a nonzero
K then leads to a gap o §.J in the transverse gauge fluc-
tuation (2.51) (Anderson-Higgs mechanism). This gap
means a spin-charge deconfinement as pointed out be-
fore. In contrast, a finite K, ! will play a negligible role
in the electromagnetic response function K. in Eq. (2.50)
at small q and w, and one finds

K. ~ Kp, (2.54)
in such a limit. So the holon degree of freedom solely de-
termines the long-wavelength, low-energy response to an
external electromagnetic field in this spin-charge separa-
tion system. Obviously, all these features will disappear
at § — 0 as Bj, vanishes.

The above conclusion is still true if one includes
the §A" dynamics by adding a term %JAhDA_léAh in
Eq. (2.52). Here D4 is the free propagator for § A* which
is related to holon density fluctuation as follows:

2
A q ql/ ™ h
i (o %) (52).

with D,’,‘ as the holon density-density correlation func-
tion. Then Eq. (2.53) is modified as

(2.55)

K, = [(nT DAY 4 ngl]*l + [H;l (I + DA_I)‘l] -

-1
-1 -1 -1 Ay—1y7—1
LR et e i B

Since D“ does not have a transverse-longitudinal mixed
term (the Hall term), the above conclusion about K,
can be easily found to remain unchanged as long as
DA approaches a constant or vanishes slower than g2
when ¢ — 0. (Note that the density-density correlation
function®® of a hard-core boson gas is very similar to a
free-fermion gas, and in the latter case one has D:,‘ ~
const at w =0 and ¢ — 0.)

III. SPIN DYNAMICS AT FINITE DOPING

Spin dynamics in the insulating cuprates has been well
understood within the framework®® of the Heisenberg
model. A real important issue is how the antiferromag-
net is affected under doping. In this section, we will ex-
plore such a doping effect under the spin-charge separa-
tion scheme, and compare its unique features with those
found in the cuprates. We first consider the 1D case,
where exact analytical results are available for compari-
son.

A. Spin-spin correlation in one dimension

The present case corresponds to the large-U limit of the
Hubbard model, whose exact solution®? was obtained a

-1
—1 —1 —1 Ay—1y7—1
[HT + I+ TN (DA) ] (2.56)

[

long time ago. However, only recently have the underly-
ing physics and various correlation functions been clari-
fied, following Anderson®%4! and other authors.40:45:46,42

The spin-spin correlation function is one of important
correlation functions in 1D. According to a numerical
calculation*® based on the exact solution, a 2ks oscilla-
tion is present in the spin-spin correlation function. One
may naively relate this incommensurate structure with
the existence of a large electron Fermi surface (points at
ks and —ky). A similar argument may also be applied to
the 2D case. This observation should be physically rea-
sonable, but by itself is not sufficient to get the correct
spin dynamics. Many rich effects will be involved here
due to strong electron-electron correlations. In fact, one
has a spin-charge separation. In this case, the spinons
are presumably responsible for the spin dynamics. But
at the same time, holons as solitons of doped holes bound
with spin domain walls will also contribute to spin prop-
erties. A combination of these decides a peculiar doped
spin-spin correlation, which is highly nontrivial from a
Fermi-liquid point of view. In the following, we will show
how a correct spin-spin correlation can be obtained with-
out directly involving the electron Fermi surface.

In the present scheme, the spin-flip operator S in
Eq. (2.46) can be expressed in 1D in terms of Eq. (2.20)
as
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S = (~1)ibl by e Tisi i, (3.1)
Here a prominent feature is a Jordan-Wigner-type non-
local phase 737, ; n}* which involves the holon number
operator. At first glimpse, it may seem strange for a
holon number operator to appear in a spin expression.
But this is not new, and has already been found in Ref.
42 by a path-integral approach, as a result of spin-charge
separation. It actually describes the effect of spin do-
main walls carried by holons mentioned above. This is
easy to see if one freezes the dynamics of spinon b;, by
letting it “condense” in Eq. (3.1). Then one would have a
Néel order in the spin z-y plane when holons are absent.
For each added holon at [ site, one finds an extra sign
er™ = —1 for every S;' at i < I, which means a flip for

(S (£)S5(0)) = (—1)"77 (bl (£)b;+(0)) (bsy (£)b], (0)) (€™ Tiws ™t (1) Fim Ty mi (0

Since b;, and h; as described by Egs. (1.2) and (1.3) are
hard-core bosons, each average on the right-hand side
of Eq. (3.2) can be evaluated straightforwardly in the
asymptotic limit (see Sec. IIB, and Ref. 42). For exam-

ple,

cos(g-6x)

Him 3, nf (b)) ,Fin T,5; nlt(0) _ P \2a"%)
e >i e i fo'e
( ) (z2 — U,2lt2)1/4 ’

(3.3)

with z = z; — z; and vy, = 2tpasin(wé). The final result
is
cos(2ksx)

(Sj'(t)Sj_(O)) x (22 — v3t2)1/2(m2 _ vitz)l/u

(3.4)

where ks = (1 — 0)m/2a. The doping effect as described
by the phase shift in Eq. (3.1) enters Eq. (3.4) by chang-
ing the oscillation from 27 /a to the incommensurate 2ky,
and at the same time contributing an additional power
(22 — v3t?)~1/4. It is noted that (S7(t)S%(0)) cannot be
directly computed at the same level of approximation as
explained in Sec. II, but it should follow the same be-
havior due to rotational invariance.

Equation (3.4) recovers the correct spin behavior at
the strong-coupling fixed point of the model (i.e., the
large-U Hubbard model). It suggests that the present
state indeed catches the correct characteristics of charge-
spin separation in 1D, even though such a scheme was
originally constructed for 2D.

B. Doping effect in two dimensions

In the one-dimensional case, spinons and holons are de-
coupled, and the doping effect on spin dynamics is solely
contributed by the spin domain walls carried by holons.
In 2D, this nonlocal doping effect takes a different form,
because spinons and holons will no longer behave like free
solitons. As noted before, the topological phase A:.‘j in

all those spins. In other words, there is indeed a spin do-
main wall accompanying each doped hole, and that is the
physical reason why the holon number operator enters
into Eq. (3.1) nonlocally. We note that the nonlocal field
appearing in Eq. (3.1) can be also related to the phase-
shift field that leads to the Luttinger-liquid behavior and
an electron Fermi surface satisfying the Luttinger-liquid
theorem in the single-electron propagator, which is to
be discussed elsewhere. In fact, a 2k oscillation in the
spin correlation function will arise naturally due to this
nonlocal field as shown below.

Due to A3; = A;‘j = 0 in 1D, holons and spinons are
decoupled in the Hamiltonians (1.2) and (1.3). The non-
local phase in Eq. (3.1) will then solely determine the
doping effect. One may write

(3.2)

f

H, cannot be gauged away in 2D, and it will represent a
new type of nonlocal influence of doping on spinons.

1. New length and energy scales introduced by doping

As shown in Sec. II, the gauge fields confining spinons
and holons are suppressed at finite doping. But there
are still residual interactions between spinons and holons,
and spinons can always feel the existence of holons non-
locally by seeing the flux quanta bound to the latter.

Let us first see how this exotic interaction can change
the topology of a holon. In the spin-flip operator Si+
[Eq. (2.46)], one has a nonlocal phase [}, ;Im In (z; —

z;)n}] involving the holon number operator. Similarly
to the domain-wall picture in 1D, one may interpret it as
describing a spin vortex in the z-y plane with vorticity 27
bound to each holon. This could be seen if one freezes the
dynamics of bIa and treats it as a number in Eq. (2.46).
But bga here can no longer be regarded as a constant
quantity because it is under the topological phase A?j
in H,. A Berry-phase counting shows that the phase in
b;‘a cancels out the effect of the nonlocal phase shift in
Eq. (2.46) such that there is actually no 27-vortex topo-
logical texture formed around a holon. Nevertheless, if
one goes along a line across such a holon, one can still find
a domain-wall-like spin singularity at a holon site similar
to that in 1D. Thus, a holon in 2D is no longer associ-
ated with a spin topological object. Instead, it may carry
a Shraiman-Siggia-type®! dipolar texture with vorticity
= 0. Such an object will not break the T' and P symme-
tries. One expects a strong dynamical renormalization
to be involved in determining the profile of each holon.
However, we are not interested in the single-doped-hole
problem here. We shall focus on a finite doping con-
centration in the following, where a useful mathematical
description becomes available.

For simplicity, we are going to use a continuum ver-
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sion of the spinon Hamiltonian H, by taking the lattice
constant @ — 0. This continuum approximation may
be justified at small doping and in the low-energy, long-
wavelength regime, where the amplitude of A" is small
and the spinons as bosons mainly stay near the bottom
of the energy band. Such a continuum version for H, in
Eq. (1.2) can be easily written as (cf. Ref. 68)

aAh)

i, Z / &r bl (r bo(r),  (3.5)
with m, = (2J,a2)~! and A”(r) defined by
Ar(r) = /d2 2 (’ = Bx(r=r) o). (3.6)

Here pp(r) is the holon density, pp = Af(r)A(r).

We note that Eqgs. (3.5) and (3.6) would describe a
semion problem®” if the holon density px(r') were re-
placed by the spinon density. The mathematical simi-
larity suggests that one may borrow the method devel-
oped in the anyon problem.67:82:83 The idea is to rewrite
ph = Pr+(pr—pn) in Eq. (3.6) by introducing an average
holon density g, = §/a%. Then A"(r) is rewritten as

A" (r) = A" (r) + 5AR(r) (3.7)

Here A"(r) corresponds to ppn, and in the symmetric
gauge it may be expressed by®>%3 Ah(r) = Ba(z x r)
with By, = mpy. Physically, the vector potential A" de-
scribes a mean-field magnetic field B, obtained after the
flux quanta bound to holons are uniformly smeared out
in space. §A"(r) in Eq. (3.7) is the fluctuation part,

/dz 'z[xr—(_——l——)“[f’h(r)—ﬁh],

which can be treated perturbatively. We emphasize that
in an anyon problem, §A" would correlate with anyon
density fluctuation and represent®?:83 a long-range inter-
action among anyons. Here §A” is determined by the
density fluctuation of holons instead of spinons them-
selves, which belong to an independent degree of freedom.
Thus one expects §A"(r) to provide an independent dy-
namical scattering source in Eq. (3.5) just like phonons
in a usual electron system.

The separation (3.7) is meaningful when the hole den-
sity is not too low. With the presence of a fictitious
magnetic field By, a new length scale is introduced to the
spinon system, which is the magnetic cyclotron length

1 a
vBn s
l. will later be connected to the antiferromagnetic cor-
J

SAM(r) = (3.8)

I, = (3.9)

Saﬁ(qv w) =

L / dteivt / dre=i9F (S (r,t) - S5(0,0)).
T J—oco

relation length. At this mean-field level, a Landau-level
structure appears in the spinon energy spectrum, and a
basic energy scale is the cyclotron energy

By,

mg

= 276J,. (3.10)

We =

Another energy scale measuring the broadening I'; of
each Landau level caused by the fluctuation § A* should
be also correlated with the doping concentration. I', will
be related to an important low-energy scale in spin dy-
namics. It can be estimated to be of an order of magni-
tude ~ 6J if the energy scale of the fluctuating §A”* is
sufficiently small. I'; could be even sharper when the fluc-
tuating A" has a higher-energy scale as holons become
more mobile at finite doping. Of course, different Landau
levels generally could have different broadening widths,
and a further discussion will be given later. A similar
broadening problem in a semion system has been recently
studied by Levy and Laughlin,®* where the dynamics of
JAP" is already known from random-phase-approximation
(RPA) calculations. In the present case, the dynamics of
A" is directly related to that of §pn = pr — pn, which
will be in turn determined by coupling with the spinon
degree of freedom. So a self-consistent treatment of the
Landau-level broadening could be very complicated here.
Nevertheless, for the purpose of understanding the basic
characteristics for spin dynamics, only a general shape
of the Landau-level broadening is needed, and a detailed
structure will not be crucial.

Besides the length and energy scales, we point out that
there also exists a basic temperature scale which is re-
lated to the Bose-condensation temperature T} of the
bosonic spinon b;,. Recall that for a 2D free-boson gas,
a 2D Bose condensation is always suppressed by the ther-
mal excitations at any finite temperature, due to a finite
density of states at low energy. In the present case, due
to the broadening of the lowest Landau level (LLL), the
low-energy density of states presumably will fall off con-
tinuously to zero at the LLL energy bottom. Thus the
low-lying thermal excitation has vanishing weight at the
low-energy tail, which could not halt the Bose condensa-
tion of spinons at a sufficiently low temperature. As will
be demonstrated later, T will represent an important
temperature scale in spin dynamics.

2. Spin susceptibility function

The spin dynamic structure factor S(q,w) is defined
as a Fourier transformation of the spin-spin correlation
function

(3.11)

Sap(q,w) can be directly measured in neutron-scattering experiments, and is related to the dynamic spin susceptibility
function x.g(q,w) through the so-called fluctuation-dissipation theorem,
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1 —Bw1—1
Soz (qaw) = ; [1 —€ p ] ngﬁ(q’w)’ (3‘12)

where 8 = 1/kpT and x,,5(¢,w) = Imxas(q, w+1i01) is the imaginary part of the retarded spin susceptibility function.
In the Matsubara representation, the transverse spin susceptibility is defined by

B . )
x(q, twy,) :/ dTe“"""'/dzre_“""(T,.S+(r, 7)S87(0,0)), (3.13)
0

with w, = 27n/8. In terms of a continuum version of Eq. (2.46), one may write

2 . ‘ . p(r,T . (0,0

T,S*(r,7)S7(0,0)) = L Q0T | (T bt (r, 7)by (0, 0)et Sio A™dry (T p r,7)b1(0,0)e &N Adry (3 14

1 + + 1 4
Qo .

in which Qo = (£Z,+Z) are the AF wave vectors. A" in Eq. (3.14) is from the nonlocal phase in the spin expression

a

(2.46). In the mean-field approximation with A* replaced by A", Eq. (3.14) may be rewritten as

2 ) e
(T-8%(r,7)57(0,0)) = % Y eiQr | 2ifs AMdr Gl (—r, —1)Gi(r, T), (3.15)
Qo

where the line integration on the right-hand side is chosen along a straight line connecting (z,y) and (0, 0) on the 2D
plane. The Green’s function G is defined by

Gy (r,7) = —(Trb,(r,7)b} (0, 0)). (3.16)

bs(r) may be expressed in the representation of the Landau levels as b,(r) = 3°_, (r|nk)b7,, where n = 0,1,2,... is
the Landau-level index and & is the quantum number inside each Landau level. Correspondingly,

Go(r,m)= =) > (rlnk)(n'k'[0)(T-b74 (7) (b74) (0))

n,k n',k'
_ _Z<r (Z |nk><nk1) ><T b)) (0)
n k

=) 15 (r,0)Gg (n, 7). (3.17)

In obtaining last line of Eq. (3.17), the k dependence of the Green’s function Gy = —(Tybnk(7)b], (0)) has been
neglected. Note that k represents the center of each cyclotron orbital in the present symmetric gauge and the k
dependence of Gy should not be important due to the translational invariance of the system. IIZ(r,0) in Eq. (3.17)
is given by®?

I%(r, 0) = (2;) I3 (r, 0), (3.18)

with L, (t) as the Laguerre polynomials, Lo(t) = 1, Ly (t) = 1 — t, etc., and

- 1
I15(r,0) = onlE P [-r?/412]. (3.19)
Then one gets
. dw'dw" n(w") — n(w')
x(q, iwn) Z Kim(a) / 5 Po(l, ) pe(m, “’")m’ (3.20)

l,m=0

where

0.2 ,’,,2 ,'.2 _r2 .
Kim(q)= 327302 Z/derz (2—102-) L, (ﬁ) e 2Ze i (a-Qo)
é Y bt
~ i [ L@ L) (V3 0 - Qul), (3.21)
0
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with Jo(z) as the Bessel function, and the spectral function p; is defined through

dw' pp(l,w’)
2T fwy — w'’

GS (1, iwn) = / (3.22)
in which the spin index o has been omitted for simplicity since p, does not explicitly depend on it in the unpolarized

case. n(w) = 1/(eP“—1) in Eq. (3.20) is the Bose distribution function. Note that the spectral function ps(l,w) ensures

waO-——

S (2n12) 1 [ (de/2m)pll w)n(w) = (1 — 6) /202,
Finally x”(q,w) is found by

X”(q’ w) = —WZK”I(Q) [w %“—;—,pb(l’w’)pb(l/’w + w’) [’n(w + w’) — n(w’)] .

L

In the next sections, we shall examine the q dependence,
w dependence, and temperature dependence of x”(q,w)
and compare them with neutron-scattering and NMR ex-
perimental measurements in cuprates.

3. Basic characteristics of spin dynamics in 2D

The spin susceptibility x"’(q,w) in Eq. (3.23) will char-
acterize the basic features of the spin dynamics. The
real part of the spin susceptibility can be also deter-
mined from x"(q,w) through the Kramers-Kronig rela-
tion. Here we shall mainly focus on x"(q,w) in the vicin-
ity of the AF wave vector Q¢ and low energy w.

As discussed in Sec. I, doping creates a Landau-level
structure in the spinon spectrum. So low-lying spin fluc-
tuations are expected to be sensitive to doping. Due to
the particular Landau-level structure, one can distinguish
two types of contributions to x”'(q,w), which correspond
to an intra-Landau-level transition and an inter-Landau-
level transition, respectively. We will show below that
these two processes are related to the so-called commen-
surate and incommensurate AF spin fluctuations in the
present state.

Commensurate AF fluctuation. First we consider
x"(q,w) at small w such that only the intra-Landau-
level transition contributes. At low temperature with
spinons staying in the LLL, the q dependence of x"(q, w)
[Eq. (3.23)] is solely decided by Koo(q):

)
Konla) = 557 Soxp (10555
Qo ¢

in terms of Eq. (3.21). Equation (3.24) shows that
x" (q,w) will be peaked at the AF wave vector Qo’s. The
corresponding spin fluctuation is known as the commen-
surate AF fluctuation. With the increase of temperature,

J

X”(QO’“}) = d

~16 / %“,,L’ Zpb(l,w’)m(l,w + ') [n(w + ') — n(w')].

p > 0, where wq is the energy minimum of spinon spectrum and p is the chemical potential determined by

(3.23)

f

spinons can be thermally excited to higher Landau lev-
els such that Ki1(q), K22(q), etc., will contribute. For
example, K11(q) has the following form:

8 la — Qo?\* la — Qo?
K“(q):m;(l__TlC:z— exp |~ =2 )

(3.25)

which is still peaked at Qo with a width essentially the
same as Koo(q) in Eq. (3.24). Ky at higher [ can be
checked by numerical calculation and generally a Gauss-
ian (3.24) is well satisfied when ! is not too large. This
means that the width is not sensitive to temperature.

Thus, when the intralevel transition dominates,
x"(q,w) generally follows a Gaussian:

' (@w) ~ exp <_|i“_Q°_|2_> Aw), (3.26)

@0?)

around Qo, where 0 = 1/l and A(w) = x"(Qo,w). The
Gaussian (3.26) with a width o determines the spin-spin
correlation in real space: cos(Qp -r) exp[—|r|2/€&2], where
the correlation length

V2 2
= —=a
g

¢ = (3.27)

)

is in the same order of the average hole-hole distance.
Namely, the doped holes break up the long-range AF
correlation into short-range AF fragments with a length
scale ~ €.

The energy scale of this AF fluctuation will be char-
acterized by the w dependence of A(w) = x"(Qo,w) in
Eq. (3.26). Since only the intralevel transition is involved
here, the magnetic energy scale will be basically decided
by the broadenings of the Landau levels. The expression
of x""(Qo,w) can be found as

(3.28)
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Here the broadening width I'; of the spectral function ps
for a given Landau level is generally of the order §J, as
caused by the fluctuation §Aj;. The detailed broaden-
ings will be sensitive to d A, and other factors, which is
to be further discussed later. Equation (3.28) has been
obtained from Eq. (3.23) by using

é
K ’ = —5 ! 3.29
u(Qo) Ton 00" (3.29)
in terms of Eq. (3.21) and the orthogonality of the La-
guerre functions,

/ dyLi(y) Ly (y)e™ = oi,ur. (3.30)
0

[The contribution to Kjr(Qo) from the other three Qq’s
is exponentially small and has been neglected.]

The typical w dependence of x”(Qo,w) is shown in
Fig. 1 at various temperatures. The choice of the spectral
function pp and other parameters in Fig. 1 is to describe
the underdoped YBayCu30¢.6, which will be explained
in the next section. Here we mainly focus on the general
features shown in Fig. 1. Besides an overall small en-
ergy scale decided by the Landau-level broadening, Fig. 1
shows an interesting temperature effect characterized by
the Bose-condensation temperature 7. When T > T,
one finds x”(Qo,w) x w/T at small w. The slope of
the linear w dependence increases with the decrease of
T. However, this increase gets arrested at T = T,
and when T' < T} the low-energy part of x"'(Qo,w) be-
comes continuously suppressed instead. This feature re-
sembles a typical “spin-gap” behavior. When T < T,
the spinons begin to condensate into the bottom state
of the lowest Landau level. The contribution due to the

10 T T T T
T = 175K
o T'=0.07xT;
8 - 6 T=07xT* -

o T=10xT;
AT =24xT;

x"(Qo,w)(arb. unit)

w (meV)

FIG. 1. x"(Qo,w) vs w. A pseudo-spin-gap behavior is ex-
hibited at T < T, where the low-energy part (=~ 5 meV)
is continuously suppressed with the decrease of the tempera-
ture. The spectral function in x"'(Qo, w) is chosen to describe
YBa>CuzOe.6 (see text).

transition from such a condensate state to the rest of the
quantum states in the broadened LLL will then emerge
in x”(Qo,w). This process effectively will map out the
shape of the spectral function of the same Landau level,
and becomes dominant with the decrease of temperature.
In fact, at T = 0 when all the spinons are condensed,
X" (Qo,w) in Eq. (3.28) is simply reduced to

X" (Qo,w)r=0 = (16) po(l = 0,w)r=o, (3.31)
with n, = 1 — §, which is directly proportional to the
spectral function p;(0,w) of the LLL. If py(0,w) has a
small Lifshitz tail before it vanishes at the low-energy
end w = 0, a gap feature is exhibited in x"(Qo,w) as
illustrated in Fig. 1. Even in the case that pp(0,w) does
not approach to zero very fast at w = 0, x”"(Qo,w) could
still generically show a pseudogap trend below T < T*
as described above. This spin-gap behavior and the tem-
perature scale T} are the unique and important features
of the present spin state.

Another interesting property of x"(q, w) is its behavior
at w — 0 limit. This behavior can be probed by NMR
measurements.® The NMR spin-lattice relaxation rate of
nuclear spin due to the coupling to spin fluctuation de-
scribed by x"(q,w) is given by®®

Til =l s g2 ___—_X"(z’ @) (3.32)

w—0

where the form factor A%(q) is from the hyperfine cou-
pling between nuclear spin and the spin fluctuation. For
63Cu(2) nuclear spin in the cuprates, with the applied
field perpendicular to the CuO; plane, the form factor
A2(q) is found to be!l:12:14

Az(q) “”Cu =

where the hyperfine couplings A, and B are estimated
as'* A, /B ~ 0.84, B ~ 3.8 x 107* meV (these coeffi-
cients may slightly vary among YBCO and LSCO com-
pounds). For 70(2) nuclear spin, one has!!:12:14

[A1 + 2B(cosgza + cosgya)®, (3.33)

A%(@) |1 = 2C?[1 + cos(gza)] (3.34)

with C ~ 0.87B.'* AZ%(q)|iro in Eq. (3.34) vanishes
at ¢ = Q. Thus a combined measurement of 1/53T}
and 1/7T; can provide g-dependent information about
x"(q,w) at w — 0.

In the present framework, x"/(q,w) have been already
obtained in Eq. (3.23). So by substituting it into the
above 1/T; expression, it is straightforward to get

ch,/—n (W)[1 + n(w)] [os(l,w)])?, (3.35)

where

52B? Aﬁ_ A_L 2 a? —a?/g?
o=t () % ()

4
f 44 (%z) e—‘mz/f“] .

(3.36)
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In obtaining Egs. (3.35) and (3.36) only the intralevel
transition (i.e., I = !') is involved. Using the same
x"(q,w) whose w dependence at q = Qg is illustrated
in Fig. 1, one finds the corresponding 1/%3T,T vs T as
shown in Fig. 2. In contrast to a usual Korringa rule for
a Fermi liquid, 1/71T ~ const, Fig. 2 clearly depicts a
non-Korringa behavior which falls off like oc 1/7T at high
temperature. And 1/%3T,T is peaked at the character-
istic temperature T, below which x”(Qo,w) begins to
develop a “spin-gap” behavior.

On the other hand, at the 17O(2) site, the coefficient
C; has to be replaced by CP in Eq. (3.35):

82C? a? 2 /02
O 2 —a
Ccr = [I—Ll (—52)6 /5].

The difference between 1/%37; and 1/17T; is due to the
different weight functions [Eqgs. (3.33) and (3.34)], which
pick up the commensurate magnetic fluctuation around
q = Qo at the %3Cu(2) site, but suppresses such a con-
tribution at the !70(2) site. CP in Eq. (3.37) simply
vanishes at £ — oo: the long-range AF limit where the
whole contribution is from q = Qo. At £ = 4a, for ex-
ample, we find a reduction of ~ 1/93 for 1/"T; as com-
pared to 1/ 63T, . Thus the commensurate AF fluctuation
as described by Eq. (3.26) has a negligible contribution
to the spin relaxation for planar oxygen nuclei of the
cuprates. In contrast, nonmagnetic incoherent contribu-
tions should not be suppressed so strongly by the form
factor, and would become the dominant contribution in
1/YT; as well as in the Knight shift,® which measures
the real part of the spin susceptibility near q = 0.
Hence, x"(q,w)/w at w — 0 gives rise to a non-
Korringa behavior of the NMR spin relaxation rate. This
1/T law of 1/T1T can be obtained analytically, if the
broadening I'? of the spectral function p, for the LLL

(3.37)

T = 175K

1/ STT (sec' K

T/T;

FIG. 2. The NMR spin-lattice relaxation rate for the pla-
nar Cu nuclei calculated in terms of the same spectral function
used in Fig. 1.

is small as compared to temperature. That is, when
I « T < w, (and of course T > T*), one has

1 D

~

e T T’

(3.38)

in terms of Eq. (3.35), where D = nCon,/T'%62. Next let
us consider the case when the temperature is further in-
creased such that more Landau levels are involved. Here
we have to assume a general Lorentz-like broadening for
each Landau level with I', = 0.4w. o §. Then 1/%3T}
at high temperature is shown in Fig. 3, where the curves
become very flat and not sensitive to the doping con-
centration. This is in contrast to the low-temperature
regime, where a strong doping dependence can emerge
[in Eq. (3.38), D ~ 1/4 if one simply takes I'? o 4].

Therefore, a full picture for the low-lying commensu-
rate AF correlation is formed for the present spin-charge
separation state. This picture is rather unique, and is
drastically different from those of Fermi liquid and local
antiferromagnetic descriptions. The doping effect plays
a key role here. It decides a doping-dependent energy
scale for the AF fluctuation, which can be much smaller
than the characteristic energies in a Fermi liquid (ey)
and an effective local antiferromagnet ([1 — §]J). It also
leads to a doping-dependent correlation length, compa-
rable with the average spacing of holes. Furthermore, the
Bose condensation of spinons determines a new charac-
teristic temperature scale, below which the low-lying spin
fluctuation is suppressed and the non-Korringa behavior
of the spin relaxation rate gets interrupted, similarly to
a spin-gap effect.

Incommensurate AF fluctuation. Now let us consider
the higher-energy regime. If w is increased such that
the inter-Landau-level transition gets involved, the sim-
ple Gaussian-like q dependence in Eq. (3.26) will be mod-

6.0 I
o 6=005
o §=0.10

| e 5=0.20_|
45 4 6=030
> 6§=0.45

6
1/63T1 (IOJJrgeV sec‘l)

T (wo)

FIG. 3. High-temperature behaviors of the Cu nuclear spin
relaxation rate at various doping concentrations. Notice that
the spin relaxation rates are leveled off at high temperature
and are essentially indistinguishable at small doping (6 < 0.2).
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ified. A typical x”(q,w) vs q is shown in Fig. 4 at differ-
ent w’s. For the purpose of illustration, we have chosen
the same broadening I'; = 0.4w. = 0.46wp for each Lan-
dau level, and T = 0.1wg, § = 0.15. It shows that the
width of the Gaussian is broadened at first with the in-
crease of w. Then the commensurate peak at Qg is split
and two incommensurate peaks emerge at some fixed po-
sitions as the interlevel transition becomes dominant. In
fact, this incommensurate structure is due to Ko;(q) in
Eq. (3.23). According to Eq. (3.21), one finds

202

— 2 _ 2
Koi(q) = % > qu%d exp (—@) , (3.39)
Qo

which leads to incommensurate peaks at a ring circling
Qo by a radius of v27d/a. We stress that the doping
concentration is presumably small here so that the lat-
tice effect is negligible. At a finite doping where the spin
correlation length becomes comparable with the lattice
spacing, the lattice effect is expected to become impor-
tant, which could strongly affect the positions of the in-
commensurate peaks in q space. In this case, both flux
and lattice have to be treated on the same footing like in
the incommensurate flux phase.®

With the further increase of w, a more complicated
structure will show up as Koz, Koz, etc., are involved.
The weight of x(q) will be further shifted towards whole
Brillouin zone, i.e., the nonmagnetic regime. At such a

1
Xélotal(w): ']\—f ; X” (q7 U))

Sy [Z pb(z,w')} [Z pp(m,w + w')] [n(w + ') —nw)].
l m

Equation (3.40) predicts that at high energy, the q-
integrated x{ ;,;(w) will be saturated at a constant level,
modulated by a Landau-level-like oscillation. We note
that the higher-energy part is contributed by those fluc-
tuations with less magnetic character. Thus it is less
easy for elastic neutron scattering to fully collect data
for x} ;. (w). On the other hand, at low energy, finite
widths of the Landau levels will lead to a more broadened
first peak in x{,,.;(w) as compared to the overall energy
peak of x"'(Qo,w) where only intralevel transitions are
involved.

C. Comparison with experimental measurements
in cuprates

The normal-state spin dynamics represents an impor-
tant characteristic for the high-T, cuprates. Many mea-
surements have been done on these materials, especially
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FIG. 4. Typical x"(q,w) vs q at various w’s. With the
increase of w, the Gaussian form first gets broadened [dotted
curves with w = 0.10 and 0.15 (wo as the unit)], and then an
incommensurate split occurs when the interlevel transition
becomes dominant (solid curves with w = 0.18, 0.20, and
0.30).

high energy, the present continuum approximation may
no longer be appropriate. Nevertheless, one could still
get some generic features. By integrating q within the
whole q space, we get

(3.40)

[

YBCO and LSCO compounds. Experimental results
have revealed rather rich phenomena, and also seem to
suggest that material-dependent effects, like the double-
layer structure in YBCO, may play major roles in the
spin dynamics. Thus, whether there is an underlying
universal mechanism for spin dynamics in the cuprates
is not transparent in terms of the experiments alone. In
the following, we argue that the present spin-charge sep-
aration scheme can relate a variety of anomalous spin
properties together, and provide a consistent picture for
these materials.

In the underdoped cuprates, like YBa;Cu3zOg ¢ and in-
sulating La; gsBag.sCuO4, a commensurate AF fluctua-
tion has been verified by neutron scattering,'%2%17 which
is peaked at Qo in x”'. These neutron data have been well
fitted?%17 by a Gaussian form (3.26), and the width o is
indeed roughly independent of temperature. The cor-
responding spin-spin correlation length follows a a/ Ve
rule similar to Eq. (3.27), as shown!® in LSCO at small
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doping. Thus the momentum feature of the commen-
surate AF fluctuation at small doping is well described
by the theory. In underdoped YBa;Cu3Og,, the en-
ergy scale of such a commensurate AF fluctuation has
been systematically investigated.!®86:87 It is found to be
doping dependent and small compared to the exchange
energy J ~ 120 meV. As discussed in the last section,
a small, doping-sensitive energy scale for the commen-
surate AF fluctuation is one of intrinsic features of the
present scheme, and is distinguished from the usual Fermi
liquid as well as the local spin descriptions. To our knowl-
edge, so far there is no other alternative theory able to
obtain such a small energy scale (K J) for the com-
mensurate AF fluctuation. Furthermore, a prominent
feature has been exhibited!®?° at the low-energy part
of the spectroscopy, where the weight of x" is continu-
ously suppressed below some characteristic temperature,
resembling an opening of a spin gap. In the present
theory, even though there is no real gap in the spin
fluctuation spectrum, a characteristic temperature T
is found to be naturally associated with a spin-gap-like
phenomenon. In Fig. 1, a typical energy and temper-
ature dependence of x"(Qo,w) has been shown, where
the spectral function is chosen to describe YBa;CuzOg g
(see below). And the overall energy and temperature
features in Fig. 1, particularly the “spin-gap” behav-
ior, are in good agreement with those found in under-
doped YBa;Cu30¢.,.1%2° In the underdoped cuprates,
the NMR spin relaxation rate of planar copper nuclei®®
manifests a non-Korringa behavior, which is suppressed
when the spin-gap feature shows up in neutron scattering
at low temperature. In contrast, a conventional Korringa
temperature behavior®® is found for planar oxygen nuclei.
The theoretical 1/93T,T has been presented in Fig. 2,
which is calculated by using the same spectral function
as used in Fig. 1 for YBasCu3Og4,. Figure 2 shows
a non-Korringa behavior at T > T as well as a “spin-
gap” feature below T*. All of them are also qualitatively
consistent with the experimental measurements [the con-
tribution of the present commensurate AF fluctuation to
1/Y"T\T is dramatically suppressed (~ 1/93 at & ~ 4a
for YBa;Cu30Og6) so that the non-Korringa signal does
not leak to the oxygen sites]. Therefore, the q, w, and
T dependences of the present low-lying magnetic fluctu-
ation at small doping are all in agreement with the main
experimental features found in the underdoped cuprates.

Let us discuss the spectral function used in the theoret-
ical calculation. According to Eq. (3.31), one may use the
experimental measurement of x”(Qo,w) at low temper-
ature to determine p;(0,w), instead of a first-principles
calculation which would involve much more complicated
factors here like interlayer coupling. As p;(0,w) satisfies
the normalized condition, if its broadening at low tem-
perature is quite large as compared to the temperature
scale in which we are interested, the temperature depen-
dence of pp(0,w) may not be important. Then x"(Qo,w)
in a whole temperature range can be determined. In
Fig. 1, we have chosen p,(0,w) so as to give the right
energy scale of x"(Qo,w) for YBa;Cu3Og.6 at low tem-
perature (Fig. 7 in Ref. 20). The contribution from the
higher Landau levels are neglected because the tempera-

ture range considered is comparatively smaller than the
broadening of the LLL. Besides the shape of p,(0,w),
an overall strength of x”(Qo,w) has also been adjusted,
in order to compare with experiment, by reducing the
spinon concentration from n, =1 —§ to n* < n,. This
is because in the present approximation the spinons are
treated as ideal bosons instead of hard-core bosons. At
half-filling, this approximation could lead to a too large
magnetization. In the present doped case, it would also
give rise to a too strong magnetic fluctuation. The hard-
core effect as well as the incoherent band in the spinon
spectrum should reduce the effective number of spinons
contributing to the AF correlation. We find a reduction
of n}/ns ~1/3 at 6 = 0.10, giving a T ~ 175 K, consis-
tent with the corresponding experimental characteristic
temperature (~ 160 K),1%20 and at the same time, lead-
ing to a spin relaxation rate whose magnitude quantita-
tively agrees with the NMR measurement.38:8

To end the discussion of underdoped materials, we
give several remarks below. Some authors® 2! have at-
tributed the spin-gap phenomenon in underdoped YBCO
to its peculiar bilayer structure. In contrast, one may
have noticed that the theory here is purely two dimen-
sional. Nevertheless, it has been noted that the spinon
spectral function p,(0,w) for the LLL has been deter-
mined directly from experiments, in which the interlayer
coupling could have been already included and may play
a key role in the broadening. Recall that in the present
scheme, there is no real gap opened in the spin spec-
trum, and the “gap” feature is very sensitive to the de-
tailed broadening of the LLL. Theoretically, for a pure
2D system one would expect the broadening of the LLL
to be much narrower at low temperature. The reason
is that a spinon in the LLL could not be scattered into
a lower-energy state while it emits a phononlike excita-
tion of §A"®, because it is already at the energy bottom.
It cannot jump up to higher Landau levels either, due
to energy conservation. Such a feature has been indeed
found in a similar problem.®* If this were true, the en-
ergy scale in the underdoped material might have been
much sharper than observed. But in insulating cuprates
like Lay g5Bag.5CuOy4,” holons should be localized and
randomly distributed such that § A* describes a random
flux with energy scale ~ 0, instead of a phononlike dy-
namic mode. Then the degeneracy of the LLL can be
lifted under the static random vector potential, and con-
sequently a much broadened LLL could appear. And
mixing with other levels is also expected here. For under-
doped YBCO, however, one is in the metallic phase, and
holes must be mobile which would lead to a well-defined
dynamics for §A*. Nonetheless, one may still expect
a strong localization tendency of holes at low temper-
ature, as suggested by transport measurements,! which
could in turn lead to a more broadened LLL than in the
optimally doped regime. Furthermore, the bilayer cou-
pling in YBCO can split a sharp LLL into two peaks
(symmetric and antisymmetric states), but for a larger
broadened LLL, the bilayer coupling may well result in
a single, much broadened peak like the one shown?® in
YBa,;Cu30¢ 6. Finally, we point out that in these under-
doped materials, an incommensurate structure has not
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been observed yet at high energy. But the width o in
Eq. (3.26) has been found to increase with energy, which
is an indication of the involvement of interlevel transition
in the present theory.

Next we consider optimally doped cuprates, like
YBa;Cu3O07_, and metallic Las_,Sr,CuO4. A strik-
ing common feature in these materials is the lack of
a commensurate AF fluctuation at low energy in neu-
tron measurements. A spin-polarized neutron-scattering
measurement?! of YBa;Cu3O7_, has only revealed a
sharp high-energy AF peak around 41 meV. In metal-
lic LSCO (z = 0.075, 0.14, and 0.15), an incommen-
surate structure has been found!® down to an energy
scale ~¥ 1 meV, and no commensurate AF correlation
is observed within the experimental resolution. However,
the absence of a low-energy AF fluctuation or the pres-
ence of a low-energy incommensurate fluctuation would
be both in sharp conflict with the NMR measurements®
which probes the w ~ 0 regime and implies strong com-
mensurate AF correlations in these materials. For exam-
ple, by extrapolating the spin susceptibility with the in-
commensurate structure observed by neutron scattering
down to the NMR frequency (~ 10~% meV), it has been
found??:23 that a large magnetic contribution could leak
to 170O(2) sites, in contrast to the measured spin relax-
ation rate 1/17T; which appears® to be completely domi-
nated by a nonmagnetic (~ g-independent) contribution.
As a matter of fact, the spin relaxation rates in LSCO
have shown canonical behaviors, which basically are the
same as those found in YBCO compounds. As elabo-
rated in Sec. IIIB 3, only a commensurate contribution
can lead to a non-Korringa behavior of 1/T; at 43Cu(2)
sites and, at the same time, be strongly canceled out at
170(2) sites. This fact has been the basis for the so-
called nearly antiferromagnetic-Fermi-liquid theory.1%:%%
Therefore, in order to reconcile neutron and NMR exper-
iments, one is led to the conclusion that a commensurate
AF fluctuation should reemerge in the optimally doped
cuprates within an energy scale beyond the experimental
resolution.

However, it is hard to perceive such a characteristic
scale in a conventional theory. So far, there have been a
number of theoretical conjectures for the mechanism of
incommensurate magnetic fluctuations in metallic LSCO.
In the Fermi-liquid-like framework, the incommensura-
bility is directly connected?®2” with the Fermi-surface
shape. But it lacks a small energy scale, within which a
commensurate structure could be recovered. The spiral
state of Shraiman and Siggia®® based on the ¢-J model
also provides an incommensurate structure. The original
spiral state is a long-ranged state, and some short-range
versions have been proposed.?4°> But a low-energy com-
mensurability is still hard to comprehend here. Some
nonintrinsic mechanism for the incommensurability due
to the inhomogeneity in the LSCO system has been also
proposed??® in order to reconcile the neutron and NMR
data, where the commensurate AF fluctuation is assumed
to be intrinsic in metallic LSCO. Nevertheless, the details
still need to be carried out in order to make a comparison
with the experiments.

The present spin-charge separation scheme is unique

in having a small characteristic energy scale of the com-
mensurate AF fluctuation, as already discussed in the
underdoped case. As pointed out there, an even smaller
energy scale could be present at the optimal regime as
the LLL broadening becomes sharper when holons are
very mobile in this larger doping regime. Due to the
narrowness of the energy range, the amplitude of x” will
be also small due to the cancellation of the Bose func-
tions inside Eq. (3.23) (one has x”/ — 0 at w/T — 0).
Therefore, this commensurate AF correlation may well
be beyond the experimental resolution to be directly ob-
served by neutron scattering. In YBa;Cu3O7_,, the bi-
layer coupling could also split the sharp LLL into two
peaks as mentioned before. It then explains the sharp 41-
meV AF peak found by neutron scattering?! as a result
of the spinon transition between these two split peaks.
On the other hand, such an AF fluctuation can give
rise to a non-Korringa law of the NMR spin relaxation
rate [Eq. (3.38)], which is consistent with NMR measure-
ments in YBCO and LSCO. Imai et al.3° have measured
1/%3T; in the Laz_,Sr,Cuz04 system up to 900 K. At
high temperature, all data (z = 0-0.15) seem to converge
and saturate to the same temperature-independent value
2700£150 sec ~!. The theoretical results shown in Fig. 3
agree well with this tendency. And if we choose, say,
wo = 1000 K, we find that the saturation value of 1/53T}
is about twice larger than the measured one, which is a
reasonable value, considering no adjustment of the spec-
tral function has been made to fit the data.

In our theory, the incommensurate fluctuation in
metallic LSCO will be attributed to the dominance of the
inter-Landau-level transition in the experimental energy-
transfer regime, as discussed in Sec. IIIB 3. To be con-
sistent with neutron-scattering measurements, the LLL
broadening has to be very sharp as explained above,
while the second level broadening is relatively larger,
which should be centered around w, ~ 10 meV in the
z = 0.15 case. When the temperature is increased such
that kT ~ w,., a large amount of spinons is expected to
be thermally excited to the second Landau level. Then in
the experimental-observable energy regime, the intralevel
transition could emerge again due to a larger broadening
in the second Landau level. Correspondingly, the incom-
mensurate structure should be replaced once again by the
commensurate peak around Q. This has been indeed
observed in a neutron-scattering measurement,'® where
a broad commensurate peak is found to reemerge around
T ~ 100 K.

The characteristic energy scale w. of YBCO seems to
be several times larger than that of LSCO for some un-
known reason. This decides the main distinction of spin
dynamics between YBCO and LSCO, in terms of the
present theory. In other words, one should expect that
at a sufficiently high energy, incommensurate structures
could also show up in the YBCO system. Of course,
many factors, especially the interlayer coupling, may
complicate the details. Due to these incommensurate
contributions at high energy, the g-integrated suscepti-
bility function xi{..., [Eq. (3.40)] will stretch up to an
overall energy scale ~ J, with a roughly constant ampli-
tude (modulated by the oscillation). Such a unique x}.,
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behavior is a high-energy prediction of the present theory
for the cuprates.

In optimally doped LSCO.and YBCO, the spin-gap
feature is absent in the commensurate spectrum due to
the fact that the energy scale is too small. But accord-
ing to the theory, a pseudogap should be also present
in the LSCO compounds below T, which involves an
interlevel transition instead of an intralevel transition in
the commensurate fluctuation case. This pseudogap phe-
nomenon has been clearly shown by neutron scattering.®
In these optimally doped cases, the spin characteristic
temperature T should become very close to the super-
conducting transition temperature 7., to be consistent
with neutron-scattering and NMR measurements. In the
present theory, a superconducting transition will occur
when spinons and holons are both condensed. Usually
one finds T} > T, at small doping. But when the spinons
are condensed, the frustration effect on holons from the
spin part (see next section) will be reduced too, which in
turn is in favor of the Bose condensation of holons. In
other words, T, and T may correlate with each other.
An optimal regime in the present theory may be properly
defined as when T} and T, coincides. A further discus-

sion of the superconducting transition will be presented

elsewhere.
IV. TRANSPORT PROPERTIES

Due to spin-charge separation, the holon degree of free-
dom is to be solely responsible for the electron-transport
phenomenon in this system. As noted before, the nonlo-
cal phase A;; in the holon Hamiltonian (1.3) will provide
an unconventional scattering mechanism in two dimen-
sions, as in contrast to the 1D case where it vanishes and
holons simply behave like free particles. In the following,
we will explore 2D transport properties under such an
effective Hamiltonian H}y. Similar to the magnetic prop-
erties discussed in Sec. III, transport will be another
crucial test for the experimental relevance of the present
spin-charge separation theory.

For simplicity, we may consider Hp, in the continuum
limit at small doping. The validity of the continuum
approximation will be discussed later. The corresponding
continuum version of Eq. (1.3) has the form®

— _ 8\2
(—V A)h

= / )] (4.1)

where the holon mass m; = (\/ithaz)“l and A? is defined
by A® = A5 + A?, with

o zx (r—1
A= fer= oD e )
Here pZ(r) = b} (r)b,(r) is the local spinon density with
spin index o. Similarly to the lattice version [Eq. (1.5)],
Eq. (4.2) describes fictitious m-flux quanta bound to
spinons, and the sign 0 = +1 in front of the integration
means that spinons with different spins carry flux tubes
in opposite directions (see Fig. 5). In an unpolarized sys-
tem, one has (p?) = (p}) so that on average (A°) = 0.

;+TC

il

FIG. 5. Fictitious flux tubes attached to the spinons (solid
circles) which are seen by the holon (open circle) on a 2D
plane.

In other words, the scattering source as contributed by
spinons may be regarded as a sort of fluctuating gauge
field, and no T- and P-symmetry violations occur here.
Gauge-fluctuation-related scattering mechanisms have
been intensively studied3> 37 within the framework of the
uniform RVB state. So we need to distinguish the present
gauge field A® and those studied in the literature. Since
the fictitious flux quanta are bound to spinons in the
present case, let us first consider the local density distri-
bution of spinons. At small doping, spinons are forming
fluctuating AF domains, as discussed in Sec. III, within
the spin correlation length £ > a. For the purpose of illus-
tration, an extreme case is shown in Fig. 6, where £ ~ a
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FIG. 6. An extreme case of short-range AF correlation.
The + and — signs represent a spin configuration or, equiva-
lently, an array of fictitious flux tubes bound to the spinons.
The solid closed path cuts through those dimer pairs of spins
and the total flux enclosed satisfies a perimeter law (see Ref.
98).
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and only a pair of 1 and | spinons are bound together
like a valence bond. + and — signs in Fig. 6 represent
a spin configuration or, equivalently, directions of the n-
flux quanta attached to spinons. If a holon moves about
a closed path C as shown in Fig. 6, the accumulated flux
will obviously have a large cancellation within the loop,
with only the contribution from those near the path C
whose pairs are cut by the loop. Then the mean-square
accumulated flux will follow a perimeter law: o< L¢ (L¢
is the perimeter of the loop C). It is easy to observe that
this perimeter law is generally true as long as there exists
a short-range AF correlation, which is present at small
doping and within a temperature range kT < J. This is
in contrast to the gauge fluctuation in the uniform RVB
state where fluctuating flux satisfies®®°7 an area law in-
stead of a perimeter law. And the present flux problem
is more similar to a random flux problem in the so-called
“Meissner phase,”® where a perimeter law is present.
But in the conventional case, the strength of the fluctu-
ating flux is presumably weak so that the accumulated
flux enclosed in a loop will become negligible when the
loop is small enough. In this case only the long-distance
behavior matters, and a perturbative approach may be
applicable which is similar to a usual phonon-scattering
problem.

However, in the present case, each flux tube attached
to a spinon is quantized at w. It means that a slight
deformation of the path C, with one spinon enclosed or
excluded, could lead to an additional Berry phase +=
or a sign change of the wave function. A strong phase
interference is therefore expected at a short distance®®
due to the high density of spinons at small doping. Such

K(,0) = [ Dr)De,Dr,(0) [ DA (1) [ DB v,

in which

a short-distance effect can drastically change the nature
of scattering mechanism which in the usual case would
only involve long-wavelength processes. This is going to
be a key distinction between the present theory and the
usual gauge theories. We will see that such a short-range
interference can lead to an exotic “localization” effect of
holons, and result in a set of very interesting transport
anomalous in longitudinal and transverse channels.

We begin by considering a single-holon problem. For a
one-body problem, a Feynman path-integral formulation
will become very useful. The transition amplitude for
a holon to travel from a to b in space under the vector
potential A? is given by0°

ty b
Sw[b’a]zft dt [%f2+%fg+%iﬂ —/ dr,,.A;(r,,)—/ dr, - A* (r,)

+ [T #A® - = n) B0 (- x),

where my, +my, +mg = m;. Extra degrees of freedom are
thus introduced in Eq. (4.6). Without the last term in-
volving the Lagrangian multipliers A and 3, Sxglb, a] in
Eq. (4.7) would simply describe three independent par-
ticles: a free holon with mass m; known as h species,
and p and ¢ species which interact with the vector po-
tentials A% and A?, respectively. The fields A and B
play the role to recombine these three species together as
a real holon, and thus effectively eliminate the additional
degrees of freedom in the end.

So far no approximation has been made. By introduc-
ing p and q degrees of freedom, the effects of A% and
A’ are separated. In terms of Eq. (4.2), A2 may be

b
K(bya) = / Dr(t) il (4.3)
a
with the action
ty
S[b,a] = [ dt [t - (A4 +A%)]. (44)
By introducing the identities
ED NN
A (r—rp) — §(p —
/ (271_)26 » (r—rp), (4.5a)
dz_'aeiﬂ(r—rq) =6(r —r,) (4.5b)
(27)? 7 ’
K (b,a) may be rewritten as
(4.6)
b
(4.7)
rewritten as A2 = cA® + §A2, where
A B, .
A? = 7(2 xr), (4.8)

with B, = (1 — é)7/2, and §A? has the same form as
Eq. (4.2) but with p? replaced by dp% = p2 — (p2). A
similar procedure has been used in dealing with the topo-
logical phase A" in spinon system (cf. Sec. III), and is
familiar in an anyon problem.32:%3 Here o0 A® describes a
mean-field effect with the flux quanta smeared out uni-
formly in space. And §AZ represents the fluctuation of
the flux quanta due to the density fluctuation of spinons
with spin index o. In the following, we shall show that,
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to a leading order of approximation, the effect of §A2
in the action (4.7) could be effectively represented by a
relaxation of the binding constraint enforced by A and
B within a scale of the cyclotron length d. of p and ¢
species (under the fictitious field B,). Under such an
approximation a renormalized holon will be a composite
particle of a bare holon and the p and ¢ species which
are in the cyclotron orbitals. Below we elaborate this
approximation.

Due to the symmetry, one only needs to focus on the
p species. Let us consider an arbitrary closed path C
on a 2D plane (Fig. 7). The contribution of A% to the
transition amplitude in Eq. (4.6) for such a path will be
a gauge-invariant phase:

f dr,- A% = j{ dr, - A° +f dr, - 6A%. (4.9)
c c c
Equation (4.9) may be further rewritten as
f dr, - Af = f dr,-A°, (4.10)
c Cy
in which a path C,, is introduced such that
(f -f) (dr,,.Aﬂ)Z]{ dr, - 5A",
c, Jc c
= TAN]. (4.11)

Here the path C, as shown in Fig. 7 is a deformation
of the path C to account for the fluctuation of §A} in
terms of the mean-field A®. In second line of Eq. (4.11),
AN] represents the total fluctuating 1 spinon number
(with regard to the average one) enclosed by the path
C, and such a term describes the total fluctuating fluxes
bound to 1 spinons as deduced from the right-hand-side
integral in the first line. So the flux enclosed between the
paths C and C), under a uniform field B, will represent
the fluctuation of the flux quanta attached to 1 spinons
inside the path C. In the following we shall point out
that mAN] should satisfy the perimeter law discussed at
the beginning of this section.

In the spin background, there is no density fluctuation
due to the no-double-occupancy constraint, and locally
an increase of 1 spinons is always compensated by a de-
crease of | spinons. Thus the distribution of 1 spinons
will actually reflect that of all spins in the hole-absent
region. With the presence of a short-range AF correla-
tion (the correlation length £ > a), excess and deficit of
1 spinons are neighboring to each other (the £ ~ a case
is shown in Fig. 6). In such a “Meissner phase,” the net
contribution to AN} mainly comes from 1 spinons close
to the path C, and AN/ should satisfy a perimeter law
instead of an area law as explained before. Correspond-
ingly, the path C, should be always near the path C to
account for AN} in terms of Eq. (4.11), as shown in
Fig. 7. An average separation d, of C;, from C may be
estimated as follows: 7rd12, X By ~ one flux quanta = ,

FIG. 7. An arbitrary closed path C of a holon (solid one)
and a corresponding path C,, for p species (dashed one).

which leads to d, ~ 1/y/Bs = d. — the cyclotron length
under B,.

So after one replaces A% by A® in Eq. (4.7), the fluc-
tuation effect can be taken into account by deforming
the path of p species from C to Cp. The deviation of C,
from C depends on the detailed fluctuation of A%. But
if the temperature is sufficiently higher than the spinon
characteristic energy scale (the broadening of the Lan-
dau level in the spinon spectrum), the path C, shown
in Fig. 7 may be reasonably regarded as a random one,
with an average separation d. from the path C. This ef-
fectively means that the binding constraints of h, p, and
q implemented by the Lagrangian fields A and B have
been relaxed within a scale ~ d.. Here the kinetic energy
cost of the deformation path Cp, is neglected due to the
smallness of d.. In the weak gauge-fluctuation case, d.
could be too large for the present approximation to be
valid.

Thus, the motion of a holon under the influence of
the gauge field A° can be effectively described as a bare
holon bound to a pair of auxiliary species, p and g, which
are undergoing cyclotron motions in opposite directions.
These p and g species reflect a “localized” effect caused
by the phase interference at short distances. As p and ¢
are confined in the Landau levels, a large degeneracy is
involved here. In real space, such a renormalized holon
would look like a polaron, and behave like a diffusive
particle in the absence of external fields. This peculiar
structure will decide a unique transport phenomenon.

The generalization of the above scheme to a many-
body case is straightforward. Here one has to be cau-
tious about the statistics of each species in the many-
body case. A holon as a composite particle of h, p, and
q species has to satisfy the (hard-core) bosonic statistics.
Thus a symmetric choice would be that the h species
corresponds to a boson while the p and ¢ species are
spinless fermions (so that the hard-core condition can be
automatically realized). Then the effective many-body
Lagrangian as a generalization of the one-body approxi-
mation discussed above can be written in the functional-
integral formalism as
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Ln= /dzr {r'0,h +p'8,p + q'0-q + A(p'p — h'R) + B(q'q — h1h)}

+ [ (o S i) 49100 A ) 4 410 C A g

in which a®** is an external vector potential. And the

fields h(r), p(r), and ¢(r) are in the coherent representa-
tion. The Lagrangian multipliers A(r) and 3(r) enforce
the binding constraint

Wl (r)h(r) = p'(r)p(r) = ¢' (r)q(r), (4.13)
in a length scale larger than d.. An ultraviolet momen-
tum cutoff A = 1/d. is then implied in A and S fields
in the Lagrangian £,. The masses my, m,, and m, are
determined up to where their total summation is equal to
mys. The value of each individual mass has to be decided
beyond the present approximation, and this uncertainty
will not affect the general conclusions we shall draw from
the Lagrangian Cp,.

Therefore, we obtain an effective long-wavelength La-
grangian (4.12) for holons after the short-distance phase
interference is carefully considered. This is a rather
unusual Lagrangian because there are three auxiliary
species involved. But it is not derived for the first time
here. A similar one has already been found” in the
scheme-1 flux-binding state (see Sec. II) through a differ-
ent method. Even though the approximations involved
in these two states are different, their origins are quite
similar and it is not surprising to find their normal states
to be so close. In fact, the structures of two effective La-
grangians for holons are identical, except that B, is twice
larger in Ref. 74 and the h field is a fermionic one there.
A larger B, in Ref. 74 is due to the fact that the w-flux
phase d)?j has been incorporated into B, at the contin-
uum limit. These differences do not change the canonical
behaviors described below.

The effective Lagrangian £, determines an anomalous
transport phenomenon’® which amazingly matches the
essential characteristics of the optimally doped cuprates.
We shall outline the main results in the following. For
detailed discussions, one is referred to Ref. 74. L, can
be treated by the standard gauge-theory approach. Here
it is even simpler for lacking the transverse fields. It is
easy to show that the longitudinal fields A and 8 will
enforce the following current constraint among h, p, and
q species:

J, =3 =3, (4.14)
where the superscript ! implies the longitudinal channel.
This constraint is consistent with the density constraint
[Eq. (4.13)]. It is important to note that there is no simi-
lar current constraint in the transverse channel due to the
absence of transverse gauge fields. The total response to
an external electromagnetic field will be related to each
species through Eq. (4.14). And different combination
rules will thus be found in the longitudinal and trans-

(4.12)

verse transport channels, which will lead to a distinctive
Hall-angle behavior.

The scattering rates of h, p, and ¢ are decided by their
coupling with the longitudinal gauge fields A and 8 in
Eq. (4.12), whose dynamics are in turn determined by
coupling to h, p, and q species. A self-consistent treat-
ment is required here. Due to the peculiar feature that p
and ¢ stay in the Landau level, one finds that the scat-
tering rate for p and q goes linearly in temperature, i.e.,
T—"’. = 2kkpT, where k ~ O(1) is independent of the cou-
pling constant (the masses) and only has a weak doping

dependence (and —le x w is also found when Aw > kgT).

And for the h species, the scattering rate has a T2 behav-
2

ior: & o« (k%fL In terms of the constraint Eq. (4.14),

the total longitudinal resistivity can be determined”* and
at kT < tp, it is dominant by 1/7, so that p oc T. The
linear-T' resistivity in the cuprates is indeed found? to
be related to a linear-T relaxation rate. Particularly,
the coefficient is roughly around a numerical factor of
2 for all the optimal materials.? This is a very inter-
esting feature and is quantitatively consistent with the
present theory, where the coupling-independent coeffi-
cient 2k ~ 2 is determined by the unique structure in the
scheme. The transverse resistivity p,, can be also ob-
tained, and as noted before the distinctive combination
rules in the longitudinal and transverse channels will lead
to new consequences. Namely, the Hall angle © as defined
by cot® = p/p,. is found to be related to the second
scattering rate 1/75: cot ©® oc 1/7, oc T2. Consequently
the Hall coefficient Ry follows a 1/T behavior. The in-
volvement of a second scattering rate oc T2 in the Hall
angle for high-T, cuprates was pointed out by the Prince-
ton group*® based on the analysis of the experimental
data. The effective Lagrangian in Eq. (4.12) provides
a microscopic theory for it. A magnetoresistance with
Ap/p ~ T~* dependence has been also predicted” in the
longitudinal channel, which has been recently observed®
in YBCO (we note that the overall sign is uncertain in the
theory while experimentally it is found to be positive).
Due to the “localized” effect of holons, a strongly doping-
dependent thermopower has been obtained in the present
framework, which also agrees well with the experimental
measurements in the high-T,. cuprates.

The transport properties determined by the effective
Lagrangian £, may be called the canonical ones, which
well account for the optimally doped cuprates. In the
following we briefly discuss the condition for a deviation
from such a canonical case in the present theory. The
key assumption involved in deriving Eq. (4.12) from H,
is the randomness of the flux quanta movement near the
path C shown in Fig. 7, which leads to uncorrelated seg-
ments along the path C,, so that p and g can be effectively
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treated as detached from h at a scale of d.. In this case,
the detailed spin dynamics becomes irrelevant. In the op-
timal doped cuprates, the spinon LLL broadening is very
sharp (cf. Sec. III) so that the above condition may be
always satisfied at the normal-state temperature. For un-
derdoped YBCO, however, the LLL broadening is quite
large, and when the thermal energy is less than it the de-
tailed spin dynamics could get involved in Cj, especially
when T ~ T, and spinons begin to condensate into the
energy bottom. In this case, C;, may not be treated as a
random one with regard to C, and the present approxi-
mation could break down. As a consequence, a deviation
from the canonical transport behaviors is expected be-
low some temperature scale, which should be correlated
with T}. Experimentally, such a correlation between the
transport and the “spin gap” is indeed found!°:102 in
the underdoped YBCO system. Furthermore, at suffi-
ciently small doping, the transport properties described
by Eq. (4.12) itself can also deviate from the canonical
behavior as discussed in Ref. 74.

Finally, we would like to make a comment on the con-
tinuum approximation of Hy. At small doping, the con-
tinuum approximation can be well justified for the spinon
Hamiltonian H, because Af‘]- in it is vanishingly small. In
the present holon case, however, the strong fluctuation
effect at short distances is very important, even though
(AL) = 0. Thus one would expect the lattice effect to be
involved even at small doping. So far we have not been
able to include such a lattice effect. Nevertheless, as the
phase interference at short distances is not a coherent ef-
fect, the role of the lattice effect may not be really crucial.
Furthermore, p and ¢ are just auxiliary particles to take
care of the phases interference, which can be introduced
in the continuum space even when lattice is included. A
further study is still needed.

V. CONCLUSION

In this paper, we have obtained the spin-charge sep-
aration scheme based on a saddle-point state of the t-J
model. In this saddle-point state, we find a deconfine-
ment of spin and charge degrees of freedom at finite dop-
ing in the 2D case, where the transverse gauge field as
the confinement force is gapped. Such a gap disappears
at half-filling, where spinons are presumably confined to
form spin-1 excitations, and a long-range AF order has
been recovered. This saddle-point state has been also
shown to reproduce the known asymptotic spin-spin cor-
relation in one dimension at both half-filling and finite
doping. Thus, in some important limits where the be-
haviors of the t-J model are known, the present state
has produced the right results. These constitute an im-
portant check for the strongly correlated model where
the conventional approximation breaks down.

The most interesting properties have been found at
finite doping in the 2D case, when spin and charge be-
come deconfined. In this regime, the saddle-point state
becomes meaningful due to the suppression of the gauge
fluctuation, and spinons and holons can be appropriately
treated as separated systems in terms of conventional ap-

proaches. We have shown that in this saddle-point state
there still exist some exotic residual couplings between
spin and charge degrees of freedom, in spite of the spin-
charge deconfinement. These couplings are nonlocal in
the sense that spinons can feel the existence of holons
nonlocally by seeing some fictitious flux quanta bound to
the latter and vice versa. Different from a usual electron-
phonon system where the coupling is a single interac-
tive term, spinons and holons here are scattered by each
other in distinctive forms. These scattering forces lead to
anomalous spin dynamics and transport properties in the
present system. For example, a sharp AF peak centered
at Qo is exhibited in the imaginary dynamic spin sus-
ceptibility with an energy scale much smaller than the
exchange energy J. The width of such an AF peak in
q space is determined by the doping concentration in a
form o< v/8, which is temperature independent but in-
creases with energy transfer. The NMR spin relaxation
rate of nuclear spin due to coupling with such a magnetic
fluctuation shows a non-Korringa behavior for planar Cu
nuclei and a strong suppression for planar O nuclei. Fur-
thermore, we have found a characteristic temperature T}
below which all these AF anomalies get suppressed, in re-
semblance to a “spin-gap” system if the superconducting
temperature T, < T and T, < T < T}. Incommen-
surate AF fluctuations have also been found in this sys-
tem at a higher-energy scale. For the charge degree of
freedom, we have demonstrated that the scattering from
the spinon background leads to a strong phase interfer-
ence at short distances for holons, and an effective long-
wavelength Lagrangian is derived. Such a Lagrangian
has been found to give the following canonical transport
phenomena: resistivity p ~ T with A/7 ~ 2kgT, Hall an-
gle cot O oc 1/7, o< T?, magnetoresistance Ap/p oc T4,
and a strong doping dependence of the thermopower.
The magnetic and transport properties of the present
spin-charge separation state share amazing similarities
with those found in the high-T, cuprates, as discussed in
the context of the paper. Based on the theory, a consis-
tent picture can be conjecturally formed for the normal
state of the cuprates. The optimally doped materials
can be defined as T, ~ T}, where the commensurate AF
fluctuation energy scale becomes very small, maybe in-
detectable in terms of the present neutron-scattering res-
olution. Such a small energy scale is a unique feature of
the present state, and as discussed in this context, NMR
and neutron-scattering data in both metallic LSCO and
YB,Cu3O7 can be reconciled here. And in the trans-
port channel, the canonical behaviors are exhibited in
agreement with the transport measurements. A larger
commensurate AF fluctuation energy scale can be real-
ized at a smaller doping regime, where holons tend to
be localized, and the interlayer coupling in YBCO could
further help the broadening of the energy scale. In this
regime, a commensurate AF fluctuation may become ob-
servable in neutron scattering as in underdoped YBCO,
and pseudo-spin-gap behaviors will also show up in both
the neutron-scattering and NMR spin relaxation rate be-
low T} (> T.). In this case, a deviation from the canoni-
cal behaviors is expected in the transport channel below
a temperature scale around T}. We note that in the
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present theory, there is no direct experimental input ex-
cept that the underlying ¢-J model is widely perceived as
a simplified description of the copper-oxide layer in the
cuprates. This becomes a compelling fact as so many im-
portant experimental features are naturally exhibited in
the present state. We have pointed out in the Introduc-
tion that spin-charge separation is the key for all these
delicate magnetic and transport anomalies to appear.
Two other important issues remain to be clarified in
the present spin-charge separation scheme. One is about
the single-electron properties, particularly the location
of the Fermi surface, and the other is about the super-
conducting condensation in this framework. Since an
electron is described as composed of two bosonic holons
and spinons, the accompanied nonlocal phase fields in
Eq. (1.6) will play a central role in restoring the fermionic
properties of the electron. As outlined in the Introduc-
tion, nonlocal phase fields will be responsible for an elec-
tronic Fermi surface satisfying the Luttinger volume the-
orem as well as a finite pairing order parameter (c:-LTc;'- i)

(and its symmetry) when both holons and spinons are
Bose condensed. We shall discuss these important prob-
lems in follow-up papers.
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