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Structural evidence for the microsegregation of alkalis in oxide glasses is reviewed and the implica-
tions for ionic transport, viz., nearest-neighbor hopping, cooperative and correlation effects, are con-
sidered. Distinctions are drawn between the hopping of alkalis in silicate glasses, where changes in the
configurations of neighboring bridging and nonbridging oxygens are expected, and alkali hopping in ful-
ly compensated aluminosilicate glasses where nonbridging oxygens are absent and conformational
changes in the network are minimized. A simple expression is introduced for the microscopic energy
barrier facing a migrating alkali E,, and this is corrected to account for the cooperative effects of the
other ions involved by dividing by the Kohlrausch exponent 3, which defines the conductivity relaxation
function exp[ —(¢/7*)B]. Structural parameters determined by x-ray and NMR spectroscopy enable us
to calculate E,. Conductivity relaxation experiments give a measure of 8. The macroscopic diffusion
enthalpy that is measured, W, is given by the ratio E, /B. Thus we are able to show how the local struc-
ture of an alkali in a silicate glass can be used to predict the measured diffusion enthalpy. The smaller
values of W reported for aluminosilicate glasses are rationalized structurally in terms of the removal of
nonbridging oxygens from the modified network. In considering silicate glasses containing small concen-
trations x of alkali, as this necessarily leads to reductions in alkali microsegregation, decreased coopera-
tive effects and increased hopping distances are expected. Taken together with the attendant fall in the
high-frequency dielectric constant and the rise in 3, this combination of changes naturally explains the
increased enthalpies observed in low alkali glasses and the rise in alkali diffusion frequency factors. In-
creased hopping distances are also invoked to explain the crossover dependences of the diffusion
coefficients and enthalpies of the separate alkalis in mixed alkali glasses. In particular, the increase in W
for a given alkali, as its proportion ¥ drops for a fixed alkali concentration x, is attributed to an increase
in the hopping distance and can again be predicted from the local structure, providing allowance is made
for an associated reduction in cooperative effects. From the separate local structures of the two alkalis,
the observed fall in the diffusion coefficients of the two alkalis and the minima in the isothermal dc elec-
trical conductivity resulting from the increase in the respective diffusion enthalpies are well reproduced.
In addition, the maxima in the measured dc electrical conductivity enthalpy W in the Kohlrausch ex-
ponent B and also in the Haven ratio f, all characteristic of alkali mixing, are closely predicted. Finally
the increase in magnitude of the mixed alkali effect reported in aluminosilicate glasses is explained in
terms of increased cooperativity associated with the reduced energy barriers E, for the two alkalis re-
sulting from there being fewer nonbridging oxygens present in the glass structure.
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I. INTRODUCTION

At the atomic level the structure of an oxide glass is
complex, both from an empirical and from a perceptual
standpoint. Standard techniques like x-ray diffraction,
while providing specific descriptions of nearest-neighbor
geometries, yield only ambiguous structural information
about interatomic distances of 5 A and more. This un-
derdetermination of glass structure frustrates the ambi-
tion to visualize the morphology resulting from atomic
correlations beyond nearest and next-nearest neighbors.
Generally referred to as intermediate-range order, this is
the regime particularly relevant to ionic diffusion as it is
over these distances that ions will interact and where
cooperative phenomena, not least the mixed alkali effect,!
will be played out. While the continuous random net-

0163-1829/95/52(9)/6358(23)/$06.00 52

work (CRN) of Zachariasen? continues to provide a prag-
matic solution for rationalizing well-defined short-range
order with the absence of atomic periodicity, the process
by which glass-forming bonds become partly depolymer-
ized in a modified glass has, until recently, proved
difficult to identify, let alone characterize.

Considerable advances in elucidating the structure of
modified oxide glasses, however, have been made through
the use of new techniques, notably x-ray-absorption fine-
structure (XAFS) spectroscopy,’™> but also magic angle
spinning NMR (MASNMR) (Refs. 6-9) isotopic substi-
tution neutron scattering'® as well as the traditional spec-
troscopies of IR,!! Raman,'? and x-ray photoemission
spectroscopy (XPS).!>!* Experimental findings from
these studies have been corroborated by recent sophisti-
cated molecular dynamics (MD) simulations,>~!® all of
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which reveal new intermediate-range order and micros-
tructure characterized by the microsegregation of modi-
fying components from the network-forming CRN. Ac-
cordingly, for alkali silicates, the alkalis form clusters,
and at glass-forming compositions, these join to create
channels in a modified random network (MRN).!” Mi-
crostructure in crystalline silicates is well known, mani-
fest in the silicate chains and layers of corner-sharing
tetrahedra. The MRN extends this architecture in the
context of disordered topology. Long-range disorder is
meted out primarily through bond angle variations, leav-
ing short-range order invariant and reflecting the dom-
inant chemical interactions between atoms.

As well as offering a fruitful way of simplifying com-
plexities in the structure of silicate glasses, the MRN also
provides a way of visualizing ionic transport in which the
mobile alkalis travel through the glass, primarily along
the alkali-rich sublattice.”” As the alkali concentration
falls, though, these pathways cease to be continuous, and
below the percolation threshold, ionic transport is expect-
ed to revert to the network. Taking these extreme situa-
tions as starting points, the Coulombic interactions and
conformational changes associated with the hopping of
alkalis can be described in terms of the local atomic
structure. Simple expressions for the diffusion enthalpy
of an alkali, which can be readily parametrized from the
results of spectroscopies like XAFS, MASNMR and IR,
have been proposed and the MRN concept exploited to
accurately predict the ionic transport properties sodium
silicate glasses as a function of alkali concentration x.%
In this paper these ideas and preliminary results are ex-
tended to cover potassium silicate glasses, the variations
in transport properties resulting from different concentra-
tions of these alkalis in mixed-alkali silicate glasses. In
addition, the associated changes in ionic transport in
aluminosilicate glasses will also be considered, in particu-
lar the effect of varying the proportions of alumina to al-
kali oxide. As a result, we are now able to quantitatively
predict the major phenomena in ionic transport exhibited
by a wide range of oxide glasses simply from a knowledge
of the atomic environments of the alkalis present.

II. RANDOM NETWORKS

We begin by making the standard distinction between
bridging oxygens (BO’s) coordinated to two silicons and
nonbridging oxygens (NBO’s) coordinated to only one sil-
icon. This is important because the type of oxygen to
which alkalis are coordinated is crucial in specifying the
possible network processes involved in ionic transport.
Figure 1 contrasts two extreme types of random network
constructed to represent alkali oxide glasses, one incor-
porating both BO’s and NBO’s [Fig. 1(a)] and the other
only BO’s [Fig. 1(b)]. The types of atoms and bonds are
given in the key to the figure. In the MRN shown in Fig.
1(a), which comprises both types of oxygen, alkalis are
shown only coordinated to NBO’s. Moreover, modifying
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cations, NBO’s, network-forming cations, and BO’s are
all consistently coordinated, NBO’s primarily to alkalis
and BO’s to silicons. Percolation pathways for migrating
modifying cations can be mapped out by connecting
NBO’s together, thereby identifying the boundaries of the
conducting channels. Further details of the MRN can be
found elsewhere.!®

The other network illustrated in Fig. 1(b) is construct-
ed to represent an aluminosilicate glass for which R (the
molar ratio Al,0;/M,0) is equal to 1. By analogy with
crystalline feldspar structures which contain no NBO’s,
the vast majority of oxygens in R =1 glasses should be in
BO configurations. For clarity the random network
presented in Fig. 1(b) contains no NBO’s. Furthermore,
all aluminums are shown occupying network-forming
sites equal in number to the “network-modifying” alkalis.
Accordingly, there is a new type of oxygen: a BO coordi-
nated to an alkali in addition to two silicons. Alkalis are
only coordinated to this kind of oxygen. As a result of
these new coordination rules, the alkali aluminosilicate
network shown in Fig. 1(b) is topologically similar to a
Zachariasen CRN. On the other hand, because alkalis
and aluminums are present in equal quantities, the charge
on each alkali ion M * is balanced by the charge on each
AlO,” group. Figure 1(b) therefore represents a ‘“‘com-
pensated” continuous random network (CCRN). The
distribution of alkalis in Fig. 1(b), however, is not homo-
geneous. This is because alkalis are strictly coordinated
and associated with aluminate groups via threefold BO’s.
As a result of this, the CCRN microsegregates in a simi-
lar way to the MRN. In recent MD calculations evi-
dence for clustering of AlIO,~ groups and alkalis has been
found in simulated threedimensional structures.?! Just as
the MRN can be subdivided into two sublattices via
NBO’s, so can the threefold BO’s be used to divide the
CCRN into alkali-rich and alkali-rare regions. Once
again transport is predicted to occur predominantly
along those pathways where alkalis (and also AlO, ’s)
are microsegregated.

For aluminosilicate compositions for which O<R <1,
we envisage random network structures intermediate be-
tween the MRN and CCRN. Ionic transport should
again follow alkali-rich routes, but in some regions these
will be prescribed by NBO’s and in others by AlO,’s.

For the MRN, CCRN, and intermediate structures,
the proximity of other alkalis in silicate and in alumino-
silicate glasses will lower the Coulomb barrier facing the
diffusion of a single alkali. This will encourage transport
in the presence of other alkalis as we have envisaged
above, but by default will draw in cooperative phenome-
na which will slow ionic diffusion down.?> We have al-
ready shown how these effects can be reconciled in sodi-
um silicate glasses and how the activation energy for ion-
ic diffusion—in particular its dependence on alkali
concentration—can be reproduced from a knowledge of
the local structure.’® The same ideas, suitably modified
by clues given by the two types of network presented in
Fig. 1, can also provide a quantitative description of the
relationships between structure and transport in both
compensated (R=1) and uncompensated (0<R <1)
aluminosilicate glasses.
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FIG. 1. Random network models for oxide glasses. Oxygens are shown by the large open circles and silicons by the small open
circles with aluminums by the small double circles. The solid circles represent modifying cations like alkalis. The directional bonds
comprising the network are indicated by solid lines and the ionic bonds of the modifying component by dashed lines. (a) MRN for
silicate glasses (Ref. 19). Modifying cations are predominantly coordinated to NBO’s and vice versa. Apart from BO’s, all atoms are
strictly threefold coordinated for this two-dimensional network. (b) CCRN for R =1 aluminosilicate glasses. Modifying cations are
coordinated to BO’s and charge compensated by aluminate groups. With the exception of network BO’s, all atoms are threefold
coordinated. Note that in both networks there is evidence for the microsegregation of glass modifiers from glass formers.

III. MICROSEGREGATION IN OXIDE GLASSES

Microsegregation in oxide glasses is the common
characteristic of all recent MD simulations.!* 182! Tt
can be detected in the partial radial distribution functions
(RDF’s) of the alkalis. Experimental evidence for alkali
clustering in silicate and aluminosilicate glasses can be
seen in Fig. 2, which shows the atomic distribution of
sodium in a silicate glass (Na,Si,O,) and in an aluminosil-
icate glass (Nag 17Aly 038ip.2300.56) Obtained from sodium
K-edge XAFS experiments.>? The main peak close to
2.3 A is due to nearest-neighbor oxygens, but there is
also a weaker second peak between 3 and 4 A which can
be attributed to neighboring sodiums and silicons, con-
sistent with the clustering of alkalis in these glasses. In
particular, for Na,Si,O4 glass, for which the second peak
is strongest, Na-Na distances have been refined at 3.2 A
with sodium-silicon distances at 3.8 A. For the alumino-
silicate glass both these distances are closer to 4 A. The
detection of a second coordination shell using XAFS that
can be attributed to alkali-alkali distances has also been
reported for potassium and caesium silicates.?* The dis-
tances are longer than for sodium silicates, scaling with
the size of the alkali. The statistical alkali-alkali separa-
tion 2(3/4wN)'? can be estimated from the atomic con-

centration N and is between 5 and 6 A for alkali disilicate
glasses. In all cases this is significantly greater than the
R, values recorded from alkali XAFS experiments like
those shown in Fig. 2(a) or indeed from MD simulations'’
and confirms the clustering of alkalis in oxide glasses.
Microsegregation in oxide glasses was originally specu-
lated on the basis of the well-defined local environments
of network-modifying and network-forming cations
detected with XAFS."” The oxygen coordination number
for sodium in the Na,Si,O4 glass shown in Fig. 3 is 4.(3)
and the Debye-Waller factor, 202, 0.017 A2 In particu-
lar, the Debye-Waller factor is predominantly thermal in
origin, signifying sodium environments for the glass with
little or no site-to-site variability. If, as we have previous-
ly argued,>*!° the oxygens coordinated to alkalis in sili-
cate glasses are chiefly NBO’s, then charge balance and
bond consistency demand equivalent cation
configurations for NBO’s. This complementarity of al-
kali and NBO configurations occurs in crystalline sili-
cates, and so it should not be so surprising if the same ar-
rangements were not also reflected in the short-range or-
der of alkalis and oxygens in silicate glasses. In particu-
lar, in crystalline silicates like Na,Si,Os NBO’s are coor-
dinated to four alkalis and to one silicon. Novel 7O
NMR experiments on binary silicate glasses indicate that
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NBO’s indeed are highly coordinated to alkalis.’ If alkalis
are predominantly coordinated to NBO’s and NBO’s
mainly to alkalis, then the microsegregation of alkalis
from the network via intervening NBO’s is inevitable.
Spectroscopic experiments on aluminosilicate glasses
to establish whether equivalent microstructure exists here
as in silicate glasses are currently in progress, but some
differences are expected. In particular, it is clear from
Fig. 2 that the alkali environment is altered when alumi-
na is present in a silicate glass. Compared to Na,Si,Oq
glass, the coordination number of oxygens around sodi-
um in Nag 7Alg 0381 2300 56 glass falls to 2.(8) and the
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Debye-Waller factor increases to 0.024 A% This can be
clearly seen in the correlation maps presented in Fig. 2.
These indicate the contours of equal significance in least-
squares fitting of XAFS to a single shell of oxygens and
are easily distinguished for the two glasses. We can un-
derstand these changes qualitatively with reference to the
networks in Fig. 1 where it is not difficult to see how
modifiers are more likely to exist in a variety of sites in a
compensated aluminosilicate network for which there are
two different network formers and no terminal oxygens
than in a silicate structure moderated by NBO’s. Clus-
tering of alkalis will almost certainly ensue if modifiers
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o 1 2 3 4 5 6
Radial Distance (A) FIG. 2. Partial RDF’s for sodium in two
oxide glasses (Refs. 5,20). Fourier transforms
of sodium K-edge XAFS are shown in the
0.045 - upper frame. Rp.o and Ry, indicate
(b) sodium-oxygen and sodium-cation correla-
0. 040 tions, respectively. The solid curve refers to
i 1 Na,Si,0, Na,SisO, glass and the dashed curve to
2 Nag 47Aly 03Si5.2300.56 Nayg 17Aly 03810230056 glass. The lower frame
0.035 — displays Debye-Waller (20?) versus coordina-
tion number (N) correlation maps. 95%
~ 0.0%0 |- significance contours clearly distinguish the
~J sodium sites in the two glasses.
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FIG. 3. Diffusion activation enthalpy values W plotted as a
function of composition x in binary [Na,0],[SiO,],—, (H) and
[K,0],[Si0,],— glasses (@) (Ref. 24). Open symbols refer to
dc electrical conductivity activation enthalpies (Ref. 22).

are preferentially coordinated to AlO,  tetrahedra as
MD calculations demonstrate,?! but this has yet to be
directly confirmed spectroscopically.

IV. COULOMB BARRIERS FACING
MIGRATING ALKALIS

We have seen in Fig. 2 how the alkali-oxygen radius
R,/ o and the alkali-alkali distance R,; ;, can be obtained
directly from XAFS spectroscopy measured at the
relevant alkali absorption edge. The electrostatic binding
energy of the alkali, E,, can be written simply as

Eb=e2/477808hf[1/RM.0] . (1)

The alkali cation is presumed to be fully charged, and the
depth of the Coulomb well is therefore governed by the
alkali-oxygen radius R,, and & the high-frequency
dielectric constant. ¢, is the permittivity of free space.
The appropriate frequencies for g, are typically in the rf
to microwave range for oxide glasses. Generally, at fre-
quencies above 10° Hz and at temperatures below the
glass transition temperature T,, there is little or no
dispersion in the electrical conductivity and e, relates to
the dielectric response in the immediate vicinity of the al-
kali. For silica g is 4.5, and for a Na-O distance of 2.3
A the binding energy of an isolated sodium cation in this
glass is 1.38 eV, which is close to the activation energy
for sodium diffusion at impurity loadings. For isolated
potassium cations in silica with Rg o equal to 2.6 A,
E,=1.24 V. The measured diffusion enthalpies W re-
ported?* for sodium (M) and potassium (@) in binary sili-
cate glasses (M,0),(Si0,),_, [M=Na, K] are plotted in
Fig. 3. Although there is considerable scatter in these re-
sults from different groups (probably relating to different
degrees of phase separation), enthalpies clearly originate

11 4 (a) -
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FIG. 4. Variations in the (a) high-frequency dielectric con-
stant €4, (b) the Kohlrausch coefficient 8, and (c) the Haven ra-
tio f with alkali concentration x reported for oxide glasses
(Refs. 20,22,25,45).
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at values of between 1.2 and 1.3 eV for low concentra-
tions of alkali.

As the alkali concentration x increases, the empirical
enthalpies cataloged in Fig. 3 demonstrate a systematic
decrease, leveling out to reach values of around 0.6 eV by
the time the disilicate composition (x =3) is reached.
For all but the most dilute glasses, the Coulomb barrier
facing a mobile alkali will be considerably less than E,
given by Eq. (1), being reduced by increases in &,; with
composition and by reductions in the average hopping
distance. The rise in &,; values with x for binary sodium
silicates is shown in Fig. 4(a).?%?% It is not immediately
obvious how the average hopping distance can be mea-
sured. At T, and above, however, alkalis are in consider-
able motion. If we assume that the ionic conduction
mechanisms in the glass are an extension of this behavior,
but with a far more rigid network, it is then reasonable to
equate the frozen-in interalkali distance R, ,, with the
average hopping distance of the alkali in the glass. Ac-
cordingly, the Coulomb barrier facing a mobile alkali in a
concentrated glass will be lowered from E, to

92/4778081“'[ l/RM-O_ 1 /RM-M] .

For stable silicate compositions, €, is typically ~ 10 [Fig.
4(a)]. Taking the R, o and R, ,, distances for sodium
and potassium directly from XAFS, we obtain Coulomb
barrier heights of ~0.1-0.2 eV. These values, however,
are only a small fraction of the measured activation ener-
gy for alkali diffusion in silicate or in aluminosilicate
glasses,?* which are typically around 0.6 eV for stable
single-alkali compositions as we have seen in Fig. 3.
Clearly the Coulomb barrier calculated from the local
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structure of the alkali matches the measured diffusion ac-
tivation enthalpy for isolated alkalis in dilute quantities,
but seriously underestimates it for alkalis at the concen-
trations usually encountered in stable oxide glasses, sug-
gesting many-body effects may be involved. We have al-
ready presented strong evidence for alkali microsegrega-
tion from glass structure experiments. We will now ex-
plore the consequences of this on ionic transport in both
alkali silicate and alkali aluminosilicate glasses.

V. HOPPING MECHANISMS

The coordination of modifying cations to NBO’s or
BO’s will result in two types of alkali hopping, which we
differentiate according to the extent to which the network
reconfigures in the hopping process. These are both
sketched in Fig. 5.

A. Intrachannel hopping

In the first mechanism, illustrated in Fig. 5(a), alkalis
are mainly coordinated to NBO’s corresponding to the
MRN illustrated in Fig. 1(a). There are no aluminums
present so R =0. This type of hopping will be the dom-
inant mechanism in silicate glasses where the modifying
oxide is sufficiently concentrated for percolation channels
to be established,”® which also happens to be the level of
modifier commonly employed in commercial glasses, for
example. Accordingly, we refer to this mechanism as in-
trachannel hopping. Because of the association between
alkalis and NBO’s, intrachannel hopping must involve
the local redistribution of NBO and BO configurations

FIG 5. Hopping schemes for alkalis in ox-
ide glasses. Refer to Fig. 1 for the key to sym-
bols. For clarity only one alkali is shown
within the alkali-rich clusters. (a) Intrachannel
hopping anticipated for alkali transport in sili-
cate glasses (Ref. 20). Coordination of alkalis
to NBO’s necessitates the switching of oxygen
configurations to facilitate a hop and as a re-
sult silicons disproportionate locally. (b) Net-
work hopping appropriate for alkali transport
in alkali aluminosilicate glasses and the trans-
port of impurity alkalis in silica. The coordi-
nation of alkalis to BO’s means minimum
configurational change is involved in alkali mi-
gration.
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and these conformational changes in the network com-
ponent will result in a contribution to the diffusion
enthalpy additional to the electrostatic energy for alkali
hopping.

Compared to silica where all silicons are coordinated
to four BO’s, the presence of NBO’s in silicate glasses
creates new silicon configurations Q,, where n refers to
the number of nearest-neighbor BO’s. Some dispropor-
tionation of Q,’s into the Q, _;’s and Q, ;,’s occurs in
the melt which is subsequently frozen into the glass, i.e.,

2Qn=Qn+l+Qn—1 . (2)

The fractions of the different Q,’s present in a glass are
readily obtained using 2°Si MASNMR and also Raman
spectroscopies.’® The activation energy AEg_, of the
rate constant promoting Eq. (2) at T, is given by

2AEg _o=—kT,In{(N,;N,_)/N}}, A3)

where N,_;, N,, and N, ., are the concentrations of
Q,-1, Q,, and Q, ,; configurations frozen into the glass
at T,. It has been shown how AEg _ increases with the
weight of the alkali, but remains approximately composi-
tion independent for a given alkali.?® For sodium silicate
glasses this is 0.16 and 0.19 eV for potassium silicate
glasses, values which we will employ later in calculating
enthalpies for alkali diffusion.

While the extent of alkali movement in a glass at T}, is
considerable, at lower temperatures we assume that the
same processes will persist, but on a less frequent basis.
The local disproportionation of Q,’s is therefore an in-
tegral part of the intrachannel hopping model proposed
for silicate glasses® and is illustrated for an alkali disili-
cate in Fig. 5(a). Mechanistically adjacent oxygens are
shown switching locally from NBO to BO configurations
and vice versa to accommodate the transfer of the alkali.
Recent molecular dynamics studies have confirmed the
occurrence of this mechanism in simulated lithium sili-
cate glass structures.?’” We should emphasize, though,
that, as there is no net diffusion of oxygen in MD struc-
tures or more particularly in oxide glasses, the response
of the network to alkali migration will necessarily
amount to a ‘“‘ratchet” mechanism, with oxygens moving
backwards and forwards in NBO and BO arrangements
and the accompanying silicons alternating between Q, 4
configurations.

In a MRN representing a silicate glass, then, we pro-
pose that the total activation energy for the transfer of a
single alkali, E,, will be made up of the Coulomb term
described in the previous section, together with a net-
work conformational term, which we equate with AEg,
ie.,

E,=e?/Amesen1/Ry0—1/Rpp 0 1 +AER . @)

Taking experimental values for AEy _, determined from
Eq. (3), together with Ry, 5 and R, ,, from XAFS leads
to values of E, for sodium and potassium disilicate
glasses of 0.33 and 0.34 eV, respectively, values that are
approximately half those of the diffusion enthalpy W re-
ported for the transport of sodium and potassium in these
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glasses.?* We stress that Eq. (4) does not include many-

body effects ensuing from the other alkalis present, but
that E, is the primitive or microscopic activation enthal-
py for the hopping of an isolated alkali.

B. Network hopping

Returning to Fig. 5, alkali hopping through a random
network containing no NBO’s is shown schematically in
Fig. 5(b). We refer to this mechanism as network hop-
ping. The alkali is presumed to be bonded only to BO’s.
This type of hopping is predicted to be the main trans-
port mechanism for the alkalis in CCRN’s as illustrated
in Fig. 1(b). For the case of an R =1 glass, there should
be little conformational change in the network accom-
panying hopping, certainly for the lighter alkalis, in
which case we can assume that

AER =]z0 .

At intermediate compositions (0 <R < 1) we propose that
a mixture of intranetwork and network hopping will pre-
vail, for which the conformational energy AE, will be
finite, but less than the value given by Eq. (3). To a first

approximation for aluminosilicate glasses where
O0<R <1, we can write
AERN(I_R)AER=0. (5)

From Egs. (4) and (5), then, we expect the activation
enthalpy for ionic diffusion in alkali aluminosilicates to
fall with increasing alumina (increasing R), which is
indeed observed.?* However, again we find that calculat-
ed values of E, are approximately equal to half the mea-
sured diffusion enthalpy W.

Network hopping is also expected to be the principal
hopping mechanism for isolated alkalis present at dilute
loadings in silica.?’ In this case the alkali and NBO essen-
tially constitute a defect pair, but there is no reason to
suppose that these components will be spatially intimate.
At low concentrations an alkali is expected to bond to
BO’s and to hop to similar sites within what is virtually a
CRN in an analogous fashion to alkali diffusion in a
CCRN [Fig. 5(b)]. In the case of dilute loadings of alkali
in silica, though, there will be no neighboring alkalis
present on average and, as we shall discuss, no coopera-
tive effects in the ensuing ionic diffusion. Moreover, hop-
ping distances R, ,, are likely to be larger than within
microsegregated regions in silicate or aluminosilicate
glasses, in which case the activation enthalpy of alkali
diffusion should approach E, [Eq. (1)]. As we have al-
ready demonstrated, values calculated for E, for sodium
and potassium from the local structure are almost identi-
cal to the measured diffusion enthalpies for impurity al-
kali transport.

VI. COOPERATIVE EFFECTS

The cooperative action of alkalis in oxide glasses is
manifest in the sublinear frequency dependence of electri-
cal conductivity o(w) and, perhaps more obviously, in
the behavior of the electric modulus M * (the reciprocal
of the complex dielectric constant €*). In particular, the
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imaginary part M" exhibits a pronounced loss peak at
some temperature, usually at acoustic frequencies when
impedance bridges are used for measurement. The loss
peak has a characteristic asymmetric shape that is
skewed to higher frequencies. The shape of M’ and of
the accompanying M’ is well reproduced by incorporat-
ing a relaxation function ¢(¢) involving a stretched ex-
ponential,?® i.e.,

M*(w)=M, l—fowexp(—ia)t)(—dqi/dt)dt ,

d(t)y=exp[ —(t/7*)?],

where 7* is the effective relaxation time and B is the
Kohlrausch exponent. The loss peak frequency identified
in M" increases with temperature, sharing the same ac-
tivation energy W as the dc electrical conductivity and
signifying a common origin for both ac and dc ionic
diffusion processes.?’ It has been argued, however, that
Kohlrausch-type relaxation implies anomalous
diffusion,® in which case the equality of the two activa-
tion energies may be a coincidence. On the other hand,
Moynihan, Boesch, and Laberge?*?® have demonstrated
that the ac conductivity o, calculated from the
Kohlrausch law exp[ —(z/7*)?] in the electric modulus
formalism has the sublinear Aw'!™? frequency depen-
dence characteristic of oxide glasses. Furthermore, this
crosses over at @=1/7* to assume a finite dc conductivi-
ty value. The dc conductivity o4, can be calculated from
Maxwell’s equations in terms of the parameters used in
the stretched exponential representation of the electric
modulus as

04.=€B/[ M T(1/B)7*],

where I' is the gamma function. My, is the reciprocal of
the dielectric constant at frequencies higher than the con-
ductivity relaxation, i.e., My =1/gy;. The value of o4
calculated by this expression is found to be almost the
same as experiment (see reviews by Angell332)
reaffirming the common basis of ac and dc electrical con-
ductivity processes.

According to many workers’ point of view,3! 3" the
Kohlrausch exponent B reflects the degree or cooperativi-
ty or coupling between the mobile ions in the glass. B has
been cataloged for a wide range of oxide glass composi-
tions and typical values lie between 0.5 and 1. Returning
to Egs. (1) and (4), we have already noted how the
Coulomb contribution to E, will decrease with the in-
crease in g associated with addition of modifier to the
glass [Fig. 4(a)]. At the same time [see Eq. (4)], the
Coulomb contribution to E, will also fall with the de-
creasing hopping distances R,,,, associated with mi-
crosegregation. Increase in the alkali concentration x
will increase the Coulomb interactions and the coopera-
tivity between ions and will be manifest by decreases in 3.
B analyzed from the electrical conductivity relaxation of
[Na,0],[SiO, ], glasses is plotted as a function of x in
Fig. 4(b). This reciprocal relationship® reflects the in-
creased coupling between the motion of individual alkalis
expected in oxide glasses as microsegregated intermediate
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range order is established. Note how B levels off to values
of around 0.5 for alkali concentrations well below the
percolation threshold of 0.16, indicating that microsegre-
gation is established at comparatively low alkali loadings,
as MD simulations have predicted.!>1®

Cooperative effects introduce an energy penalty for
ionic transport so that, except at the highest frequencies,
the macroscopic enthalpy measured in electrical conduc-
tivity experiments W will always be greater than the mi-
croscopic barrier, E,. In particular Ngai and Mar-
tin?>3%34 have proposed that W and E,, are related by the
expression

W=E,/B . 6)

For a review, see Ref. 38. Justification for Eq. (6) comes
from the coupling model.**~#! Equation (6) is consistent
with many known facts, including the fall in W generally
observed for alkali diffusion in glasses with increasing fre-
quency. This is attributed to progressively decreased
coupling, with values of 8 approaching unity and Debye-
like relaxation being established at the highest frequen-
cies. In particular, at microwave frequencies, the time
constant of nuclear spin relaxation (NSR), which is be-
lieved to correlate with ionic motion, is thermally activat-
ed with an enthalpy value close to W /3, the product of
the electrical conductivity enthalpy and the Kohlrausch
exponent measured at low frequencies.?>3%343%42 From
Eq. (6), W4.B equals E,, the microscopic barrier for al-
kali hopping.

VII. STRUCTURE, COMPOSITION,
AND IONIC TRANSPORT IN SINGLE-ALKALI GLASSES

Taking the expressions for E, for the intrachannel and
network hopping mechanisms described above [Egs. (1),
(4), and (5)], parametrized with the structural parameters
obtained from alkali XAFS (R, and R, ,,) and ?°Si
NMR (AEg —,) together with the high-frequency dielec-
tric constant €, and the Kohlrausch exponent S, ob-
tained from electrical conductivity relaxation, we can cal-
culate W from Eq. (6). These values can then be com-
pared directly with the diffusion enthalpies measured by
radio tracer diffusion methods?* and from dc electrical
conductivity experiments.??

A. Diffusion enthalpies in binary silicates

Starting with the E, values calculated earlier for intra-
channel hopping from the local structure of sodium and
potassium in disilicate glasses and the measured B values,
Eq. (6) yields macroscopic diffusion enthalpies W of 0.67
and 0.69 eV, respectively, values agreeing with those
measured directly’® to within experimental error. We
have already demonstrated how for the network hopping
mechanism the alkali binding energies E, of sodium and
potassium given by Eq. (1) closely agree with the mea-
sured diffusion enthalpies for dilute concentrations of al-
kali. As the alkali concentration x increases from impur-
ity loadings upward, we can calculate W separately for
intrachannel hopping and for network hopping using the
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changing values of 3 and €, given in Figs. 4(a) and 4(b).
This is done for (Na,0),(S8i0,);_, glasses and
(K,0),(8i0,),_, glasses in Figs. 6(a) and 6(b), respective-
ly. In these comparisons the various elements making up

150 4 (a) ,
(Na,0), (Si0y) 4 - 1.5
3 o
g )
3 =
=
0 . : . 0
0 01 02 03 04
X
150 - (b) )
(K20), (Si05) 1.5 - 1.5
Ep
= 100 A =~
g - 1.0 3
~
3 z
=

FIG. 6. Diffusion activation energies for sodium and potassi-
um in alkali silicate glasses. Local structure predictions are
shown by the solid and dashed curves and directly measured al-
kali diffusion values by crosses (Ref. 24). Electrical conductivity
values are given by open circles and NSR values by solid circles
(Ref. 22). The vertical arrow marks the percolation threshold
below which network hopping will dominate and above which
intrachannel hopping will prevail. (a) For [Na,0],[SiO;];_,
glasses Rp.0=2.3 A and Ry, =3.2 A (Ref. 4), AE=0.16 eV
(Ref. 26), while €, and B are taken from Fig. 4. (b) For
[K,01,[SiO,];_, glasses Ry.0=2.6 A and Ry, =3.6 A (Ref.
4), AE=0.19 eV (Ref. 26), while €,¢ and B are again taken from
Fig. 4. )
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Egs. (1) and (4) (E,, E,, and AEg _,) are all indicated.®
The local structure parameters employed are listed in the
figure caption.

It is clear from Fig. 6 that as x is raised, the alkali
binding energy E, falls monotonically as a result of the
gradual rise in &;¢ values [Eq. (1)], whereas the interchan-
nel enthalpy E,/B increases abruptly with the initial
sharp fall in B [Eq. (6)], eventually exceeding E, values
for higher alkali concentrations. At first glance it ap-
pears that E, offers a reasonable prediction of the fall in
W with x for both types of alkali, particularly at low con-
centrations. If this were the case throughout the compo-
sition range, however, it would mean that alkalis always
diffuse by the same noninteractive mechanism, with hop-
ping distances large in comparison with oxygen nearest-
neighbor distances whatever the alkali-alkali separation.
This contradicts the strong evidence for alkali clustering
in oxide glasses, the cooperative character of electrical
conductivity relaxation in these materials, as well as the
dramatic properties of the mixed alkali effect (yet to be
discussed), all of which point to interactions between al-
kalis in oxide glasses. These will dominate once ionic
conducting channels are established. The arrows in Fig.
6 mark the percolation thresholds (x =0.16) for alkali
channels in the two binary glass systems, below which ex-
periment clearly follows the calculated E, values, while
at higher concentrations E, /B values offer the best all-
round agreement. It is important to stress that the E, /8
predictions for intrachannel hopping contain no fitting
parameters, but are based on published data. As such,
they establish quantitative consistency across the experi-
mental manifold of alkali diffusion, impedance-frequency,
XAFS, and MASNMR measurements for these well-
studied oxide glasses.

Accordingly, we interpret the characteristic fall in
diffusion and dc electrical conductivity enthalpies with
increasing alkali content evident in Fig. 3 as being due to
a switch from ionic diffusion dominated at first by the
hopping of isolated alkalis in the glass network to
cooperative hopping through alkali-rich channels, once
these have been established. This change matches the de-
velopment of microstructure resulting from the clustering
of alkalis as well as the development of non-Debye-like
properties in the ac electrical conductivity. Because the
calculated values of E, and E, /B are of similar size in
the vicinity of the percolation threshold for both sodium
and potassium, an abrupt change in activation energy
(and hence in diffusivity or in electrical conductivity) is
not envisaged for either alkali. Instead, both network
and intrachannel hopping are expected to compete up to
the establishment of continuous channels. In this hetero-
geneous regime, intrachannel hopping will always offer
the lower-energy barrier to single-particle interchannel
hopping, but the macroscopic diffusion enthalpy will be
governed by the most difficult hops and these will be en-
countered in transport of alkalis between channels via the
network. At higher concentrations of alkali, when per-
colation pathways are available, alternative hopping via

the network will not in general be required.
At the highest frequencies the coupling model®~*

predicts that W=E,. Although NSR results for oxide
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glasses are scant to date,*>* the nuclear resonance time
constant activation energies currently available for sodi-
um and for potassium fall convincingly on the microscop-
ic barrier curve of E, versus x calculated from Eq. (4)
and included in Fig. 6. This bears out the point made
earlier that, as the frequency of the applied electric field
progressively increases, the motion of a given alkali even-
tually no longer couples to the motion of other ions in its
vicinity and the diffusion enthalpy falls to a minimum.

B. Diffusivity and dc electrical conductivity

When the alkali concentration x is altered in an oxide
glass, those differences in hopping distance R, ,, implicit
in the two different mechanisms proposed, viz., coopera-
tive intrachannel hopping compared to isolated alkali
network hopping, should be manifest. In particular, they
should be revealed in the alkali diffusion frequency factor
D, where the ionic diffusivity D at a particular tempera-
ture T is given by Fick’s law,

D =Dyexp(— W /kT) . (7a)

For classical hopping the diffusion frequency factor is
given by

D0=R1%{-MVO/6 ) (7b)

where v, is the hopping attempt frequency. Taking the
case of silicate glasses for which x > 0.16 first, v, can be
associated with the alkali vibrational band in far-IR ab-
sorption.?’ This is 230 cm™! (7X 102 s7!) and 170
cm™! (5X10'2 s7!) for sodium and potassium silicate
glasses, respectively.!! Together with R, ,, values from
XAFS, Eq. 7(b) results in values for the diffusion frequen-
cy factor Dy of ~1073 cm? s™! for these glasses. These
are in very reasonable agreement with radio tracer exper-
iments where diffusion frequencies of between 10~3 and
1072 cm? s~ ! are reported.?*
By appealing to the Nernst-Einstein relation

o4 =Ne2D /fkT , (8)

the same spectroscopy values, together with the alkali
concentration N, can be used to predict the electrical
conductivity. The Haven ratio f is also included in Eq.
(8). Data for the Haven ratio in sodium and potassium
silicate glasses are plotted in Fig. 4(c) from Ref. 45.
These experiments monitor any discrepancy between the
measured diffusivity D and the diffusivity predicted from
Eq. (8), 04.kT /Ne 2, using dc electrical conductivity mea-
surements. f records the degree of nonrandomness in al-
kali migration resulting from correlated ionic motion. In
an earlier paper'® we attributed the fall in f with increas-
ing x to developing alkali microsegregation in the glass
structures. Despite the scatter in experimental values
evident in Fig. 4(c) (which like Fig. 3 is probably related
to the tendency for phase separation), f clearly approxi-
mately equals 1 for x >0.16. For these compositions mi-
crosegregation will be fully established and ionic motion
in single-alkali glasses is therefore expected to be strongly
correlated as it is cooperatively engaged. Note in com-
paring Figs. 4(b) and 4(c) the qualitative similarity in the
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dependence on alkali concentration of both f and S.

Using Egs. (7) and (8) parametrized with the local
structure, composition, and IR frequency data, we can
therefore calculate the preexponent in the electrical con-
ductivity, (0 4.T)g, where

04 T=(04.Toexp(— Wy /kT) ,

)
(04cT)o=Ne?R} pvo/6fk .

For sodium disilicate glass a (o 4.T), value of 9 10* Q™!
cm~! is predicted and for potassium disilicate
8x10* Q! cm™!. These values are close to the experi-
mental preexponents found for most stable alkali silicate
glasses, which typically lie between 35X 10* and
5%X10° Q7! cm™' deg K. Successfully estimating
(0 4.T)o from the local structure and alkali concentration
(x) underlines the fact that for these compositions
(x >0.16) a large fraction, if not all, of the alkalis is in-
volved in ionic transport; i.e., oxide glasses behave as
strong electrolytes.

As the concentration of alkali, x, falls in binary sili-
cates we have seen from Fig. 3 how the measured hop-
ping activation enthalpy W rises, an increase which we
have attributed to the onset of isolated alkali network
hopping from considerations of intermediate-range struc-
ture. These changes in the measured values of W are gen-
erally mirrored by dramatic increases in D;. For sodium
silicate glasses, D, recorded in radio tracer experiments
rises from disilicate compositions through approximately
two orders of magnitude as impurity concentrations of
sodium are reached.?* At these levels of dilution, we en-
visage that all alkalis are most likely to be completely iso-
lated, in which case the hopping attempt frequency v,
should now be dominated, not by the localized phonons
associated with Na-O vibrations, but by the itinerant
phonons related to the network matrix which have a
much higher frequency. For silica the principal stretch-
ing modes occur at 1200-1300 cm~!. Such an increase
in v, would account for a rise of between 5 and 6 in the
alkali diffusion frequency D,. The remaining contribu-
tion to the observed rise in D, for sodium transport in sil-
ica compared to silicate glasses can be accounted for by
an increase in the hopping distance R, ;, from around 3
to around 10 A.

C. Alkali transport in aluminosilicate glasses

Turning next to alkali transport in aluminosilicate
glasses, we have argued earlier that a reduction in the
number of NBO’s will progressively reduce the confor-
mational energy component AE, of W. As alumina is
added to the composition and R increases, the glass
structure becomes more polymerized, and we propose
that AEy should decrease according to Eq. (5). Diffusion
enthalpy data for sodium aluminosilicate glasses taken
from Ref. 24 are collated in Fig. 7. This is for the ternary
System [Nazo]x[A1203]xR [SiOZ]]—x(1+R) With compOSi—
tions across the full alumina range of 0<R <1. Data
have been chosen, however, so that variations in the sodi-
um concentration are limited to 0.25 <x <0.3 in order to
highlight effects relating to NBO removal and to avoid
changes in &, that would inevitably result from large
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150 4
[Nazo]x[AlzoalxR[Si02]1-x(1+R) r15

100 + L 1.0

W (kJ/mol)
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R
FIG. 7. Diffusion activation energies W for sodium
aluminosilicate glasses of ~ general composition

[NaZO]x [A1203 ]xR [SiOZ]l—x(1+R)) where 0.25<x<0.33 and
0<R <1. Wis plotted as a function of alumina content R, the
molar ratio Al;0;:Na,O. The hatched bar contains the values
of W predicted from Eq. (10) with local structure parameters
given in the caption of Fig. 6(a) for the range of x chosen.

differences in alkali content.

Although there is considerable scatter in the enthalpies
collected in Fig. 7, it is clear that the activation enthalpy
for sodium transport systematically falls as Al,O; re-
places SiO,. We proposed earlier [Egs. (4) and (5)] that
the microscopic enthalpy for intrachannel hopping of a
given alkali in an aluminosilicate glass should be given by

Ea :ez/4ﬂ£08hf[1/RM_o_I/RM_M]+(1_R)AER=O .
(10)

Taking the values of €5, Ry, Rps.pr> and AE for sodium
silicate glasses employed in Fig. 6, values of E, can be
calculated for sodium aluminosilicate glasses as a func-
tion of alumina content R.

In order to calculate W using Eq. (6), however, S ideal-
ly needs to be measured for the aluminosilicate glass
compositions in question. These values are not available;
nor are they available to date in general except for partic-
ular oxide glass systems, like the sodium silicates illus-
trated in Fig. 4(b). In the absence of comprehensive
Kohlrausch measurements, we make use here and later in
this paper of a remarkable empirical relationship between
B and W that has been reported by Ngai and Martin
across all the oxide glasses so far measured.?? Indeed,
these authors observe that the correlation between elec-
trical relaxation and activation enthalpy is strengthened
if W is replaced by WB. From Eq. (6), W can be equat-
ed with E,, the primitive activation enthalpy for ionic
diffusion. This “universal trend” is shown in Fig. 8(a),
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FIG. 8. Empirical correlations between the Kohlrausch ex-
ponent 3, the Haven ratio f, and the primitive or microscopic
activation energy E, for alkali conduction in oxide glasses. (a) B
versus E, (Ref. 22), (b) B versus f obtained by subsuming Figs.
4(b) and 4(c), and (c) f versus E, obtained by combining Fig.
8(a) with Fig. 8(b).
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which compiles data from concentrated and dilute glasses
as well as mixed alkali compositions. The dashed line
represents the average relationship between S and E, and
demonstrates how the degree of coupling through
cooperative effects (1—p3) decreases with the increasing
activation enthalpy of the mobile alkali. Accordingly,
starting with calculated values of E, for a particular glass
system, we can use Fig. 8(a) to obtain the values expected
for the Kohlrausch exponent 3.

The above procedure has been followed for the alumi-
nosilicate compositions covered in Fig. 7, reading the 8
values off Fig. 8(a) and combining them with the corre-
sponding E,’s in order to predict the expected macro-
scopic diffusion enthalpy W using Eq. (6). The cross-
hatched region in Fig. 7 contains the predicted values for
W within the composition limits of 0.25 <x <0.33. The
general agreement between these predictions and the ab-
solute values of the measured diffusion enthalpies is good.
The slight curvature in the predicted W versus R curves
is due to curvature in the “f versus E,” relationship [Fig.
8(a)]. Nonetheless, the fall in W with increasing R ap-
pears to be overestimated as fully compensated composi-
tions are reached (i.e., R=1). As we saw earlier in Fig.
2, R,;.p can be larger for aluminosilicates than for sili-
cate glasses which would lead to larger values of E, [Eq.
(4)] and hence of W as R approaches 1. Finally, the
diffusion frequencies D, accompanying the measured ac-
tivation enthalpies plotted in Fig. 7 typically lie around
1073 cm? s~ ! (Ref. 24) and are consistent withR . »,’s of
3-4 A and hopping attempt frequencies v, of 102103
s~ ! characteristic of local structure spectroscopy in alkali
aluminosilicate glasses.

D. Prerequisites for fast ion conductors

Given the virtual invariance of (o4, T), for a given al-
kali concentration among oxide glasses where x =0.16,
we can appeal to the expression for the activation energy
W given by Egs. (6) and (10) to emphasize the require-
ments for fast ion conductors. Clearly, the removal or
reduction in the number of NBO’s will reduce or elimi-
nate AE, as will the choice of a small or deformable cat-
ion. The inclusion of heavy elements in the glass compo-
sition will serve to increase e, which will decrease the
Coulomb contribution to E,. Likewise, a decrease in the
hopping distance, which often accompanies cations with
a low oxygen coordination number, will also help to
reduce the electrostatic barrier. Of course, 8 will also de-
crease with lower values of E,, but Fig. 8(a) shows that
this dependence becomes progressively weaker as the
magnitude of E, falls. We can recognize many of the in-
gredients required to lower E,, and hence W, operating
in glasses like AgsI,BO; and (Agl)y g5(Ag4P205)0. 15

E. Relationship between the Kohlrausch exponent
and the Haven ratio

Finally, returning to Fig. 4, we address the consider-
able similarity between the compositional dependences of
the Kohlrausch exponent 8 and the Haven ratio f: Both
fall monotonically with increasing alkali content x. At
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the same time, where S is leveling off for values of x start-
ing around 0.05, for f this does not occur until x reaches
0.10-0.15. Nevertheless, both 8 and f exhibit reciprocal
dependences with respect to x, which we attribute to the
onset of microsegregation of the alkalis and to the estab-
lishment of percolation pathways.! We have already ar-
gued in this paper how these changes in intermediate-
range order in the glass structure explain the decrease in
B from 1, when an alkali is present at impurity concentra-
tions and migration occurs in isolation, to values of
around 0.5 as x increases and cooperative effects set in
due to alkali clustering. In a similar fashion, at dilute al-
kali loadings, the diffusion will be truly random and D
will equate to 0 4.kT /Ne?, leading to Haven ratios of uni-
ty [Eq. (8)]. At higher concentrations, however, the mi-
crosegregation of alkalis will mean the involvement of
other neighboring alkalis in the diffusion of a given alkali.
Migration will cease to be random, which will reduce D,
but not o 4,kT /Ne?. Accordingly, values of f less than 1
are expected as x increases.

There is an obvious correlation between 8 and f evi-
dent when Figs. 4(b) and 4(c) are compared. Since both
sets of data refer to ionic transport in binary sodium and
potassium silicate glasses, by eliminating x we can obtain
the relationship between B and f shown in Fig. 8(b).
From this dependence there are clearly substantial
changes in 3 where f is close to unity and vice versa in f
when B~0.5. Considering Fig. 8(b) in conjunction with
Fig. 8(a) reveals a dependence of the Haven ratio f on E,,
the microscopic activation enthalpy for alkali transport.
This is shown in Fig. 8(c), the result of combining results
from the two figures. Note that the curvature of f versus
E, is opposite in sense to the curvature of B versus E,.
In particular, f changes most rapidly when diffusion
enthalpies are small, whereas 8 changes least in this re-
gime. The relationship between f and E, shown in Fig.
8(c) has been derived primarily from transport data for
single-alkali binary silicates; we anticipate similar “f
versus E,” dependences for other oxide glasses. Whether
these fall on the same ‘“‘universal curve” as in Fig. 8(c) or
whether there are families of “f versus E,” for different
oxide glass systems remains to be established. The two
relationships shown in Figs. 8(a) and 8(c) will be used
later to distinguish the varying transport dynamics of
different alkalis in the same oxide glass system and hence
rationalize the mixed-alkali effect.

VIII. MIXED-ALKALI EFFECT

A. Electrical conductivity and diffusion coefficients

When more than one alkali is present in a glass, dy-
namic properties exhibit huge departures from Vegard’s
law.! The electrical conductivity, for example, is dramat-
ically depressed, reaching a minimum around the 50/50
composition. This is illustrated in Fig. 9(a) where electri-
cal conductivity results for seven alkali glasses in the
series ([K,Na;_,],0)q,5(8i0,)q 75 are plotted from Ref.
46, where y is the molar ratio of K/Na. At 50°C, o is
shown falling by approximately four decades, and al-
though the size of this minimum decreases with increas-
ing temperature, it still amounts to two decades at 250°C.
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Note too how the shape of the isothermal electrical con-
ductivity is not quite symmetrical, reflecting the fact that
at these alkali concentrations Wy, < W in single-alkali
glasses (see experiment and prediction in Figs. 3 and 6,

104 j\(o)

5 AN
-5 N
10 N //
N
\O /
&~ 106 2 N "
E ' > g
\ ~ o
o \ O-—-0-~ /
- -7 R . N
& 10 v 250'C ;
- N\
\ N J §
o \ /o
o 10-8 ‘L \ \O\\ A
\ / /
:‘g \\ \ N /d VA
T 1094\ O oo g
'g \ b\ 150°C A
c \ N /
S -10 \ \ / "l
2 10 \ N o /
[v] N - /
(4] \ NO- - O
E - 111 \ 100°C P
o 10 ,
o ] ,
\
w \ /
10-12 1 N J F
N /
\O\ —0//
107131 50°C 3
10141
T T T T L T T T T

Yk
10-8 { (b) 10-8
g i
10-101 o __ 8- --n40-10
g 350°C
\\ //
1012 4 Tto-_ - 1012
LT R~ S—
LT S A F1014
) . =
E \ f <
CARUAS \\\ " F1o-18 E
& . 5
10-18 4 > F10-18
\\El\ // 10
1020 | 25 /\/‘g‘-—‘“‘ho-zo
(\\ ///
10224 “~____.0o L 10-22
1024 | L 10-24

Yk

FIG. 9. (a) Electrical conductivities and (b) isothermal
diffusion coefficients for sodium () and potassium (O ) for the
mixed-alkali glasses ((K,Na;_, 1,0)q 55(SiO; )5 75 (Ref. 46).
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respectively). The fall in o at a fixed temperature for in-
termediate values of y is primarily due to radical changes
and differences in the diffusion coefficients of the indivi-
dual alkalis for mixed-alkali glass compositions. The ra-
dio tracer diffusion coefficients for sodium and potassium
in ([K,Na,_,],0)5,5(8i0,)0.75 glasses*® complementing
the o(y) data in Fig. 9(a) are reproduced in Fig. 9(b).
Each coefficient falls progressively with increasing
foreign-alkali concentration, reminiscent of the composi-
tional dependence of the electrical conductivity. Indeed,
Varshneya has demonstrated how, by adapting the
Nernst-Einstein equation [Eq. (8)], the dc electrical con-
ductivity can be calculated as a function of alkali compo-
sition from the separate diffusivities measured for indivi-
dual alkalis, each weighted by ¥ and 1—y for potassium
and sodium, respectively.*’

B. Dependence of activation enthalpies on composition

As the preexponent of the electrical conductivity
(04, T)y for mixed-alkali oxide glasses generally stays
within the same bounds for single-alkali glasses quoted in
the last section,!” the mixed-alkali effect must originate
primarily from increases in the activation enthalpy W.
Electrical conductivity activation energies for three
glasses in the ([K,Na;_,],0)q,5(8i0;) 75 series?? are
plotted in Fig. 10(a), where W can be seen to almost dou-
ble for ¥ =0.5 compared to y =0 or 1. Further experi-
mental data for sodium-lithium aluminosilicates are in-
cluded in Fig. 10(),*® where the same qualitative
behavior is observed, but where the absolute changes are
reduced compared to potassium-sodium silicate glasses.
Moreover, as we observed for sodium aluminosilicate
glasses earlier (Fig. 7), W decreases with alumina content
(increasing R) both for lithium aluminosilicates and for
mixed-alkali compositions as well. Note too, though,
how the mixed-alkali effect is exaggerated by the presence
of alumina*®—the increase in W for mixed (y;=0.5) as
opposed to single-alkali glasses (y;;=0,1) is greater for
R =1 than for R =0.25.

In trying to understand the variation in W with ¥ in
Figs. 10(a) and 10(b), we believe the changes reported for
the diffusion enthalpies of the separate alkalis** particu-
larly instructive. The minority alkali exhibits an activa-
tion enthalpy approaching that of impurity loadings for
the same alkali in silica, while the activation enthalpy of
the majority alkali is almost indistinguishable from that
in a single-alkali glass; for each alkali, the diffusion
enthalpy falls monotonically as its relative concentration
increases. Separate values for Wyg and Wy, for four
potassium-sodium glasses of composition
([K,Na;_, ],0)0,,5(8i0,), 75 (Ref. 49) are plotted in Fig.
10(c). Quite clearly, transport of an alkali at minority
loadings is hugely slowed down by the presence of the
other alkali, but transport of the same alkali, when this is
present as the major constituent, is scarcely affected by
impurity loadings of the other. Note in particular, com-
paring Fig. 10(c) with Fig. 10(a), that at intermediate
compositions (y =0.5) Wx = Wy,=~W.

The thermally activated origin of the mixed-alkali
effect naturally accounts for the observed reduction in the
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FIG. 10. Experimental dc electrical conductivity activation
enthalpies W (a) in mixed-alkali silicate glasses
([K,Na;_,1,0)0.5(8i0,)0.75 (Ref. 22) and (b) in mixed-alkali
aluminosilicate glasses ([Na,Li;_, 1,0)5.2(A1,03)0 25
(8i03);—0.21+r) (Ref. 48). Diffusion activation enthalpies Wy,
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FIG. 11. Measured and predicted Kohlrausch exponents for
potassium and sodium silicate glasses. (a) Values of B obtained
directly from electrical conductivity measurements (Ref. 22) on
([K,Na;_, ],0)0,5(8i0,)g 75 glasses. (b) Bx and By, for
([K,Na;_, 1,0)0.25(8i0; ), 75 glasses obtained from predictions of
E_x and E_y, from local structure [Eq. (12) and Fig. 14] in con-
junction with the universal B versus E, curve [Fig. 8(a)]. The
complementary values for the equivalent R =1 glass
((KyNa;_, 1,0)0.25(A1,03)0.25 (8i0;)1 —g.25(1+ &) are also shown.
Note how in each case the coupling increases with the concen-
tration of the individual alkali (i.e., B decreases).
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size of the effect with increasing temperature [see Fig.
9(a)]. It is also responsible for a corresponding diminu-
tion in the effect with increasing frequency. We have al-
ready pointed out how W decreases substantially at high
frequencies in single-alkali glasses. Recent NSR mea-
surements on ([Na,Li,_,],0),5(8i0,);,; glasses*
demonstrate that mixed-alkali glasses exhibit similar
behavior. In particular, for measurements at 1.5X 108
Hz, the increase in the diffusion enthalpy of lithium, W;,
for adding sodium is significantly less than the increase in
the enthalpy for dc electrical conductivity, W. These
differences will automatically lead to shallower diffusion
and electrical conductivity isotherms at elevated frequen-
cies, as is generally observed.!

C. Kohlrausch exponent and Haven ratio

The increased enthalpies for diffusion and for electrical
conductivity found in mixed-alkali oxide glasses are also
reflected in the changes reported for the Kohlrausch ex-
ponent?? B and in the Haven ratio f.° In both cases
these exhibit maxima for a given glass system at ¥ =0.5.
In particular, mixed-alkali compositions reveal a narrow-
ing of the electric modulus peak which is commensurate
with a small increase in B of about 10%. Results for
((K,Na;_,],0)0,5(8i0,)9 ;5 glasses are plotted in Fig.
11(a). Alkali diffusion in mixed-alkali glasses is more ran-
dom than in single-alkali glasses, and this leads to in-
creases in f which can be considerable. Figure 12(a)
shows the data for ([Cs,Na,_,],0),,5(8i0,)g 75 glasses
where f clearly rises by 3 or 4 times for mixed compared
to single-alkali glasses. The changes in 8 and f evident in
Figs. 11(a) and 12(a) are directly attributable to the
empirical relationships described earlier between S and
E, [Fig. 8(a)] and between f and E, [Fig. 8(c)]. When E,
is obtained experimentally from the electrical conductivi-
ty enthalpy W using Eq. (6), the maxima in W that
characterize the mixed-alkali effect [illustrated in Figs.
10(a) and 10(b)] will naturally lead to maxima in 8 and f.
Moreover, the differences in the curvature of “S and E,”
and compared to “f and E,,” which we have referred to
in contrasting Figs. 8(a) and 8(c), explain why the rise in
B versus y [Fig. 11(a)] is smaller than the rise in f versus
v [Fig. 11(b)], B increasing with E, and therefore with W
far more slowly than f does for stable glasses like tetrasil-
icates and disilicates.

D. Modeling the mixed-alkali effect

There have been several attempts to mimic the phe-
nomenology of the mixed-alkali effect using MD and per-
colation techniques.!”'®31:52 MD calculations have re-
vealed the stochastic mixing of alkalis in the microsegre-
gated regions.!” In addition, the fall in the rms displace-
ments of alkalis with mixing'® has replicated the observed
crossover in self-diffusion coefficients with ¥ and the
overall drop in electrical conductivity isotherms. In their
dynamical structure model for ionic transport in oxide
glasses, Maass, Bunde, and Ingram have reproduced the
same qualitative behavior with percolation simulations,!
but using a simple cubic lattice partly occupied by mobile
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carriers. Presumably, if this were sunk into the glass net-
work, it would constitute their “connected tissue” of the
cluster bypass model.>> The mixed-alkali effect Maass,
Bunde, and Ingram ascribe to mismatches in energy be-
tween carriers and vacancies, sites carrying some memory
of a previous occupant for a time which is short com-
pared to the hopping time. Finally, Kahnt and Reau®?
have used a bond percolation approach in conjunction
with effective-medium-theory results** to fit the minima
in electrical conductivity isotherms for
([Cs,Na;_,1,0)17(8i0,)5 53 glasses. The diffusion
coefficients of caesium and sodium at low concentrations
were treated as adjustable parameters along with the
bond coordination number or connectivity. In particular,
it was necessary for the latter to fall from 6 to almost 2 to
fit the isotherms for mixed-alkali glasses, reflecting the
substantial reduction in diffusivity of the alkalis for these
compositions.

While all of these studies are informative from a
heuristic standpoint, they do not, as yet, offer any basis
for a quantitative prediction of transport properties, and
perhaps more importantly, they fail to untangle atomic
structure from the dynamical processes of mobile ions.
Following the empirical spirit of this paper, we will make
some observations about the separate compositional
dependence of the diffusion enthalpies of the alkalis in
mixed-alkali glasses illustrated in Fig. 10(c) and then
show how the simple ideas that we have put forward in
order to predict ionic transport in single-alkali oxide
glasses from local structure and electrical relaxation can
be extended to account quantitatively for the mixed-
alkali effect.

IX. STRUCTURE, COMPOSITION,
AND IONIC TRANSPORT IN MIXED-ALKALI GLASSES

A. Alkali-alkali interactions

The variations with composition in the diffusion
coefficients and enthalpies for the separate alkalis illus-
trated in Figs. 9(b) and 10(c) clearly indicate an alkali-
alkali interaction. As we have described, the cooperative
nature of ionic transport in oxide glasses, which is mani-
fest in the non-Debye character of the electrical conduc-
tivity, leads to values of the Kohlrausch exponent B
significantly less than unity. Although mixed-alkali
glasses exhibit a maximum in B8 at y=0.5 [Fig. 11(a)]
which reflects a small decrease in coupling, cooperative
activity in mixed-alkali transport is still substantial. We
have already explained qualitatively how the maximum in
B can be correlated with the increase in the dc electrical
conductivity enthalpy W illustrated in Fig. 10(a). As W
and E,, the microscopic activation enthalpy, are related
through Eq. (6) and 8 and E, through the empirical rela-
tionship shown in Fig. 8(a), the separate dependences of
the diffusion enthalpies of each alkali, W,,, point to
separate B values for each alkali. Because of the “‘cross-
over behavior” of the individual enthalpies of the two al-
kalis, the corresponding 3,, values will behave similarly.
In particular, the coupling of each alkali is expected to
vary separately with ¥, increasing as the proportion of
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the individual alkali increases.

In the same way independent Haven ratios for different
alkalis in a mixed-alkali glass are also expected. From
Fig. 8(c), f increases with E, and therefore for a particu-
lar alkali f,, will increase with the diffusion enthalpy
Wy.. The crossover in diffusion enthalpies with y illus-
trated in Fig. 10(a) for Wy, and Wy implies, then, simi-
lar behavior, not just for By, and By, but also for fy, and
fx. These are the dynamic implications of the comple-
mentary changes in the separate diffusion enthalpies of
alkalis in glasses of mixed-alkali composition, evident in
Fig. 10(c) for sodium and potassium and generally exhib-
ited by other alkali pairs in oxide glasses.’

The origin of this bimodal dynamical behavior in
mixed-alkali transport is precisely because of the interac-
tions between dissimilar alkalis. Direct structural evi-
dence for alkali-alkali interactions in mixed-alkali glasses
has been found from the XAFS of potassium and caesium

(a)

[(K,Cs,_),0] [SiO,],

Fourier Transform (Arb. Units)

| 2 3 4 5 6 7 8

[(KCs,_).0] [SiO;],

Fourier Transform (Arb. Units)

12 3 4 5 6 7 8 9 10
Radial Distance (A)

FIG. 13. Partial RDF’s for (a) potassium and (b) caesium in
single- and mixed-([K,Cs,_,,0)(Si0,), glasses obtained from
XAFS spectroscopy (Ref. 23). Single-alkali RDF’s (y =0,1) are
shown by solid curves and mixed-alkali RDF’s (y=0.5) by
dashed curves.
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in [K,Cs, _],8i,05 glasses, where the degree of disorder
in the nearest-neighbor oxygens surrounding each alkali
was found to be affected by the presence of the other al-
kali.?> This can be readily seen in Fig. 13 where the par-
tial RDF’s for (a) potassium and (b) caesium are repro-
duced. Solid curves refer to the single-alkali glasses and
dashed curves to mixed-alkali glasses. Quite clearly, the
nearest-neighbor oxygen peak sharpens for potassium
when caesium is present, but shrinks for caesium when
potassium is present and curve fitting reveals how the
respective Debye-Waller factors are altered, falling for
potassium, but increasing for caesium.?®* Clearly, com-
pared to single-alkali glasses, the local ordering of sites
occupied by the smaller alkali improves with addition of
the heavier alkali to the structure and vice versa.
Without intimate mixing the respective partial RDF’s of
potassium and caesium in these silicate glasses would
have remained invariant. Similar conclusions concerning
the stochastic distribution of alkalis in borate and silicate
glasses have been drawn from analyzing the far-IR bands
of single- and mixed-alkali glasses.!! MD simulations!’
model the same effect. We stress that in all of these stud-
ies there is no evidence for the oxygen coordination num-
ber of either alkali altering?® with alkali mixing or for
there being any fundamental change in the overall mi-
crosegregation of alkalis (irrespective of type) within the
glass structure.

B. Predicting separate values of E, for each alkali
from its local structure

Accepting that the microscopic activation enthalpies
for transport of alkalis in mixed- and single-alkali glasses
can be represented by Eq. (10), we now consider ways in
which this might increase when a second alkali is intro-
duced into the environment of the first. Although sub-
stantial increases are reported in the low-frequency
dielectric constant of alkali silicate glasses when this hap-
pens,> both single- and mixed-alkali glasses converge on
the same value at high frequencies. The values of g,
given in Fig. 4(a), which increase with alkali concentra-
tion x, are representative of single- and mixed-alkali
glasses alike. Insofar as R, distances are concerned
that define the binding energy of the alkali [Eq. (1)], there
is no evidence from XAFS that values are radically
affected by the mixing of alkalis.*?3 Turning next to the
conformational energy contribution to E,, AEy, in Eq.
(10), it is interesting to note that the disproportionation
of Q,’s measured with 2°Si NMR is reported to be not
strongly affected by the mixed-alkali proportion y.® Ac-
cording to Eq. (3), the considerable increases in separate
E_’s when more than one alkali is present, reflected in the
compositional dependences of the W,,’s reproduced in
Fig. 10(c), cannot be due to increases in the network con-
formation energy AEy. This draws attention finally to
the alkali-hopping distance R,; ,,. We propose that the
presence of more than one alkali causes this to increase,
thereby increasing the self-diffusion enthalpy.

Given the stochastic mixing of alkalis in the conduct-
ing channels, a plurality of sites must exist for a given 7.
Out of these, there will be two extreme cases. When a
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given alkali is in the majority it will be mainly surround-
ed by like alkalis and hopping to adjacent sites is the
most likely event. The situation is equivalent locally to
that described earlier for single-alkali intrachannel hop-
ping [Fig. 5(a)], and so the lower limit of the primitive ac-
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FIG. 14. Self-diffusion enthalpies (a) Wy and (b) Wy, pre-
dicted for potassium and sodium in the mixed-alkali tetrasilicate
glasses ([K,Na;_,],0)25(SiO,)5.7s. Experimental points are
from Ref. 49 and plotted in Fig. 3. Solid lines employ Egs. (12)
and (13) and incorporate local structure parameters from the
caption of Fig. 6 and S values from Fig. 11(a). The complemen-
tary thin solid lines refer to the primitive activation energies E,;
and configurational energies AE; for the two alkalis obtained
from local structure spectroscopies.
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tivation enthalpy for diffusion of one of the alkalis, E,,
will be given by

E 2 e /4megeyl 1/Rp1.0— 1/Rpp111]

+(1—R)AE g - (11a)

The second situation will apply to the hopping of minori-
ty alkalis, where these are chiefly surrounded by foreign
alkalis. In this case the same alkali hops to a distant site
where there are fewer steric constraints, but for which
the limiting primitive activation enthalpy will now be

E, <e?/4megend1/Rp10]H(1—R)AE g —o - (11b)

Equivalent expressions to Egs. (11a) and (11b) for the
second alkali can clearly be written down. Between these
two extremes there will be a continuum of intermediate
possibilities which will be governed by y; and the
geometric and packing constraints of the two alkalis. For
simplicity we linearly interpolate between Egs. (11a) and
(11b) to obtain the following compositional dependences
of the microscopic activation enthalpies for the two al-
kalis:

E; =e2/47’508hf[ 1/Ry1.0=Y1/Ruim]

+(1—R)AE g ¢ »

(12)
E02=ez/477'£0€hf[ 1/Rp.0—(1=71) /Ry pp2]

+(1—R)AE2R =0 -

Using the structural parameters from Fig. 6, the linear
dependences of E ¢ and E,\, on yx are shown by the
thin solid lines in the lower halves of Figs. 14(a) and
14(b), respectively. These are calculated for glasses of
composition ([K,Na,_,],0)q,5(810,) 7s. Confirmation
of these predictions from NSR has yet to be made, but we
note that E,; is reported to increase significantly in
([Na,Li,_, 1,0),,3(8i0,),,3 glasses for increasing Yna
The experimental errors in determining E ;; from NSR
for mixed-alkali compositions, however, are too great in
these measurements to confirm the linear dependence
proposed here in Eq. (12).

C. Compositional dependences of 8 and f for each alkali

From arguments that we have already expounded,
given a particular mixed-alkali composition y;, the
motion of each alkali will be differently coupled to the
remaining alkalis and hence will be associated with
different Kohlrausch exponent values f3;. Following the
procedure introduced earlier for determining the values
of B expected for aluminosilicate glasses, we can use Eq.
(12) to obtain the separate E,;’s for each of the alkalis in a
mixed-alkali glass and utilize the “B versus E,” curve to
read off the respective 3;’s as a function of composition
v:. This has been done for sodium and potassium in the
tetrasilicate silicate system ([K,Na,_,],0)q,5(8i0;)g 75
The changing values of E, ¢ and E,y, with y are given by
the thin solid lines in Figs. 14(a) and 14(b), respectively.
The corresponding f3; values are plotted with the heavy
solid and dashed curves in Fig. 11(b). The crossover
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value of B is 0.54(2) and the single-alkali end members
Bna and By are 0.50(5) (yx=0) and 0.50(8) (yx=1), re-
spectively. Comparing these figures with the overall B
values measured directly from electrical conductivity re-
laxation?? [Fig. 11(a)], agreement is better than 1%. Fig-
ure 11(b) also contains predictions shown by the dashed
curves of By, and By for the equivalent R =1 aluminosili-
cate glass system ([K,Na;_,],0)g,5(A1,03)g25(810;)0.5
where the overall rise in B is smaller. This is commensu-
rate with the decreased curvature of the “B versus E,”
curve [Fig. 8(a)] for the smaller values of E,.

We can apply this same approach to deduce separate
Haven ratios for each alkali in a particular mixed-alkali
glass. Taking the Ey, and Eg values calculated from Eq.
(12) for the ([K,Na;_, ],0),5(8i0,)0 75 glass system and
reproduced in Fig. 14, we can use the “f versus E,” rela-
tionship given in Fig. 8(c) to read off Haven ratio values
for the two alkalis, f, and fk, as a function of mixed-
alkali composition y. These predictions are shown in
Fig. 12(b) and reveal how the Haven ratios of the
separate alkalis rise to a maximum of approximately X3
compared to the values for single-alkali compositions.
No direct comparisons can yet be made with radio tracer
experiments for these particular glasses, but the very
similar profile of fy, and fo reported for
([Cs,Na; _, 1,0)0.25(810,)g.75 glasses®® reproduced in Fig.
12(a) is encouraging.

D. Activation enthalpies for alkali transport

With separate values E,; and E,, for the microscopic
diffusion activation enthalpies calculated for the alkalis in
a mixed-alkali glass series and with the corresponding 3,
and B, figures predicted from Fig. 8(a), the individual
macroscopic activation enthalpies W, and W, can be ob-
tained from local structure by appealing to Eq. (6), viz.,

W1:Ea1/Bl and W2=Ea2/B2- (13)

The heavy curves shown in the upper half of Figs. 14(a)
and 14(b) are the values for W and Wy, obtained from
Egs. (12) and (13) by incorporating the local structure
and cooperative dynamics appropriate to potassium and
to sodium in the same series of mixed-alkali glasses
([K,Na;_, 1,0)g ,5(Si0,)g.7s. The agreement with the
diffusion activation energies measured directly by radio
tracer methods* is very satisfactory over most of the
composition range, both as far as absolute values are con-
cerned and from the point of view of the sense of curva-
ture of Wy, k versus y.

As W is observed to decrease with increasing frequen-
cy, so the size of the mixed-alkali effect should likewise
decrease. In particular, the crossover dependence of the
much smaller microscopic activation enthalpies Ey, and
Eg in Fig. 14 should give rise to a much-diminished
mixed-alkali effect at microwave frequencies. This fol-
lows the prediction of the coupling model*®*! that W ap-
proaches E, at the highest frequencies. For the predicted
enthalpy values given in Fig. 14, the depth of the corre-
sponding minimum in the room-temperature electrical
conductivity isotherm at these high frequencies would be
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equivalent to raising the temperature to 300°C under dc
conditions.

For the very lowest minority-alkali concentrations,
ions in mixed-alkali glasses will no longer have an energy
incentive to hop via modifier channels. Comparing Eq.
(1) with Eq. (12)

Ea1,2>Eb as y,,=0.

Accordingly, we anticipate that isolated alkali network
hopping will become increasingly likely as the concentra-
tion of the minority alkali approaches impurity loadings
in mixed-alkali glasses. The compositions at which the
predicted microscopic activation enthalpies E,\,/x
exceed the respective alkali-binding energies E,y, x are
marked by arrows in Figs. 14(a) and 14(b). It is notice-
able that these are the yy, k values below which Eq. (12)
overestimates experiment. The increase in hopping dis-
tance for each alkali implicit in Eq. (12) ranges from 3 to
7 A for single- (¥ =0,1) and mixed-alkali (y =0.5) com-
positions, respectively. As the minority-alkali concentra-
tion falls further, larger increases in R, ,, are expected.
Evidence for such increases in R, ,, can be found in the
measured diffusion frequency values which increase by
several decades as the concentration of a particular alkali
falls from y =1 to impurity loadings (y =0) for a fixed
x.* With the onset of isolated hopping via the network,
v, should also increase to network frequencies, as we ar-
gued earlier. Referring back to Eq. (7), the dramatic rises
reported in D, for impurity alkalis in mixed-alkali silicate
glasses?* are attributed to a combination of increases in
R .\ and v,

As the rotal alkali concentration x decreases below the
percolation threshold, we have argued when considering
single-alkali silicates that intrachannel transport will be
progressively replaced by the increased occurrence of iso-
lated alkali hopping through the network. As the mixed-
alkali effect has been chiefly attributed to intrachannel
hopping in the microsegregated regions present in oxide
glasses, it is self-evident that the effect will diminish with
x, vanishing when the total concentrations of alkali ap-
proach impurity loadings, as is indeed observed.>®>’

E. Predicting alkali diffusivities and dc electrical conductivity

Given the diffusion enthalpies W, , of the two alkalis
calculated from XAFS and MASNMR, the associated
Ryr.ar values also obtained from alkali XAFS and the
corresponding vy’s from far-IR spectroscopy, the
separate diffusivities D, , of each alkali at a particular
temperature can be calculated from Eq. (7). Results for
sodium and potassium diffusivity predicted for the
mixed-alkali series ((K,Na;_,],0)0,5(8i0,)g 75 are shown
in Fig. 15(a) where they can be compared with experi-
mental values [Fig. 9(b)].*® The values of Dy, and Dg for
the single-alkali glasses are extremely accurately predict-
ed. The crossover behavior for mixed-alkali composi-
tions is also well reproduced, but there is some diver-
gence of calculated individual diffusion isotherms from
experiment with decreasing ¥, k. This is largely due to
the Arrhenius character of the diffusion coefficient, and
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good agreement can be achieved by small adjustments to
the diffusion enthalpies of a few percent, i.e., within the
experimental accuracy of the measured values [Fig.
10(c)]. We have refrained, however, from introducing
fitting procedures in order to maintain simplicity.

The dc electrical conductivity at a given temperature
can be calculated from

03 T=v(04.T)p1exp(— W, /kT)

F(1—=y N0 g.Tozexp(— W, /kT) . (14)

We can take the appropriate R, ,,’s from XAFS and vy’s
from IR spectra to calculate the preexponents (0 4.7 ), »
and use the predicted values of W, and W, from Fig. 14
to evaluate the electrical conductivity isotherms as a
function of y. Values for ([K,Na,_,],0)q,5(8i0,)q 75
|

04T =(0 4. T)oexp( — Wy, /kT)=y(0 4. T)p1exp(— W, /kT)+(1—y )0 4. T)pexp( — W, /KT) .

Values of W for ([K,Na,_,],0)q,5(8i0,)0 75 glasses are
given as a function of mixed-alkali composition ¥ by the
upper curve (R =0) in Fig. 16, indicating very reasonable
agreement with the experimental points for silicate
glasses?? taken from Fig. 10(a).
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FIG. 16. Predicted dc electrical conductivity activation
energies W versus y for ([K,Na;_,1,0),5(A1,03)0.25r
(Si0,)1_o.25(1+ &) glasses obtained from Eq. (15) for T'=400°C.
Points refer to experimental values for R =0 silicate glasses tak-
en from Fig. 10(a) (Ref. 22).
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glasses are plotted in Fig. 15(b) where they can be com-
pared directly with the measured transport results report-
ed by Moynihan et al.*® The degree of quantitative
agreement is again encouraging. The predicted electrical
conductivity values for single-alkali glasses agree with ex-
periment to better than a factor of 2 at all temperatures.
The minima for mixed-alkali glasses are reproduced, in-
creasing with falling 7. On the other hand, the depth of
the minima is overestimated by about a decade at worst
and the small offset in the position (Y =0.5 rather than
0.6) is lacking. These effects, as noted above in discussing
the diffusivities calculated for sodium and potassium, are
mainly due to a slight overevaluation of the diffusion
enthalpies for mixed-alkali compositions.

Finally, combining Egs. (9) and (14), the mean dc elec-
trical conductivity activation energy W can be obtained
at a particular temperature from

(15)

F. Enhanced effects in aluminosilicate glasses

Returning to Eq. (10), we can calculate values of E, ,
for the separate alkalis in mixed-alkali aluminosilicate
glasses for different Al,03/Na,O ratios. B, values can
be obtained from the “fB versus E,” curve [Fig. 8(a)] and
the corresponding diffusion enthalpies W, , calculated.
The preexponents (0 4.T)y;,, can be derived as described
above and the mean dc electrical conductivity predicted.
Values of W calculated for the mixed-alkali aluminosili-
cates ([K,Na,_,],0)925(A1,03)0.558 (810,)1 —0.25(1+r) ar€
also included in Fig. 16 for R equal to 0.25, 0.5, and 1.
The curves are not quite symmetrical, principally because
of the larger AEg values for [K,0]g »5[Si0;]o 75 glasses
compared to [Na,O], ,5[SiO, ], 75 glasses, which we drew
attention to earlier in considering single-alkali glasses. In
particular, if we assume that the alkali environments in
silicate and aluminosilicate glasses are approximately the
same and therefore that the Coulomb contributions to the
total enthalpy are also similar, then Eq. (10) predicts that
the dispersion in W at ¥ =0 and 1 should approximate to
AE;/B. Experimental data for the mixed-alkali glass
series ([K,Na;_,1,0)0.5(A1,03)0.25r (8103)1 —0.25(1+ r) 3r€
not available for a direct comparison to be made with the
predictions of W given in Fig. 16, but data for the
mixed-alkali glasses ([Na,Li;_, 1,0)0 ,(A1,03)0 28
(Si0,); _o.5(1 + r) have been reported.*® These results were
given earlier in Fig. 10(b). In comparing our predictions
with these experiments, we can clearly reproduce the
same general behavior in mixed-alkali glasses that we saw
earlier for sodium aluminosilicate glasses (Fig. 7), with W
decreasing with increasing R, but in this case for all y.
Note too a greater dispersion in W for sodium compared
to lithium aluminosilicate glasses, which points to AEy,
being greater than AE[;, in agreement with the results of
MASNMR spectroscopy.2®

Lapp and Shelby*® pointed out the interesting fact that
the addition of alumina to their lithium sodium silicate
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glasses resulted in a more accentuated mixed-alkali effect.
This can be clearly seen in Fig. 17(a) taken from their re-
sults in the different dependences of AW on composition.
Values are taken from Fig. 10(b) where AW is the change
in the dc electrical conductivity activation energy with
mixed-alkali composition y. These authors attribute the
increased effect at ¥y =0.5 for R =1 to the removal of
NBO’s from the glass structure. Included in Fig. 17(b) is
the predicted behavior for sodium-potassium aluminosili-
cate glasses taken from Fig. 16. The same deviation from
additivity in W with increasing alumina content or rising
R is also reproduced, although the predicted effect is
smaller than that reported for the lithium-sodium alumi-
nosilicates.

We can see the reason for the departure from additivity
in W in aluminosilicate glasses by referring back to Fig.
11(b), where predictions of By, and B¢ for R =0 and 1
mixed-alkali series were compared. The By, x versus ¥
characteristics for each of these pairs of curves relate to

40
(a)
[(NayUy_llzolo.z[A|z°3]o.2R[35°2]1-0.2(1+R)
5 O
£
3 20 0s "0
= © 0.25 -b @)
<
0 T T T T 7 T T
0 0.2 0.4 0.6 0.8 1.0
YNa
(b)
[(K,Na,_],0lp.25[Al203]0.25R[Si02]1.0.25(1+R)
40 1 1
0.5
U/
3 -
E
=
Z 20-
0 L T T T T T T T
0 0.2 0.4 0.6 0.8 1.0

Tk

FIG. 17. Increase in the magnitude of the mixed-alkali effect
with increasing alumina. The departure from Vegard’s law of
the dc electrical conductivity activation energy W. (a) Predicted
for ([K,Na;_, 1,0)0.25(A1,03)0 25z (Si03)0.75(1 + &) glasses obtained
using the values obtained from local structure in Fig. 16. (b)
([Na,Li;_, 1,0).2(A1,03)0.22 (SiO3 )0 51+ r) glasses obtained from
the experimental values in Fig. 10(b) (Ref. 48).
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different regions of the “B versus E,” curve shown in Fig.
8(a). As we have noted, the curvature of this relationship
decreases for smaller E, values and accordingly leads to a
smaller rise in By,,x between y=0,1 and y~=0.5 for
R =1 compared to R =0 compositions. Through Egs. (6)
and (15) we can see that this will result in a propor-
tionately larger overall increase in the dc electrical con-
ductivity activation enthalpy AW for R =1 compared to
R =0 glasses. The origin of this behavior is indeed due to
the removal of NBO’s from the glass structure, but as we
have argued, this change in structure should be reflected
in the progressive removal of the conformational energy
AE; of each alkali from the respective primitive diffusion
enthalpy E,; [Egs. (5) and (12)]. By reducing E,; through
adding alumina to the composition in place of silica,
more cooperativity is engaged for each of the alkalis
present and the working range of “B versus E,” in Fig.
8(a) relevant to the mixed-alkali effect travels to the left.
The change in B; for a given change in E,; is therefore
smaller for either alkali, ensuring a more pronounced AW
versus ¥ characteristic as we see in Fig. 17.

X. CONCLUSIONS

In this account of glass structure and alkali transport,
we have stressed the relationship between the microsegre-
gation of alkalis, nearest-neighbor hopping, cooperative,
and correlation effects. MRN and CCRN structures offer
simple ways of visualizing this and of determining the de-
gree of participation of NBO’s in alkali diffusion. In par-
ticular, we have shown how the local structure informa-
tion from XAFS and MASNMR for sodium and potassi-
um oxide glasses together with the value for g, the
high-frequency dielectric constant, can be used to calcu-
late the microscopic energy barrier E, facing a migrating
alkali. By combining this with the results of electrical
conductivity relaxation, which yield values for the
Kohlrausch exponent B, we have been able to predict
with considerable accuracy the macroscopic activation
enthalpy for diffusion, W, for sodium and potassium by
exploiting the relation W =E, /B. Moreover, by utilizing
the results of far-IR spectroscopy together with the glass
composition, the preexponents D, and (o047T), for
diffusion and dc electrical conductivity can also be accu-
rately estimated, not just in these alkali silicates, but also
in aluminosilicate glasses. Throughout we stress the fa-
cility of employing the empirical relationship between “f3
and E,” and also one connecting the Haven ratio f with
E, in order to obtain values for 8 and f from local struc-
ture where these are not known for a particular glass.

Decreasing the concentration of sodium or potassium,
x, in a glass from stable glass compositions
(0.2<x <0.3) globally leads to smaller values of the
high-frequency dielectric constant g, At the micro-
structural level, we expect this reduction in alkali content
to result in the gradual disappearance of microsegrega-
tion and with it a reduction in cooperative effects in alkali
migration, accompanied by increases in average hopping
distances R, and in the hopping attempt frequency vy,
Account is also taken of the “B versus E,” relation,
which points up the progressive phasing out of coopera-
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tive ionic behavior as x falls. The corresponding relation-
ship between the Haven ratio f and E, highlights the
reduction in nonrandom ionic migration that accom-
panies increasing E,. All of these things taken together
explain the rises in W and D and also 8 and f reported
from alkali transport experiments in oxide glasses as x is
lowered.

In mixed-alkali glasses, on the other hand, the struc-
ture, €, and v, scarcely change with y for a given x, and
so the increases in W and D, observed as the proportion
of a given alkali is decreased are attributed to increases in
Ry - In this way, the characteristic ‘“‘crossover”
behavior of the diffusion coefficients and enthalpies of
sodium and potassium can be convincingly reproduced
for mixed-alkali silicates. We show how this infers
separate 3 values for each alkali and an equivalent
“crossover” as alkalis are mixed. Again, we make use of
the experimental “fB versus E,” relationship to
parametrize the decreased cooperative motion of the
minority alkali at the expense of the majority alkali,
which also quantitatively reproduces the rise in S which
accompanies the increase in the electrical conductivity
enthalpy W,  observed as ¥ approaches 0.5. In a similar
way the “f versus E,” relationship leads to a crossover in
the f values of the two alkalis and to the maximum in f
reported for ionic transport in mixed-alkali glasses. The
absolute magnitude of the dc electrical conductivity and
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diffusivity isotherms are also well reproduced in sodium-
potassium silicates and in aluminsilicate glasses too,
where the magnitude of the effect increases as R = 1. We
have shown how the latter phenomenon results naturally
from the increased cooperativity expected as E, is re-
duced by the removal of NBO’s.

We believe that our empirical approach, which unifies
the results of structure, electrical conductivity relaxation,
and ionic diffusion in simple binary and ternary oxide
glasses, has more general application. In particular, what
we have demonstrated for single- and mixed-sodium-
potassium-alkali silicate and aluminosilicate glasses will
also be relevant where other alkali combinations are con-
cerned. The ideas laid out in this paper should also help
in understanding the structural origin of ionic transport
for more complicated glass compositions, for instance,
where more than two alkalis are present in a glass or
where one alkali is replaced by an alkaline earth or where
other glass formers like B,O; or P,O; are employed.
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