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Landau theory of a constrained ferroelastic in two dimensions
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The Landau expansion of the elastic energy in powers of the strains and their derivatives is applied
to the ferroelastic transformation of a grain constrained so that the displacement vanishes on the
boundaries of the grain; the model applies strictly only to the square-rectangular transformation,
but some results may apply also to the tetragonal-orthorhombic transformation. The displacement
and the strains are obtained by numerical minimization of the elastic energy (with respect to the
displacement) for a square column with edges parallel to the (100) and (010) planes of the tetragonal
phase. The structure obtained is a sequence of twin boundaries [parallel to the (110) planes of the
parent phase] with nonzero dilatational and shear strains near the boundaries. The mean-field
transformation temperature T,(L) is depressed from the bulk value due to the finite width L of the
grain, behaving roughly as T (L) = T (oo) —c oust/L.

I. INTRODUCTION

Ferroelastic transformations (a subclass of martensitic
transformations) are shape-changing solid-state phase
transformations; the space group of the product phase
is a subgroup of that of the parent phase, and the trans-
formation can, in principle, be described by Landau the-
ory. Examples are the cubic-tetragonal transformation
(in NbsSn, VsSi, and In-Tl alloys and Fe-Pd alloys) and
the tetragonal-orthorhombic transformation, but not re-
constructive transformations such as the fcc-bcc transfor-
mation in Fe. The Landau expansion of the elastic energy
in powers of the strains and their gradients requires that
the strains be slowly varying so that a continuum descrip-
tion can be used; this is a weak point of the analysis, but
one expects the results to be qualitatively correct even if
the parent-product and product-product walls are only
a few atomic spacings wide. Another limitation of the
expansion is that the Landau parameters are not well
known &om experiment; at the moment, one can expect
only qualitative predictions. Although the Landau the-
ory applies strictly only to proper ferroelastic transfor-
mations (in which the strains are the primary order pa-
rameters) some of the results may apply also to some im-
proper ferroelastic transformations (in which the strains
are secondary order parameters) such as the tetragonal-
orthorhombic transformation in YBa2Cu307

The product-product and parent-product interfaces
have been considered in several articles. In agreement
with experiment, the continuum theory predicts that the
elastic energy is minimized if the product-product walls
in the cubic-tetragonal and tetragonal-orthorhombic~ "
transformations are parallel to the (110) planes of the
parent phase. This previous work is deficient in several
respects. First, the product-product walls (which orig-
inate, in effect, because of multiple nucleation events)
have positive energy and are not present in equilibrium.
Second, because kee boundary conditions are employed

at the surfaces, macroscopic displacements are generated,
which are forbidden in polycrystalline samples; grain
boundaries limit displacements (otherwise of order 100 A
for a strain of 10 s and a grain size of 10 pm) to roughly
the interatomic spacing. Third, again because of the free
boundary conditions, previous work cannot explain why
ferroelastic transformations typically occur over a range
of temperatures.

That previous results are inapplicable to polycrys-
talline samples is the main motivation for this study of
a constrained ferroelastic. The elastic energy of a sin-
gle grain is minimized subject to the constraint that the
displacement vanish on the surface of the grain; the pur-
pose of the study is to determine how the elastic energy
is minimized in a single grain. Informally, the question
is "How does a system, which gains energy by changing
its shape, gain energy when its shape cannot change?"
Part of the answer is well known in physical metallurgy:
twin walls enter the system, forming more or less peri-
odic bands of product variants to limit the displacement
near the boundary of each grain. Though the twin walls
have positive energy, they are equilibrium structures in
polycrystalline material. Like grain boundaries, they will
anneal out eventually, but likely twin-wall removal is no
faster (and perhaps much slower) than grain growth. The
following shows that the continuum theory yields a se-
quence of twin walls; it also determines the strains and
the displacement near the boundaries, and shows that the
transformation is spread over a range of temperatures.

II. ELASTIC ENERGY

The following analysis applies strictly only to the
square-rectangular transformation, but many results ap-
ply also to the tetragonal-orthorhombic transformation,
and the terminology of the latter is used. The tetragonal
(T) state, the parent or undeformed state stable at high
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temperature, has 4mm symmetry; the 3-axis of the coor-
dinate system is along the fourfold axis, and the 1-3 and
2-3 planes are mirror planes. A point x in the parent goes
to the point w' = x: + u in the product, u being the dis-
placement vector. It is assumed that the component u3
vanishes (or is constant) and that the other components
are independent of x3, then a two-dimensional descrip-
tion is possible.

In the Lagrangian description, the components of the
strain terlsor rf are

1/
9'& =

2 (u', & + u~, ' + ur, 'uj, &), (2.1)

where u; is the ith component of u, u, ~
= O~u;

Bu;/Bxz, and repeated indices are summed; the nonlin-
ear term in Eq. (2.1) ensures that the energy is invariant
with respect to the de6nition of the coordinate axes. The
strain tensor relates ds = (dx;) and dS = (dx;+du;)
the squares of the distance between two nearby points in
the undeformed and deformed states, by dS —ds
2g,.~ dx, dx~. The elastic-energy density describing the
transformation is an expansion in the components of g
and their derivatives.

The appropriate combinations of the strain tensor are
the strains

i = (nzz+ n22)/~2,

e2 = (gzz —g22)/v&, (2.2)

e6 = '912

the other three strains vanishing identically. The strains
e1, e2, and e6 are usually called the dilatational, devi-
atoric, and shear strains, respectively, but e1 is not the
true dilatational strain eo, the latter, which vanishes if
the volume is conserved, is defined by eo ——L —1, where
(in two dimensions)

&(xz, x~) = [(1+v2ei) —2e2 —4es] ~ (2.3)

+-,'C, e,'+ —,'A, e', + @(e,;), (2.4a)

@(e-,') = —,'di(ei, i + ei, 2)

+ 2d2(e2 i + e2 2) + 2ds(es i + es 2) . (2.4b)

All coeKcients but A2 are independent of temperature;
for stability, A1, A6, d1, d2, and d3 are positive. All
strains vanish in the T state. The coeFicient A2
a(T —To) (with a ) 0) is negative below a temperature
To, yielding the orthorhombic (0) product at lower T; in
the 0 state, ei ——0, e2 ——+e2O (corresponding to the two
0 variants), and es ——0. Prom Eq. (2.3), a sznall volume

is the local ratio of the final to initial volumes (the Jaco-
bian of the transformation x; ~ x, + u;).

The elastic-energy density is taken to be ' '

2A1e1 + 2A2e2 + 4B2e21 2 1 2 1 4

decrease (of order e2) accompanies the T~O transforma-
tion, but this is easily remedied by adding a term in e1e2
to Eq. (2.4a). The coefficient B2 can be either positive or
negative. The former case describes a second-order tran-
sition at A2 ——0 in the bulk, and the term in e2 is not
necessary. In the latter case, the transition is first-order
(as is usual in ferroelastics), and the term in es2 (with
C2 & 0) must be included for stability; the bulk transi-
tion temperature () To) ls found &om A2 ——3B2/(16C2),
while the bulk strains in the two 0 variants are +e20 with
e20 ——[(—B2/2+ p)/C2]'~' and p = (B,'/4 —A.C2)' '.
The expansion in powers of e2 is, of course, limited to
temperatures T close to the transformation temperature;
nonpolynomial terms are required to remedy an unphys-
ical result of the expansion, that the strain e20 does not
saturate at low T. The terms in ei and es2 in Eq. (2.4a)
are the usual contributions for a linear, hoxnogeneous,
elastic medium.

The strain-gradient part 4 of Eq. (2.4b) gives the con-
tribution from inhomogeneous strains. Contrary to state-
ments in the literature, Eq. (2.4b) (which was used in Ref.
3) has the proper rotational invariance; it merely omits
several invariants, terms coupling the derivatives of the
strains, ' as discussed below. The strain-gradient terms
give nonzero width to the parent-product and product-
product interfaces; in fact, they are necessary to define
the length scale. Other approaches, which omit these
terms, have, however, been used successfully.

Equation (2.4) contains only essential terms. Of the
many terms allowed by symmetry and of the same order
as those retained, those that couple e2 to other strains are
particularly troublesome, for they can induce strains e1
and e6 parasitically in the presence of non-vanishing e2 or
its derivatives; examples are terms like eie2 in Eq. (2.4a)
and ei ie2 i —ei 2e2 2 (see Refs. 5 and 7) in Eq. (2.4b), and
higher-order combinations like es(e22 i +e22 2). These cou-
pling terms (which may be nuznerically important, and
would be considered in a full solution) are oznitted, first
because they might destroy the two-dimensional charac-
ter, and second because strains other than e2 can develop
for other reasons, and it is desired that there be no confu-
sion about their origin; in fact, the following shows that
nonzero strains e1 and e6 develop as a result of the bound-
ary conditions, even though the energy density contains
no terms coupling e1 and e6 to e2.

Some of the Landau coeKcients appearing in the ex-
pression for the &ee energy are known for some materi-
als, but a complete set appears to be unavailable for any
material. This article is then necessarily qualitative and
exploratory. I have chosen a set of coefBcients believed
to be representative: A1 ——1, A6 ——1, B2 ———3, and
C2 ——10; the unit of length is fixed by the choice d2 ——1;
dz and ds are also taken to be 1 (since there is no reason
to take them different from d2). The coefFicient d2 de-
termines the width parameter ( for the product-product
soliton3

e2(A) = e20sinh(X'/V2()/[cosh (X/v 2() + n] ~ (2.5)

[where X' = xi + x2 and n = (—B2 + 2p)/(B2 + 4p)]
according to ( = e20 (d2/p) z~2; the width of the wall de-
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creases with decreasing T: at low T, ( = g—d2/A2. The
choices for B2 and C2 give a weakly 6rst-order transition
in the bulk at A2 2 x 10,with strain e2Q —1.5 x 10 3;
the strains e2Q are rather large at low T, about 0.03 at
A2 ———1. Other choices for the parameters were investi-
gated, with no qualitative change in the results.

III. CONSTRAINED SQUARE

The strain energy I" = f XdV was minimized with re-
spect to the components uq(2:z&2:2) and u2(xx&&2) using

(a)

a conjugate-gradient method, subject to the conditions
u = 0 on (and outside) the surface of a square of side
I with edges parallel to the (010) and (100) planes of
the parent phase. This procedure guarantees that the
compatability equations are satisfied, unlike other ap-
proaches; it is less accurate but far simpler than solving
the partial differential equations (which are fourth-order
in derivatives of the displacement). The full (nonlinear)
strain tensor was used (although the strains are only a
few percent at most). The components of the displace-
ment were found on a square grid of points equally spaced
at intervals L/192, and the strains from numerical differ-

(b)
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entiation of the displacement. Because a centered, Bve-

point, finite-difference approximation was used for the
derivatives, the strains do not vanish at the boundary and
at the first grid point outside the boundary (recall that
the displacement vanishes on and outside the boundary).
The nonvanishing of the strains at these points is entirely
due to the finite spacing of the grid points; in the figures
discussed below, the strains are plotted only on and inside
the square. Starting values for the minimization were
obtained by hand nucleation of an orthorhombic region
embedded in tetragonal material or from converged val-
ues at other parameter values (T, L, etc.). Final values
were independent of the starting values with the same
symmetry; that is, walls are not pinned but enter and
exit ft..eely at the corners. Solutions were of two symme-
tries, e2 odd about a diagonal of the square or e2 even;
the first had the lower energy in all cases investigated.
Of course there are many other solutions; further work
might examine twin walls in both directions.

Figure 1 shows the strains and the displacement at
A2 ———0.5 for a square of side L = 96 (the length scale is
defined by the choice d2 ——1 in the strain-gradient energenergy
@). The dilatational and shear strains are localized near
the boundary of the square; the deviatoric strain forms
a twin wall along the diagonal and several other walls,
which become less well defined near the corners. The
walls are parallel, and the displacement is zero between
the walls, except near the boundaries. The change in the
wall orientation near the boundary is reminiscent of the
tapering of twins at the interface between orthogonallgona y
oriented twins in YBa2Cus07 s (Ref. 14 and references
therein) .

Figure 2 shows the deviatoric strain for L = 96 (as
in Fig. 1) at a lower temperature Az = —l. As dis-
cussed below Eq. (2.5), the walls narrow with decreas-
ing T; the widths in Figs. 1(b) and 2 are comparable to

0.2 0.4 0.6 0.8

FIG. 3. Contour plot of the normalized strain e2/e2O for a
grain of linear dimension I = 192, at a temperature corre-
sponding to A2 ———0.5.

those expected &om the analytical solution for a single
wall (which gives the +50% widths as 1.32 and 0.93 at
A2 ———0.5 and —1). The walls are better defined at the
lower temperature, particularly toward the corners their

~ ~

) )

positions change by only 10% with the decrease in T.
Figure 3 shows the deviatoric strain for a larger square

(L = 192), at Az ———0.5. The distance between walls is
about 50% greater than in Fig. 1. From Figs. 1(b), 2,
and 3, the wall spacing is roughly independent of T, does
not scale with the system size I, and (for given T and
L) decreases with the length of the wall.
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FIG. 2. Contour plot of the normalized strain e2/e2II for
the rain f Fgrain of Fig. 1, but at a temperature corresponding to
A2 ———1.

FIG. 4. Strain ego in bulk material (solid line) as a func-
tion of the Landau parameter A2, maximum values of ~ei~
(diamonds), ~ez~ (pluses), and ~es~ (squares) for a grain of
linear dimension I = 96 as functions of A2.
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FIG. 5. Dependence of the Landau parameter Aq at the
mean-Beld transformation temperature T on the reciprocal
of the grain size I.

Figure 4 shows the maximum values of ~eq(xq, xq)~,
etc. , as functions of the Landau parameter A2 for L =
96, arid also the strain t 20 in bulk orthorhombic mate-
rial. Near the transformation temperature, the deviatoric
strain e2 is, of course, much less than the bulk value,
and the walls are poorly defined near the corners. The
maximum deviatoric strain is about 1% larger than the
bulk value at low T, perhaps due to incomplete conver-
gence. The dilatational and shear strains are small near
the transformation temperature; they increase in magni-
tude with decreasing T and become of the same order as
the deviatoric strain.

Figure 5 shows the mean-Geld transformation temper-
ature (more precisely, the value of the Landau coefBcient
A2 below which the twinned product phase has lower en-
ergy than the tetragonal phase) as a function of I/I; of
course a true phase transition occurs only in the limitI —+ oo. The results apply only to a grain embedded
in a matrix of other grains, not to grains with free sur-
faces. The transformation temperature of a single grain
decreases with the size of the grain, and so the ferroelastic
transformation in a polydisperse, polycrystalline sample
occurs over a range of temperatures. In terms borrowed
&om the martensite literature, the transformation starts
at T = Mg and finishes at T = M~, corresponding to the
transformation temperatures of the largest and smallest
grains.

The continuum theory then predicts correctly the twin-
wall orientation in constrained systems. It also predicts
that the transformation temperature decreases with the
grain size, so that ferroelastic transformations occur over
a range of temperatures. The observed narrowing at the
collision of twinned regions may also Gnd an explanation
in the continuum theory, but further work is required for
confirmation.
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