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The vacancy formation energies and (Mg, Al, and Si) impurity heats of solution are calculated
for Al and Mg using a 6rst-principles pseudopotential approach and large supercells. While the
interaction of the defects considered here are already negligible for reasonably small unit cells,
adequate sampling of the Brillouin zone is found to be essential for these metallic systems, even
for systems containing more than 100 atoms per unit cell; e.g. , the vacancy formation energy of
Al for 108 atoms per cell has the incorrect sign if only the I' point is sampled. When the volume
and structural relaxations are treated consistently, heats of formation and solution and relaxation
volumes are obtained that are in good agreement with the available experimental data. Simple
trends in the relaxations around the impurities in the various materials can be understood in terms
of the size of the impurities compared with the host atoms. Contrary to some commonly used
models, the energetics of the impurities are found to be dominated by electronic, rather than elastic,
contributions. The defect-induced changes to the local electronic structure are also discussed.

I. INTRODUCTION

Impurities and defects play an important role in de-
termining the properties of real materials. The presence
of defects breaks the translational symmetry of the sys-
tem. Differences in atomic size and in the number of
electrons of an impurity will perturb both the electronic
and structural properties. The presence of a defect may
cause the formation of localized states, which in turn may
drastically alter the transport properties. Likewise, the
difference in size between the host and the impurity atom
may cause the lattice to locally distort and induce long-
range strains. These distortions may acct the mechani-
cal properties by changing the elastic properties or may
even cause a phase transition. These impurity-bulk in-
teractions may be attractive or repulsive. Even when the
interaction is repulsive, there will be an equilibrium con-
centration of impurities at finite temperatures. Simple
defects such as vacancies will behave similarly, although
defects generally will have an energy cost associated with
their creation (repulsive interaction).

In the study of phase diagrams, studies of impurities
provide important information about the low concentra-
tion regime. While the properties of defects and impuri-
ties are important for a fundamental understanding of the
behavoir of materials, much of the basic thermodynami-
cal information is very diflicult or sometimes impossible
to obtain from experiment.

The local density theory has proved surprisingly ac-
curate in predicting ground state properties of solids; it
has become fairly routine to extract results that compare

favorably with experiment. The time is now approach-
ing when computer experiments may be considered reli-
able enough to be as useful as real experiments, with the
added advantage that computer simulations can give new
insights and enhance our understanding of real materials,
often pointing to the essential physics at play. Hypothet-
ical structures such as metastable and unstable phases
are readily studied on the computer, but are not neces-
sarily realizable in the real experimental world. Extreme
conditions of pressure and temperature that may be in-
accessible to present experimental means may be easily
considered in a computer simulation of the material.

To treat isolated impurities and defects, one needs to
consider large in principle infinite —systems since the
translational symmetry is lost. Although methods do ex-
ist that can treat the isolated impurity, a common ap-
proximation is to use supercells and artificially reimpose
the translational symmetry by repeating the defects. The
advantage of a supercell approach is that the same meth-
ods can be used for both the ideal and defect-impurity
systems. Such methods are also applicable to disordered
systems such as liquids or random alloys, where the
calculational cell might have no bearing on any underly-
ing symmetry of the system and. is purely an artifact of
the calculation. Notwithstanding the inexorable interest
in looking at larger and larger systems, we believe that
there remain a number of interesting phenomena that can
be studied using cells of order of a few hundred atoms, for
example, the phase stability of alloys including low con-
centration alloys at the 1% level, dislocations and strain
fields, surface reconstructions, etc.
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Over the years, most first-principles calculations for
large ( 100 atom) systems have been in the field of semi-
conductors, both because of the obvious technological in-
terest and also because such systems are relatively sim-
pler to study compared to metals. Metals pose unique
and interesting problems from a physics and computa-
tional point of view and a greater eKort is required to
derive accurate results. The main point here is the
often complicated nature of the Fermi surface that must
be described by a detailed sampling of the Brillouin zone
(BZ). The variable occupation of states adds to the num-
ber of degrees of &eedom that aBects the overall stability
of the solutions of the Kohn-Sham (KS) equations.

In this work, we show that large metallic systems can
be studied accurately. We emphasize the need for accu-
rate sampling of the BZ, even for systems of a relatively
large number of atoms. To expound on these points,
we have chosen as our prototypical systems fcc Al and
hcp Mg. Al, because of its useful properties of light-
ness, strength, and resistance to wear, is the material of
choice in many technological applications. The Al-Mg
alloy phase diagram includes a number of complicated
phases and presents a challenge to explain theoretically.
In this paper, we calculate the vacancy formation ener-
gies in Al and Mg, and the heats of solution of impurities
of Si and Mg in Al and of Si and Al in Mg. Considering
these same-row elements in adjacent columns readily fa-
cilitates comparisons that are useful in interpreting the
results. We attain converged results by considering var-
ious samplings of the BZ together with di8erent sizes of
the system cell. Where possible, we compare our results
with experiment.

In Sec. II and the Appendixes, we discuss our approach
for the iterative solution of the KS equations and the min-
imization of the total energy with respect to the atomic
positions. The studies of k-point convergence and the
results for the Al and Mg systems are given in Sec. III,
and a brief summary with conclusions is given in Sec. IV.

II. METHOD

The standard self-consistent solution of the Kohn-
Sham (KS) equations is a nonlinear process: A starting
Hamiltonian is constructed &om a guessed input charge
density and the Hamiltonian (within a given basis) is di-
agonalized to obtain the KS eigenvalues and eigenvectors.
The Fermi level is then determined, and the charge den-
sity computed. This output charge density is mixed care-
fully with the input density to construct a new Hamilto-
nian, and the process is repeated until self-consistency is
achieved and the total energy is stationary.

The availability of soft pseudopotentials has made
the study of a great variety of solid state systems us-
ing plane waves feasible. The main computational hur-
dle that needs to be overcome in traditional exact-diag-
onalization techniques2s is the so-called C7(Ks) problem,
where the computational time scales with the third power
of the system size IV.

The diagonalization of the Hamiltonian is generally the
computationally intensive task. Conventional methods

m=1 m=1

The coefficients Dg are then used to determine the ex-
act eigenfunctions, with eigenvalues ek, for the subspace
spanned by the states ~gi, ):

(4i ) = ).&i )0i )
m=1

The subspace diagonalization serves the purpose of or-
thogonalizing the states and of determining the next ap-
proximation to the KS eigenvalues. Other methods for

require the storage of the entire Hamiltonian. A number
of years ago, Car and Parrinello presented an efEcient
means of diagonalizing the Hamiltonian. Since then, a
number of iterative schemes ' have been devised that
work on the same principle: A set of states is iterated
upon by the Hamiltonian, usually followed by an orthog-
onalization procedure. The main attribute of such iter-
ative schemes is that the entire Hamiltonian need not be
stored. Since one is interested only in the lowest (occu-
pied) states of the system, it suffices to simply compute
the action of the Hamiltonian on a subspace of occu-
pied states, rather than on all the states. This proce-
dure can be done eKciently using fast-Fourier-transform
(FFT) techniques for a plane wave basis. The end result
is the set of the lowest-energy eigenstates, which is all
that is needed for the determination of the ground state
properties of the system under consideration.

In our work, we use the plane wave pseudopotential
technique to solve the KS equations. Use is made
of the Vosko-Wilk-Nusiar ' local density parametriza-
tion of the exchange-correlation potential and energy.
The ionic pseudopotentials are of the Troullier-Martins
form, &om which the Kleinman-Bylander ' fully non-
local separable potentials are constructed. For the sam-
pling of the BZ, we use the Monkhorst-Pack special
points technique; the symmetry of the lattice is used to
reduce the set of k points to the irreducible part of the
BZ.

The iterative diagonalization procedure that we em-
ploy is a variant of a preconditioned steepest descent
(PSD) algorithm. The algorithm is applied to the elec-
tronic problem for a fixed set of ionic positions. There
is no line minimization of the energy along the direction
of steepest descent; instead, we take a step along this
direction inversely proportional to the kinetic energy of
the state. Details concerning the convergence of the gen-
eral PSD method and its implementation in a plane wave
basis are given in the Appendixes. Our complete proce-
dure, which we now discuss, di8'ers in a number of ways
&om other work.

Given a set of n, trial wave functions at each k point
and a potential, the states are propagated according to
Eq. (B5). The number of states, n,„ is typically l%%uo

of the total number of plane waves and is larger than
the number of occupied states. At this point, these
(nonorthogonal) trial states are diagonalized with respect
to the Hamiltonian H:
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orthogonalizing the states besides a subspace diagonal-
ization could be considered, especially since this step is
an C7(Ns) process. (In practice, the FFT's are still the
rate limiting step for the system sizes under considera-
tion. ) However, replacing the subspace diagonalization
by, for example, a Gram-Schmidt procedure would have
several disadvantages.

First, since we are interested in metals, we must allow
for the possibility that some states may be either partially
or completely unoccupied. Because n, is greater than
the number of occupied states (and hence the occupation
numbers are not all equal), a unitary transformation of
the subspace states will not leave the density, or any other
quantity that can be written as a trace, invariant; the
(fractional) occupation numbers of metallic systems are
associated with eigenstates, not linear combinations of
eigenstates.

A second, but more subtle, consequence of our imple-
mentation of the subspace diagonalization is that we do
not have the instabilities during the iterative diagonal-
ization that have been observed elsewhere. ' The in-
stabilities can be related to the fact that the propagation
of the trial states does not maintain orthogonality of the
states and that the subspace spanned by the trial states
changes. These points are crucial and point out a diK-
culty in using updating schemes more sophisticated than
the PSD method. Methods such as conjugate gradients
effectively use information from a number of previous it-
erations; unfortunately, the space spanned by the trial
states changes between steps, both because of the or-
thogonalization (done by the Gram-Schmidt procedure,
for example) and the equation of motion. The result is
that the information about previous steps contained in
the updating scheme is given with respect to a rotated
(and different) space. If the rotation of the space is large,
then this previous information can force the states in a
completely wrong direction. The PSD method, on the
other hand, uses information only from the present it-
eration, i.e. , local information, and will not suffer from
this problem. Moreover, since the subspace of the previ-
ous step was diagonalized —thereby determining the min-
imum of that subspace —the search need only occur in
the orthogonal subspace. Since no information about the
orthogonal subspace exists &om the previous iterations,
there does not appear to be any advantage to methods
that make explicit use of previous steps. Note that this
combination of the PSD method and subspace diagonal-
ization does not suffer &om the "long valley" problem of
standard steepest descent methods and that the conver-
gence and stability of the method are quite reasonable.
Whether a method better than the PSD method can be
found for optimally determining the new subspace is an
open question, but any such method must take into ac-
count the rotation of the subspace resulting &om orthog-
onalization.

Once the subspace diagonalizations and rotations for
each k point have been carried out, these states are frac-
tionally occupied according to a Fermi distribution

—1

fi,„= exp
" + 1

(si, —sy)
kgT

with a thermal broadening k~T and Fermi level ay which
is adjusted to accommodate the fixed number of elec-
trons. The additional degrees of freedom that arise in
the determination of the occupation numbers fi, require
that an entropylike term be included to maintain the
overall variational nature of the total energy expression:

~(r)~(r')
Ei g

—) &g fk —— dr dr + QEwald
2

kn

+ dr e„, pr —p, pr +oZ

+kgyT ) [fi,„lnfk„+ (1—fi,„)ln(1—fk„)], (4)

where the charge density is given by

S(r) = ):I4~-(r)l'f~-
k,n

(5)

p, and e„,denote the exchange-correlation potential and
energy, respectively, and pE ~d and o. Z are the Ewald
constant and the g = G term of the local pseudopotential
interaction energy, respectively. Although minimizing
this functional form of the total energy appears to be
equivalent to minimizing the free energy of the system "
at finite temperature, the "entropy" term is a conse-
quence of the fractional occupation and need not be as-
sociated with a physical temperature.

We use the rotated states as the input for the next it-
erative step [cf. Eq. (B5)] and then use a linear mixing
of the charge density to update H. For large systems,
the smaller size g vectors tend to amplify errors in the
charge density because of the long-range nature of the
Coulomb potential, the so-called "charge sloshing" prob-
lem. The use of Eq. (B4) efFectively limits the time step
&om increasing indefinitely for small g vectors since the
preconditioner remains bounded by 1/S. This ensures
that the low-energy components of the wave function are
mixed in carefully, and are not allowed to dominate the
self-consistency process (see the Appendixes).

Once the electronic wave functions and the charge
density for a given set of atomic positions are con-
verged, the Hellmann-Feynman forces are calculated.
To generate the new set of atomic positions, we use a
modified ' Broyden-Fletcher-Goldfarb-Shano (BFGS)
quasi-Newton update scheme where the Oren-Spedicato
scaling is used in the second step to make the process
self-scaling. In order to make the whole process auto-
matic, we use a simple criterion in the first step that de-
termines how far to move along the direction of the force:
We assume that the forces on the atoms are comparable
to the forces an atom sees during a phonon vibration.
The distance to move an atom can then be related to the
force, the mass (proportional to the atomic number), and
a characteristic phonon frequency, for which we use the
Debye temperature. With this method, we are able to
rapidly minimize the total energy with respect to atomic
positions. Even for large low-symmetry systems, only
3-5 atomic steps are needed to have all forces less than
10 4—10 5 hartrees/a. u. and the total energy converged
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to within phartrees for a cell with N atoms.
Finally, we give some of the computational details of

the calculations discussed in Sec. III. The wave functions
are expanded in plane waves with energies up to 12 Ry,
although some tests were done for cutoffs of 16 and 20
Ry. Since the energy differences were converged to a few
meV per cell, we will only report the 12 Ry calculations.
The temperature broadening for the Fermi distribution
function is k~T = 0.001 in hartrees, corresponding to ap-
proximately room temperature. We include a relatively
large number of states above the Fermi level, including
approximately 25Fo more states than we would occupy
had the system been a band-gap material. The shift pa-
rameter defined in Eq. (B5) for the preconditioned matrix
of the iterative diagonalization scheme is set to S = 0.5.

III. R,ESULTS

As discussed in the Introduction, vacancies and impu-
rities are important from both a scientific and technolog-
ical point of view. Diffusion in solids is often mediated by
vacancies; thus, the mobility of vacancies and the interac-
tion between vacancies and other vacancies or impurities
in the crystal affect the physical and transport proper-
ties of the material. The formation energies of defects
and heats of solution of impurities are important ther-
modynamical quantities that are related to and control
the physical properties.

The vacancy formation energy AH„(at T=O K) is de-
6ned as the energy required to create a vacancy in the
bulk. For a supercell of N atoms of metal 4, LH„ is
given by

b,H„= E„,[N —1] —(N —1) p~

= E,[N —1] — E~[N],
N —1

where E„,[N —1] is the total energy of the supercell
containing N —1 atoms and the single vacancy, and the
chemical potential p~ is the energy per atom in the bulk
obtained from the total energy E~[N] of a bulk supercell
containing N atoms of element A. Atomic relaxations
have the effect of reducing AH„. The heat of solution
LH of an impurity of atom B in metal A will have a
form similar to Eq. (6):

+H = EirnPurity[N 1] (N 1) PA Pa I

where p~ and p~ are the corresponding chemical po-
tentials (total energies per atom) of materials A and I3,
respectively, in their ground state (diamond structure Si,
hcp Mg, and fcc Al). While p~ is calculated using param-
eters equivalent to those used for the impurity system,
p~ is obtained &om separate bulk calculations which are
converged with respect to k-point sampling. Note that
LH is independent of constant shifts in the atomic en-
ergy; thus the calculated heats of solution are indepen-
dent of, for example, the typical local density overesti-
mate of cohesive energies or the choice of zero of the
pseudopotential.

A. Size effects in supercells

In order to make a reasonable approximation to the bulk,
N«needs to be large enough. Obviously, in practical
calculations there is a trade-off between supercell size and
k-point sampling. The simplest example of this behavior
is that for ideal systems there are various combinations
of N and Nk that yield the same N«. These different
choices will give identical results if the difFerent sets of
k points are equivalent (the well-known "band-folding"
efFect) .

In Table I, we give the calculated formation energy

TABLE I. The ideal (unrelaxed, a=7.5056a&) vacancy for-
mation energy of Al (h, H„, in eV) computed for difFerent size
unit cell and various sampling, s of the Brilloiun zone. Ng is the
number of (special) k points sampled and Nt t is the effective
number of sites in the crystal.

Atoms

32
32
32
32
32

108
108
108
256

1
4

10
20
35

1
4

10
1

32
2048
6912

16384
32000

108
6912

16384
256

—0.14
0.80
0.68
0.83
0.82

—0.53
0.68
0.82
1.20

The vacancy formation energy of Al has been studied
by a number of different authors. The results &om a
number of difFerent self-consistent local density approx-
imation (LDA) calculations vary Rom around
0.55 eV, to 0.71 eV, to about ' 0.85 eV, with some
older values as high as 1.5 eV; for comparison, the
experimental value is 0.67+0.03 eV. In this section,
we use the vacancy and Si and Mg impurities in Al as
test cases for convergence studies of the size effects; the
physics of the results will be discussed later.

There are two types of size effects that will be consid-
ered: (1) unit cell size (N atoms per cell) and (2) k-point
sampling (N& points in the Brillouin zone). If one is inter-
ested in determining the properties of the isolated defect,
then N should be increased until the results are indepen-
dent of N . For a given N, the electronic structure may
in turn depend on the choice of N&. To get a converged
result, both N and NA, must be considered. While at
erst glance N and NI, appear to be independent, they
are, in fact, closely related: Consider a crystal with N
unit cells of N atoms, i.e. , a crystal with N~ &

——NN
atoms. Then Born—von Karman periodic boundary con-
ditions generate exactly N points in the BZ, although
this structure of the BZ is often ignored. If the logic is
now inverted, the choice of k-point sampling and super-
cell size together determines the effective total number
of atoms in the crystal:

0
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of an ideal vacancy in Al (at fixed lattice constant) for
different values of N and NI„where Ny is the number of
symmetry inequivalent points in the first BZ. Also given
are the corresponding values of Nt t. For the cases Ng ——1,
the k-point sampling is limited to the standardly used
I' point. For equal values of Nt t, but different values
of N, the energies per atom for bulk Al are identical.
First note that for Ng ——1 all the values of LH —even
for 256 atoms per cell—are signi6cantly in error, with
the 32- and 108-atom cells predicting the wrong sign.
The I'-point samplings, with their small values of Nq t, ,
would seem to suggest that there are long-range vacancy-
vacancy interactions in Al and that signi6cantly larger
cell sizes are necessary.

Such a conclusion, however, is incorrect. First consider
the convergence of the 32-atom cell with Ng. The results
are converged to 0.01 eV for 20 special points. Com-
parisons of equivalent k-point sets (Nt i) for the 32- and
108-atom cells, show that the vacancy-vacancy interac-
tion differs by less than ~0.01 eV between these choices
of N . Thus the vacancy-vacancy interactions appear
to be almost negligible already for the 32-atom cell, but
only if the BZ is adequately sampled. From the results
in Table I, it is clear that in order to get comparable
accuracy using I'-point-only sampling would require unit
cells on the order of at least 10 —10 atoms. Since the
computational cost is linear in k points, increasing NA,

rather than N is clearly a more eKcient way to increase
Nt i', this trivial way to get efFectively O(N) scaling is
only appropriate when N is large enough to include the
important long-range interactions.

The reason that k-point sampling beyond the I' point
is necessary is simply that the electronic structure for
small effective crystal sizes does not resemble bulk Al.
In Fig. 1, we show the total density of states for the
108-atom cell of pure Al, sampled either at only the I'
point or at four special k points. While the four k-point
sampling generally already has the correct shape of the
Al bulk density of states, the I'-point sampling does not
resemble a nearly &ee electron density of states. These
results, and the need for adequately sampling the BZ,
should not be particularly surprising since the itinerant
electrons in metallic systems are quite sensitive to the
boundary conditions imposed by the 6nite crystal size.
An important conclusion that can be drawn is that sim-

ply using the largest supercells possible is not only an
ineKcient use of resources, but also may lead to incor-
rect results; bigger is not necessarily better.

Similar convergence studies were also carried out for
Mg and Si impurities (cf. Table II). The impurity-
impurity interactions are again basically negligible for the
32-atom cells. As before, k-point sampling was found to
be important: For the Si impurity, the errors resulting
&om sampling the I" point only were smaller than in the
case of the vacancy, but still unacceptably large ( 0.7
eV for the 32-atom cell, 0.2 eV for the 108-atom cell).
Moreover, the results in Tables I and II show that the
convergence with k points (for fixed N ) is different for
each system. For example, the Mg results are converged
to 0.01 eV with respect to cell size (for comparable k-
point samplings), but show poorer convergence with re-
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spect to k-point sampling than do the Si results. These
results demonstrate that some convergence studies are
necessary for any new system.

In addition to the ideal (unrelaxed) impurities, the re-
laxed heats of solution are also given. The relaxation
energy, however, is quite insensitive to the k-point sam-
pling, even though the relaxed atomic positions for dif-
ferent choices of N and NA, varied slightly. Likewise,
and perhaps somewhat surprisingly, the relaxation en-
ergy was also rather insensitive to the cell size as can be
seen by comparing the 32- and 108-atom results in Ta-
ble II; even for the vacancy, with its significantly larger
relaxation energy, the corresponding difference is less
than 0.01 eV.

TABLE II. The heats of solution (in eV) of Si and Mg im-
purities in Al for various unit cell sizes and number of special
k points (Nl, ) at fixed lattice constant (a=7.5056a~).

32 atoms 108 atoms

Ng

Si impurity
unrelaxed
relaxed

Mg impurity
unrelaxed
relaxed

10

0.42
0.41

0.03
0.01

0.41
0.40

0.07
0.05

0.41
0.40

0.02
0.00

Energy (eV)

FIG. 1. Comparison of the electronic density of states of
the 108-atom Al cell using I'-point (solid line) and 4 special
k-point (dashed line) sampling. [Each eigenvalue is Fermi
broadened, sech (e —s, )/(2knT), with k~T=0.001 hartree. ]



6318 CHETTY, WEINERT, RAHMAN, AND DAVENPORT 52

B. Al vacancy

The presence of impurities and vacancies causes a num-
ber of changes in the properies of a material; one of the
most obvious is a measurable change of the lattice con-
stant with concentration of defects. This macroscopic
fractional change in volume AV/Vp, together with the
concentration of defects c, can be used to define an eÃec-
tive size of an impurity (formation) volume V or equiv-
alently a relaxation volume LV'

~Vrel

no

~Vrel

Op

1 (ab
5~p)

(10)

Taking the volumes into account correctly can have im-
portant quantitative effects on the calculated values. A
rough estimate of the error in total energy resulting from
the use of a fixed lattice constant for both the bulk and
the impurity systems for an N atom cell is

where Op is the volume per atom of a host atom. For
cubic systems, this can be written in terms of the lattice
constants of the ideal (ap) and defect (a) systems as

vacancy

Si

Calculated

0.66+0.03

0.07

0.37

Experiment

0.67+0.03
0.64+0.04
0.60—0.77'

0.20"
0.08'
0.06
0.51

vacancy

Mg
Si

—0.33+0.05

0.30
—0.18

—0.38g
—0.05'

0.34
—0.13"

"Recommended value" of Ref. 52.
Reference 68.

'See references in Ref. 52.
Reference 53.

'Reference 64.
Reference 65.

g Reference 69.

TABLE III. The fully relaxed formation enthalpies and
heats of solution (AH ) and the relaxation volumes (AV"')
for the vacancy and Mg and Si impurities in Al; all energies in
eV and relaxation volumes in units of the bulk atomic volume
of Al. The error bars on the calculated values are similar for
all systems considered.

(zv-') '
AE=N —BAp

i i
c

np )

where B is the bulk modulus; LE is simply the energy
(within the harmonic approximation) required to change
the volume of each atom by an amount cAVre . Since

N, the error vanishes as e~0 and N~oo, but for
finite values there will be a contribution. For the Al
vacancy, the difference between a 32- and 108-atom cell
is 0.01 eV, consistent with the results in Table I.

The fully relaxed heat of formation and relaxation vol-
ume for the Al vacancy are given in Table III. The error
bars given are based on estimates of the variations with
cell sizes and k-point sampling. Note that small changes
in the lattice constants can have large effects on the calcu-
lated values of AVre and that the problem becomes more
severe for larger cells (smaller concentrations). The en-
ergies given in Table III are based on k-point samplings
of up to Nq q ——87808 atoms, corresponding to 2744 k
points in the irreducible wedge for fcc Al; these larger
samplings were not done for the unrelaxed structures and
thus were not given in Tables I and II. Interestingly, the
k-point convergence for the impurity systems appears to
be faster than the convergence for bulk Al, so that most
of the error bar is associated with bulk Al. (Note that
the changes in energy for different k-point samplings are
small on the scale of what one normally considers: To get
an absolute convergence of 0.01 eV for a 108-atom bulk
cell with respect to k-point sampling requires that the
bulk total energy be converged to 3 phartrees/atom. )

Our calculated heat of formation of a vacancy in Al
is 0.66+0.03 eV, in good agreement with experiments

and also reasonably consistent with previous calculations.
This value differs significantly &om the values given in
the previous section because of volume effects (the re-
sults in Tables I and II used a bulk lattice constant 0.4%
larger than the calculated one) and relaxation effects.
For a given lattice constant, the relaxation energy of the
atoms is 0.08 eV. As expected, the relaxation of the
first shell of atoms around the impurity is inward by 1.9%%up

of the nearest-neighbor distance. The second and third
shells of atoms also relax inward by 1.0% and 0.7%, re-
spectively. The relaxation of these further shells appears
at first glance to converge rather slowly, but the motion of
these shells can be understood quite simply if one consid-
ers the rel'ative displacements of the shells: The distance
between the first and second (second and third) shells is
decreased by 0.2% (0.1%) compared to the ideal struc-
ture, values that are an order of magnitude smaller than
the changes relative to the vacancy. Thus the relaxation
of the more distant shells of atoms is dominated by a de-
sire to maintain the local bond lengths and coordination
of the atoms.

The hard-core repulsion between the first shell of atoms
limits the relaxation around the vacancy to 2% and
leaves a significant void. The calculated relaxation vol-
ume of —0.33 (in units of Ap) for the vacancy is in good
agreement with (at least some of) the experimental re-
sults and the previous value of —0.28 calculated by De-
Vita and Gillan. As expected, our value of LVre falls
between the limits of no relaxation (AV"i=0) and corn-
plete collapse of the volume (b,V" =—1). An important
consequence of a value for AVre of this order is that
elastic energies [cf. Eq. (11)] are too small to describe
the vacancy formation energy alone; i.e., electronic ef-
fects are necessary.
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C. Impurities of Si and Mg in Al 0.6

Both Si and Mg are important constituents in Al al-
loys. As such, the properties of dilute amounts of these
impurities are of interest. In Table III the heats of so-
lutions and relaxation volumes are given for these sys-
tems. In both cases the heats are positive, i.e. , repulsive.
The positive heat for Mg is somewhat surprising since Al
and Mg do form ordered, albeit complicated, alloys. The
sign, however, is consistent with various experimentally
derived values. The values &om Ref. 53 are derived from
the (high-)temperature dependence of the concentration
of impurities. The extrapolation of these data is such
that we expect these values to be upper bound. s to the
T=O K heats, but of the correct sign. The other available
data for LH for Mg in Al bracket our calculated value.

The relaxation volume for Mg is comparable to that of
the vacancy, but of opposite sign (Mg is larger than Al),
while the relaxation energy is rather small compared to
the vacancy. Likewise, the atomic relaxations are smaller
than in the case of the vacancy, with the first shell mov-
ing outward 0.9%, the second inward 0.7%, and the third
shell moving outward by less than 0.1%; just as for the
vacancy, the relative differences between shells are ap-
proximately an order of magnitude smaller. The calcu-
lated relaxation volume of 0.30 is comparable to, but
slightly smaller than, the 40% difference one would ex-
pect &om pure atomic sizes; such deviations arise from
the fact that the atoms are not simply hard spheres, but
that the electrons associated with each atom deform.

The re}axations for Si are even smaller than for Mg,
with LV"=—0.18. Since Si is smaller than Al, the first
shell of atoms relaxes inward by 0.5% and the relax-
ation energy is 0.01 eV. The calculated heat of 0.37
eV is smaller, as expected, than that deduced &om the
temperature dependence of the Si concentration.

Overall, the calculated results are in good agreement
with experiment, where available. Taken as a set, the
calculated results give us confidence that we are able to
describe these types of systems correctly.

Beyond simply obtaining numbers, we can also obtain
new insights &om the calculations. Based on our results,
we argue that the magnitude of the Si heat of solution can
be understood by considering electronic contributions to
the energy, rather than strain-elastic contributions. In
the Al lattice, the Si atom sees an fcc environment. fcc
Si (calculated at the Al lattice constant) looks similar to
Al; i.e., a rigid band model for the d.ensity of states de-
scribes fcc Si quite well (Fig. 2). Hence, a Si impurity
in Al will behave much as a nearly free-electron impu-
rity (see also Sec. III G), although the Si ground state
is the cubic diamond structure. The energy di8'erence
between the cubic diamond and fcc structures for Si is

0.5 eV/atom, which is comparable to the heat of so-
lution. Thus the major contribution to the heat of so-
lution is electronic in nature: Si prefers the tetrahedral
coordination of the diamond structure rather than the fcc
environment found in Al. These results point out that
simple strain arguments based on size alone are not
able to provide a consistent description of the energet-
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FIG. 2. The density of states for the fcc Al (solid line)
and fcc Si (at the Al lattice constant) (dashed line) cell. The
bottom of the bands are aligned; Fermi levels for each system
are given by the vertical lines.

ics of impurities and defects, although such models are
commonly used.

D. Bulk properties of Mg

TABLE IV. The in-plane lattice constant a and c/a ratio
for the hcp phase, and the nearest-neighbor distance aNN for
the hcp, bcc, and fcc phases. (All lengths are in atomic units. )
The bulk moduli (H, in Mbar) and cohesive energies (R, in
eV/atom) for Mg in the hcp, bcc, and fcc phases are also
given. The experimental values (extrapolated to T=O K) are
given in parentheses (Ref. 56).

a
c/a

H

hcp

5.88 (6.02)
1.62 (1.623)
5.85
0.40 (0.35)
1.80 (1.51)

bcc

5.70
0.39
1.77

fcc

5.88
0.39
1.79

Although Al has been studied quite often, relatively
few calculations for Mg exist. Mg crystallizes in the hcp
structure and undergoes a pressure-induced martensitic
transition to the bcc phase at around 50 GPa. In this
section, we summarize the bulk properties of hcp, fcc, and
bcc Mg that we need to describe the vacancy and impu-
rities results. We use 90, 100, and 110 special k points
in the irreducible part of the zone for the hcp, bcc, and
fcc unit cells, respectively. In Table IV, we tabulate the
results for the lattice constant, bulk modulus, and cohe-
sive energy. The results are in reasonable accord with
available experimental and other theoretical results.

We tested the convergence of the bulk properties of the
hcp structure as a function of cutoff energy (12 Ry and
20 Ry) and the number of k points (90 and 168 special
points) and found the structural properties tabulated in
Table IV to be well converged.
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E. Vacancy formation energy of Mg

TABLE V. Vacancy formation energy (in eV) for hcp Mg
for various unit cell sizes and number of special k points (N~).

36 atoms 96 atoms Expt.

Ni,
unrelaxed
relaxed

10
G.93
0.91

0.83
0.81

G.84
0.83 0.81

0.58
0.79'
0.90

Reference 60.
Reference 58.
Reference 59.
Reference 63.

The vacancy formation energy of Mg in the hcp struc-
ture was determined at a fixed lattice constant; based on
the results for the Al vacancy, we expect these calculated
heats of formation to differ from the fully volume-relaxed
heats by on the order of 0.01—0.03 eV. We first considered
a 36-atom cell with 10 (Nt t ——3600) and 36 (Kt t ——23328)
special k points for the bulk and the vacancy problem,
computing both the bulk and perturbed systems in the
same structure and with the same sampling of the BZ
to minimize errors. To investigate the finite size effects,
we then created the vacancy in a 96-atom cell with a
sampling of 6 special points (%t t

——9216) in the BZ.
Our results for the ideal and fully relaxed vacancies are

tabulated in Table V. We note that the result of 0.81 eV
for the relaxed vacancy formation energy for the smaller
unit cell with the higher sampling of the BZ compares
closely with the result of 0.83 eV for the larger system
cell. These results indicate that one can get a reason-
ably good estimate of the vacancy formation energy by
studying a relatively small atom cell accurately; this is
consistent with our earlier observation for the case of the
AI vacancy.

The difference between the results for the smaller and
larger unit cell might point to the relative attractive na-
ture of the vacancy-vacancy interaction in Mg: The dis-
tance between the vacancies in the 36-atom cell is 17.6
Bohr, whereas that in the 96-atom cell is 23.5 Bohr; the
reduced heat of formation at the shorter distance may
indicate that the vacancies have a tendency to attract
each other at zero temperature at this distance. It is
possible that at a certain critical density of vacancies,
clustering will be favored over single isolated vacancies
since it will require less energy to create more internal
surface in expanding a void in magnesium than to create
a single isolated vacancy, which would require breaking
the maximum number of 12 nearest-neighbor bonds.

The relaxation energies are small, reducing the heat of
formation of the vacancy by 1.5%. In Fig. 3 we show
the vector displacement of the atoms around the fully
relaxed vacancy for the 96-atom cell. The atoms dis-
place in an obvious way: The three nearest atoms in the
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FIG. 3. The vector displacement of the atoms around the
fully relaxed Mg vacancy for the 96-atom cell.

layer above and the layer below the vacancy move essen-
tially radially toward the vacancy a fractional distance
of dq ——1.1% (measured relative to the nearest-neighbor
distance). The six nearest atoms in the hexagonal plane
containing the vacancy are displaced in the plane a frac-
tional distance of dz ——0.7% toward the hollow site with
an angular displacement of 0 12' to the radial direction.
The atoms in the second nearest-neighbor shell are dis-
placed by ds ——0.2% and move (approximately) radially
toward the vacancy; the atoms in the third layer imme-
diately above and below the vacancy move by d4 ——0.6%
also radially toward the vacancy. The displacement of
all other atoms is less than 0.2%%uo of the nearest-neighbor
distance.

With the loss of coordination caused by the creation
of the vacancy, there is a clear tendency for the atoms in
the immediate vicinity of the vacancy to move radially
toward each other to gain electronic charge density. As
in Al, the atoms farther away from the first neighbor shell
surrounding the vacancy relax in a way to maintain opti-
mal bulk coordination. For example, the average change
in the nearest-neighbor distance of an atom in the sec-
ond shell surrounding the vacancy is 0.6% of the nearest-
neighbor distance, whereas the minimum displacement of
an atom in this shell from its ideal hcp site is 0.7%%uo. There
is a partial dimerization of the atoms in the hexagonal
plane surrounding the vacancy: The atoms relax toward
the void which is the hollow site, thus compensating for
the loss of coordination.

There are three types of experimental methods that
have been used to measure the vacancy formation energy
of Mg and one of these results is in disagreement with the
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other two. A dilatornetric-diffractometric measurement
gave a value of 0.58+0.01 eV, whereas resistivity-after-
quench experiments yielded a result of 0.79+0.03 eV,
with slightly larger values reported by others depend-
ing on the conditions of the quench: 0.81 eV &om elec-
trical resistivity measurements6 at thermal equilibrium
or 0.83—0.89 eV after quenching 61,62 The final class of
experiment used positron annihilation techniques and
deduced a value of 0.9+0.1 eV.

Our theoretical results clearly are in close agreement
with the last two classes of experimental results and are
consistent with the claim that the vacancy formation en-
ergy of Mg is greater than that of Al. While the in-
vestigation of the erst group appears to be thorough,
including a critical analysis of various possible sources
of error, we believe that these results are probably less
reliable because the dilatometric and the diffractomet-
ric measurements were actually performed on different
samples with possible different dislocation and impurity
distributions.

vacancy. This accounts for the fact that there is a larger
discrepancy in the result for the impurity problems than
the vacancy problems when comparing the large unit cell
calculation with the smaller cell, 36 k-point result: The
extended nature of the relaxations in the impurity cases,
especially the Si impurity, calls for an even more detailed
sampling of the Brillouin zone than what we have been
able to afford.

The metallic radii of Si (1.32 bohr) and of Al (1.43
bohr) are smaller than that of Mg (1.60 bohr), and the
larger size and electronic mismatch are between Si and
Mg rather than between Al and Mg. Our results reflect
this difference in the larger heat of solution and relax-
ation energies of the Si impurity system compared with
the Al case. There are, unfortunately, less experimental
data for impurities in Mg than in Al with which to com-
pare. Two different indirect determinations of the heat
of solution of Al in Mg differ even in sign: 0.07 eV (Ref.
64) and —0.11 eV (Ref. 65). Our results clearly favor the
positive heat and also agree in magnitude.

F. Si and Al impurities in Mg G. Impurity-induced density of states

The heats of solution of Si and Al impurities in hcp Mg
were also computed. Once again we considered a 36-atom
cell with 10 and 36 special k points, and then a 96-atom
cell with 6 special points. For the smaller system size,
the impurity problem may be considered equivalent to
a low concentration alloy at the 3'% level and, for the
larger cell, an alloy at the I'%%u&& level.

In Table VI, we list the heat of solution for the Si im-
purity and the Al impurity in Mg. For the constitutent
phases, we choose the cubic diamond and fcc structures
for Si and Al, respectively. Surprisingly, the relaxations
are more substantial in the impurity cases than in the cor-
reponding vacancy problem: For example, in the case of
the Al impurity in Mg, the three nearest atoms above and
below the plane containing the impurity are displaced
di ——1.4% radially toward the impurity, and the six near-
est atoms in the hexagonal plane containing the impurity
are also displaced d2 ——1.4%, with an angular displace-
ment of 0 15 toward the hollow site. The displacement
of all other atoms is less than 0.4%, and the relaxation
energy is 40 meV, which is about 4 times that for the

TABLE VI. Heats of solution (in eV) for Si and Al impuri-
ties in hcp Mg for various unit cell sizes and number of special
k points (Ng).

0.6
.-------- bulk site---- vacancy site

0.4

)
~~0.2

~ 0.0
o 06

I
CI

C5

0.4

The discussion up to now has been related to the struc-
tural properties and energetics. Additional information,
however, can be obtained by looking at the electronic
properties such as the local density of states directly. In
Fig. 4(a), the local densities of states (LDOS) at the de-
fect site for the Al calculations are given, along with the

36 atoms 96 atoms 0.2

Ng
Si impurity

unrelaxed
relaxed

Al impurity
unrelaxed
relaxed

10

0.32
0.27

0.08
0.05

36

0.35
0.28

0.11
0.08

0.29
0.19

0.09
0.05

0.0 —10 —5 0
Energy (eV)

FIG. 4. (a) Calculated and (b) Clogston-Wolff model local
densities of states for bulk Al and the Mg, Si, and vacancy
sites in Al.
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G = Go+ GoviG (12)

LDOS at a bulk site for reference. As expected, the den-
sity of states below the Fermi level is increased for Si and
decreased for Mg and the vacancy. The vacancy site still
has significant charge ( 1.2 electrons), providing further
evidence of the delocalized nature of the electrons in Al.
The Si LDOS shown are similar to those calculated
previously using a Green's function technique.

In order to understand the changes in the LDOS, we
consider a simple model. From the calculations of fcc Si
and Mg at fixed lattice constant (cf. Fig. 2), we know
that a rigid band model describes the density of states of
fcc Si (and Mg) reasonably well, although the LDOS of
states shown in Fig. 4(a) of course do not resemble the
bulk Al LDOS. To describe the effect of the defect, we
consider a Clogston-Wolff model. In this model, the
one-particle Green's function for the perturbed system is
related to the unperturbed system by the Dyson equation

bottom of the band in the case of Si is mainly 8 like in
character and demonstrates that even in a free-electron
metal, electrons of different E are afFected differently. For
the repulsive impurity potentials, there is a suppression
of the density of states that changes not only the over-
all magnitude of the LDOS, but also the shape near the
bottom of the band.

These modifications of the electronic structure are ul-
timately what give rise to the positive heats of solution
for the these impurities. Although we have not carried
out the analogous calculations for impurities in Mg, sim-
ilar results are expected, except that now Al, Si, and the
vacancy all will have repulsive interactions. The results
of this section demonstrate that the significant changes
in the electronic structure can be understood within a
simple model, but a model that goes beyond the sim-
ple elastic (size effect) models often used to describe the
impurity heats of solution.

where Vl is the impurity strength and is assumed spher-
ically symmetric. The Green's function (for cubic sys-
tems) can be decomposed into E for / ( 2. Since the
imaginary part of the Green s function is simply propor-
tional to the LDOS n(s'),

G (~) = H (s) —iver n(s),

and the real part of the Green's function H(E) is related
by a Kramers-Kronig relationship (Hilbert transform) to
n(~),

+oo
H(s) = I' n(~)

dc' ) (i4)

the perturbed density of states can be obtained from the
unperturbed LDOS: The perturbed LDOS, for each E sep-
arately, is given by

np(~)
(1 —Hp V) 2 + (7r Vnp) 2

The strength of the impurity potential for each E depends
on the total number of electrons in that band and is re-
lated to VI by V = Vl/(2l + 1).

To apply this model to the impurities in Al, we consider
a &ee-electron density of states scaled to have the same
occupied. bandwidth and number of electrons as Al. This
LDOS is further broken up into E contributions based on a
simple plane wave decomposition. The impurity strength
parameter VI is determined from the shift in Fermi level
of the free-electron DOS required to obtain the correct
number of electrons (2 for Mg, 4 for Si, 1.25 for the va-
cancy). The resulting LDOS for this model are given in
Fig. 4(b). Overall the model reproduces the LDOS very
well, including the magnitude. This agreement is all the
more remarkable considering that there are no arbitrary
adjustable parameters. The difference in shape between
the LDOS of Si and Mg (and the vacancy) results from
the difFerence in sign of the impurity potential; for Si it
is attractive (necessary to bind an extra electron), while
for Mg and the vacancy, it is repulsive. The peak at the

IV. SUMMARY AND CONCLUSIGNS

We have presented. our computational scheme for solv-
ing the self-consistent Kohn-Sham equations using the
plane wave pseudopotential technique. The algorithm is
based on a preconditioned steepest descent method and a
subspace diagonalization. This last step is important be-
yond simply orthogonalizing the states and obtaining the
occupation numbers; in our experience, it also provides a
method that avoids the computational instabilities that
have been observed by others. By using a properly vari-
ational total energy expression, including variable occu-
pation numbers, consistent total energies and forces are
obtained for large cells. Combined with an eKcient quasi-
Newton relaxation scheme, the forces are used to fully re-
lax the internal structural parameters in a small number
of atomic steps.

For the metallic systems studied here, adequate sam-
pling of the Brillouin zone was found to be crucial. For
example, the vacancy formation energy of Al calculated
with just I'-point sampling for a 108-atom cell produces a
result of the wrong sign. On the other hand, with careful
k-point sampling, effective defect-defect interactions ap-
pear to be rather short ranged and the heats of solution
and formation are already quite well described by unit
cells of 30 atoms. If one were to use I'-point sampling
of the zone only, at least an order of magnitude more
atoms per unit cell would be required to get comparable
accuracy.

The calculated properties of the vacancies and sim-
ple impurities are in generally good agreement with the
available experimentally derived results; where conflict-
ing experimental values exist, the calculations distinguish
between the different values. In all cases considered, the
heats of solution of impurities and vacancy formation are
positive, including the low concentration limits of the
Al-Mg system, a system which is known to form com-
plex ordered alloys. The relaxations about the impuri-
ties and vacancies show trends that follow rather simple
arguments based on size effects of the various defects.
Although size effects are important, the dominant con-
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tribution to the heats appears to be electronic in nature,
rather than elastic. While this separation into electronic
and elastic contributions is somewhat arbitrary since the
elastic properties are determined by the electrons, expla-
nations based on differences in bonding have the virtue of
providing simple local pictures and explaining the small
relaxation energies found.

The results and convergence studies presented here
provide benchmarks and tests of the abilitiy of first-
principles electronic structure theory to accurately de-
scribe the defects and impurities of these metallic sys-
tems. The results are encouraging and suggest that care-
ful calculations can be used not only to model the prop-
erties of defects, impurities, and alloys at the 1%% level
for real materials, but also to obtain physical insight on
a microscopic level.

(A4)

Substituting into Eq. (A2) gives the time evolution of the
coefBcients

(A5)

It follows quite simply that

Ia'.
I exp[(cp —s )t],

la pl lap I

(A6)

the algorithm. There is no simple analytical solution to
Eq. (A2), but we can determine the convergence proper-
ties of this scheme by expanding the state I@;) in terms
of the eigenstates of H,
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APPENDIX A: CONVERGENCE
OF PRECONDITIONED STEEPEST DESCENT

METHOD

We are interested in computing the eigenstates of the
Hamiltonian 0,

(A1)

Our algorithm for iteratively solving this set of equations
closely resembles the first time derivative or steepest de-
scent method,

where the superscripts t and 0 refer to the corresponding
iteration steps. Thus the coeKcient of the lowest-energy
state will be the most rapidly growing term. Keeping in
mind that the state has to remain normalized, the ac-
tion of the equation of motion is to simply project out
the lowest-energy eigenstate present in Ig, ). lf the ini-
tial state has a nonzero overlap with the lowest-energy
state in the entire system, then this equation will simply
project out that state.

One could use the above procedure to compute the
required eigenstates iteratively: First one would compute
the lowest eigenstate; then the next to lowest eigenstate
would be computed by generating a starting iterate which
is orthogonal to the lowest, and so forth. This procedure
is not a desirable way to solve the problem.

Instead, we would like to propagate all of the states at
the same time rather than project out the states one at a
time. This is because in the electronic structure problem,
the Hamiltonian is a complicated function of the occupied
states and has to be updated during the evolution of the
states. In add. ition, simultaneous eigenstate updates are
natural for implementation on large scale parallel com-
puting environments. However, simultaneous iteration
gives rise to problems of maintaining orthogonality be-
tween the trial states which is necessary to prevent the
states from all descending to the ground state. The equa-
tion of motion [Eq. (A2)] by itself does not guarantee the
orthogonality of the states for continously varying time.

To deal with these problems, a finite difFerence approx-
imation to Eq. (A2) for small times At is used:

where the stationary solutions of this equation are the
eigenstates of H. The Rayleigh quotient

W*IHI@')

is the expectation value of the energy in the state Ig;).
It is important to emphasize that the "time" t in these
equations is not a proper time —this is not the time-
dependent Schrodinger equation but simply an auxil-
iary parameter introduced to label the iterative steps of

(A7)

where t now labels time in units of Lt. The states are
propagated for time Lt by this equation, and are then
orthogonalized by some procedure. These steps are re-
peated until the states become stationary. This is the
"steepest descent" (SD) method since the change in the
state is orthogonal to the state itself, and in the direction
of steepest descent of the expectation value.

In practice, H is updated during each iterative time
step while the atomic positions remain fixed. It is now
left to determine the optimal size of the time step At for
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which the equations can be integrated stabily. Obviously,
the larger the time step, the quicker the convergence, but
the greater the deviation &om orthonormality. Also, for
large system sizes, the time step should be sufBciently
small to damp out charge oscillations due to the long-
range nature of the Coulomb interaction.

For small times At, Eq. (A5) becomes

a'+' = a' [1+4t(A,''—s )], (AS)

which shows that the time evolution of each coeKcient a
is governed by a characteristic frequency w = (A; —s ).
Since c „&A; & eo, choosing

2

max &0
(Ag)

guarantees convergence to the lowest-energy state with a
convergence rate of 1+At (so —sq). Here, the subscripts
0, 1, and "max" correspond to the lowest, next-to-lowest,
and maximum eigenvalues, respectively.

Thus the time step in the iterative solution of the KS
equations is set by the inverse of the width of the band
spectrum of the Hamiltonian. This result places a limit
on the type of the system that one can realistically study
using this method. For example, for a transition metal
system which needs a high cutoff for the plane wave ex-
pansion of the wave functions, the corresponding large
bandwidth results in a time step that might make it im-
practical to study large systems comprising such atoms.

Now consider a preconditioned steepest descent (PSD)
method. If we replace At by At (0 —so) in Eq. (A7),
we get the iteration

(Ala)

Here B is a symmetric and positive definite operator
which should approximate the inverse of H. We have
absorbed the time step Lt into the definition of B, and.
we will scale B such that the spectral radius p of I—BH
is less than 1, where I denotes the identity operator. The
state I@;) converges to the lowest-energy state I(s) at an
asymptotic rate of

0 0—+v
8'y

(A14)

A rapid rate of convergence is achieved if p is bounded
away &om l.

APPENDIX B: IMPLEMENTATION
OF PRECONDITIONED STEEPEST DESCENT

METHOD

To solve the electronic structure problem, we first ex-
pand the wave functions in a basis of plane waves,

high-&equency eigencomponents so that it is possible
to use a large time step and —in contrast to the SD
method —does not depend on the width of the spectrum
of H. The choice of Lt = 1 corresponds to the well-
known inverse power method.

The problem with Eq. (Alo) is that it is expensive to
compute the action of the inverse Hamiltonian. Thus we
are led to choose an approximate form for this operation,

I@,'+') = I&,') + &t (~ — o*) '(~'; —H)l@,') (A10) (rl@gn) —Qkn(r) = ) exp[~(k+ g) r] C~+g, n I (Bl)

t+1 t 1+~g 'i i ~) (All)

This modified algorithm will converge to the lowest-
energy state if

Lt &2. (A12)

Thus the inverse of the Hamiltonian, shifted appropri-
ately to ensure a positive definite operator, scales the

where eo & eo ensures that the preconditioner is positive
definite. This leads to the following equation for the time
evolution of the eigenstate coeKcients:

where k is the wave vector in the BZ, n is the band index,
and g is a reciprocal lattice vector. The Hamiltonian
matrix within this basis is given by (h=m=e=l)

1 2
H~+g, ~+g = -(k+ g) ~gg + Vi-(g —g )

+VNr, (k+ g, k + g'), (B2)

where Vj, comprises the local pseudopotential, the
Hartree potential, and the exchange and correlation po-
tential. VNp is the nonlocal Kleinman-Bylander separa-
ble pseudopotential.

Equation (A7) now becomes (G = k+ g)

c'+„' = c' „+~t ) (x,„a„.—a .)c', „

= ca —&t ( 2 IC I' + &~o.(0) + VNL(G ~ C) —&~ }c~„—&t ) (Vi .(g —g') + VNz, (G, G') }c~„
8 Wg

(B3)
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Keeping in mind that the above equation only makes
sense for small times Lt, we assume that the time rate
of change of C~ is largely due only to the coe%cient it-
self, namely, the first term in Eq. (B3), and that we can
ignore the time dependence of the second term R'c
Then each Fourier component of the wave function has
its own characteristic frequency su~ „. Since the kinetic
energy plays an increasingly more dominant role in the
time evolution of the high-energy components, and since
it is precisely these components that are responsible for
the reduced time step in the SD method, we use a precon-
ditioning matrix B that satisfies the constraint of being
positive definite of the form

energy components. The latter terms are less important
since, if the cutoK energy is high enough, these terms are
necessarily small. This preconditioned matrix has the
efFect of making those states that are dominated by the
kinetic energy to be approximately degenerate which has
the tendency of making the error in the wave function
proportional to the steepest descent vector. 28

A better understanding of the properties of the equa-
tion of motion can be obtained from a real space repre-
sentation. Substituting Eq. (B5) into (Bl) gives

(r) = gf, (r) + f dr'S(r —r') [ir„—H]gr' [r'),

B = (-icl + Sj b' (B4) (B6)

where 5 is a constant shift and may be chosen appro-
priately. This choice of a point-Jacobi preconditioner
correctly scales the high-kinetic-energy components, and
allows in effect for a variable time step At (uG. „)
for each Fourier component of the wave function.

Equation (A13) now reads

(B5)

The result is a quicker convergence for the lower-energy
components of the wave function since the maximal time
step is used here, and a slower convergence for the higher-

where

.exp[ —ik (r —R)] exp[ —J2S ~r —Ri]B r
27r [r—Ri

and R is a lattice vector. Here it is seen explicitly that
contributions to the wave function in the far-field limit
are suppressed because of the presence of the Yukawa-
like term in the update. This reduces the transfer of
charge over long distances which can be an artifact of
the numerical solution and is especially problematic in
systems of large physical dimensions —the phenomenon
of "charge sloshing. "
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