PHYSICAL REVIEW B

VOLUME 52, NUMBER 9

1 SEPTEMBER 1995-1

First-principles theory of ferroelectric phase transitions for perovskites:
The case of BaTiO;

W. Zhong and David Vanderbilt
Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08855-0849

K. M. Rabe
Department of Applied Physics, Yale University, New Haven, Connecticut 06520-828/
(Received 13 February 1995; revised manuscript received 19 April 1995)

We carry out a completely first-principles study of the ferroelectric phase transitions in BaTiO3.
Our approach takes advantage of two features of these transitions: the structural changes are small,
and only low-energy distortions are important. Based on these observations, we make systematically
improvable approximations which enable the parametrization of the complicated energy surface. The
parameters are determined from first-principles total-energy calculations using ultrasoft pseudopo-

tentials and a preconditioned conjugate-gradient scheme.

The resulting effective Hamiltonian is

then solved by Monte Carlo simulation. The calculated phase sequence, transition temperatures,
latent heats, and spontaneous polarizations are all in good agreement with experiment. We find the
transitions to be intermediate between order-disorder and displacive character. We find all three
phase transitions to be of first order. The roles of different interactions are discussed.

I. INTRODUCTION

Because of their simple crystal structure, the per-
ovskite oxides present a special opportunity for the de-
velopment of a detailed theoretical understanding of the
ferroelectric phase transition. Within this family of ma-
terials, one finds transitions to a wide variety of low-
symmetry phases, including ferroelectric and antiferro-
electric transitions. Both first- and second-order tran-
sitions are observed, with a full spectrum of transition
behavior ranging from displacive to order-disorder behav-
ior. The properties of BaTiO3, a much-studied prototyp-
ical example of this class of compounds,! exemplify this
rich behavior. BaTiO3 undergoes a succession of first-
order phase transitions, from the high-temperature high-
symmetry cubic perovskite phase to slightly distorted fer-
roelectric structures with tetragonal, orthorhombic, and
rhombohedral symmetry. There is increasing evidence
that the cubic-to-tetragonal transition, at first thought
to be of the simple displacive kind, may instead be bet-
ter described as of the order-disorder type.

The variety exhibited by the perovskite oxides shows
that the phase transformation behavior depends on de-
tails of the chemistry and structural energetics of each
particular compound. Therefore, it is of the first impor-
tance to develop a microscopic theory of the materials
properties which determine the ordering of the phases,
the character and thermodynamic order of the transi-
tions, and the transition temperatures. The value of a
microscopic approach has long been appreciated, but its
realization was hindered by the difficulty of determin-
ing microscopic parameters for individual compounds.
The forms of phenomenological model Hamiltonians! ™
were limited by the available experimental data, leading
to oversimplification and ambiguities in interpretation.
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For the perovskite oxides, empirical® and nonempirical
pair potential methods® did not offer the high accuracy
needed for the construction of realistic models.
First-principles density-functional calculations offer an
attractive approach for enhancing our microscopic under-
standing of perovskites and other ferroelectrics. The all-
electron full-potential linearized-augmented-plane-wave
(FLAPW) method has been used by several groups to
study ferroelectricity in perovskites within the local den-
sity approximation (LDA).7® Recently, King-Smith and
Vanderbilt performed a systematic study of structural
and dynamical properties and energy surfaces for eight
common perovskites,>10 using the first-principles ultra-
soft pseudopotential method and the LDA. These cal-
culations demonstrate that ferroelectricity in the per-
ovskites reflects a delicate balance between long-range
electrostatic forces which favor the ferroelectric state
and short-range repulsions which favor the cubic phase.
While constrained to calculations of zero-temperature
properties, these calculations yield correct predictions
of ground state structures and the occurrence of ferro-
electric phases for certain materials. They show that
high-quality LDA calculations can provide considerable
insight into the nature of the total-energy surface in the
perovskites. For further insight into the energetics of
ferroelectric compounds, the polarization generated by
various distortions can be studied directly, using a recent
first-principles method by King-Smith and Vanderbilt.!!
This approach has been applied to the investigation of the
zone-center phonons in the common perovskite oxides.!2
The application of these first-principles methods can
clearly form a foundation for the realistic study of the
finite-temperature phase transitions. While an ab initio
molecular-dynamics simulation of the structural phase
transition is not computationally feasible at present, we
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pursue an alternative first-principles approach to study
ferroelectric phase transitions and demonstrate its appli-
cation to BaTiOj3. In particular, we (i) construct an ef-
fective Hamiltonian to describe the important degrees of
freedom of the system,'31* (ii) determine all the param-
eters of this effective Hamiltonian from high-accuracy ab
initio LDA calculations,® %1% and (iii) carry out Monte
Carlo (MC) simulations to determine the phase transfor-
mation behavior of the resulting system. An abbreviated
presentation of this work has already appeared in Ref.
16.

The remainder of this paper is organized as follows.
In Sec. II, we go through the detailed procedure for the
construction of the effective Hamiltonian and give the ex-
plicit formula. In Sec. III, we describe our first-principles
calculations and the determination of the expansion pa-
rameters in the Hamiltonian. The technical details of the
Monte Carlo simulation are presented in Sec. IV. In Sec.
V, we report our calculated transition temperatures, or-
der parameters, and phase diagram, as well as thermody-
namic order and nature of the phase transitions. The role
of different interactions in determining the phase transi-
tion behavior is also discussed. Section VI concludes the

paper.

II. CONSTRUCTION OF THE HAMILTONIAN
A. Approximations and local modes

The central quantity for studying the equilibrium prop-
erties of a system at finite temperature is its partition
function. This can be determined from the energy sur-
face, i.e., the total potential energy as a functional of
the atomic coordinates. Since the contribution to the
partition function decreases exponentially with increas-
ing energy, it is possible to obtain an accurate partition
function for low-temperature applications from a simpli-
fied energy surface including only low-energy configura-
tions. Our goal is to construct a parametrized Hamil-
tonian which (i) is ab initio, involving no empirical or
semiempirical input; (ii) results in an accurate partition
function for the temperature range of interest; (iii) is fully
specified by a few ab initio total-energy calculations; and
(iv) involves only approximations that are systematically
improvable and removable.

Our first fundamental approximation is to use an en-
ergy surface represented by a low-order Taylor expansion.
Both experiments and first-principles total-energy calcu-
lations suggest that the ferroelectric (FE) phase transi-
tion involves only very small atomic displacements and
strain deformations from the equilibrium cubic structure.
It is reasonable to assume that all the atomic config-
urations with significant contributions to the partition
function would be close to this cubic structure in the
temperature range of interest. Thus, it is natural to rep-
resent the energy surface by a Taylor series in the dis-
placements from the cubic structure. We include up to
fourth-order terms in our expansion; this is clearly a min-
imum, since ferroelectricity is intrinsically an anharmonic
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phenomenon. By including higher-order terms, this ap-
proximation could later be systematically improved.

It is convenient to describe the small distortions
from the cubic structure in terms of the 3 acoustic
and 12 optical normal-mode coordinates per k& point.
While this could be regarded as only a change of ba-
sis, it motivates our second fundamental approximation,
which is to restrict the expansion to include only low-
energy distortions. To achieve this separation, we note
that both experimentally measured and LDA-calculated
phonon dispersion relations!'1?2 show that only the low-
est TO modes (soft modes) and long-wavelength acoustic
phonons (strain variables) make significant contributions
to the phonon density of states at low energy. Experi-
mental studies also suggest that the FE phase transitions
are accompanied by a softening of the lowest TO mode
and the appearance of a strain. All other phonons are
hardly affected by the transitions. It is then our second
approximation to express the energy surface only as a
function of the soft-mode amplitudes and strain. This
approximation reduces the number of degrees of freedom
per cell from 15 to 6, and greatly reduces the number of
interaction parameters needed. If necessary, this approx-
imation could later be relaxed by including additional
modes.

It is convenient to describe the soft mode over the
whole Brillouin zone (BZ) in terms of a collective mo-
tion of “local modes,” just as one describes an acoustic
phonon in terms of a collective displacement of individual
atoms. However, there is more than one choice of local
mode which will generate the same soft mode throughout
the BZ; an intelligent choice can simplify the Hamiltonian
and reduce the number of calculations needed.'” First,
the local mode should be as symmetric as possible, so as
to minimize the number of expansion parameters needed.
Second, the interactions between local modes at different
sites are more difficult to treat than their on-site energy,
and so the local mode should be chosen so as to minimize
intersite interactions. For perovskite ABO3; compounds,
the highest symmetry is achieved by centering the local
mode on either atom A or B. In the case of BaTiOj3, the
Ti-O bond is much stronger than the Ba-O bond and the
motion of the Ti is more important in the FE transition;
so we choose the local mode which is centered on the Ti
atom.

The soft zone-center (k=0) FE mode in BaTiOs3 is a
T'15 mode which can be characterized by the four param-
eters {4, {B, 0|, and £o1 (for a mode polarized along
the jth Cartesian direction, these refer to the displace-
ments of the A atom, the B atom, the O atom that form
a B-O bond along direction j and the other two O atoms,
respectively). We take the corresponding local mode to
consist of a motion of the central A atom by amount &4,
the eight neighboring B atoms by amounts {5/8, and the
six neighboring O atoms by amounts £o)/2 or o0.1/2,
along the jth Cartesian direction. This mode is illus-
trated in Fig. 1 of Ref. 16; its amplitude is denoted u;.
An arbitrary k£ = 0 soft mode can then be realized as a
linear superposition of these local modes having identical
amplitudes (us,uy,u,) = u in every cell.

The harmonic interactions between the local-mode am-
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plitudes u; connecting neighboring cells 7 must be cho-
sen to reproduce the harmonic behavior of the soft-mode
branch throughout the BZ. Long-range Coulomb forces
are known to play an important part in these interac-
tions; they are characterized in terms of the calculated
Born (or “transverse”) effective charges.1? Thus, the har-
monic intersite interactions are represented by a sum of
two contributions: an infinite-range piece that is precisely
the interaction of point dipoles whose magnitude is given
by the Born effective charge and corrections which we
take to be of covalent origin and therefore local.

To be completely general, anharmonic intercell interac-
tions between neighboring u; would likewise have to be
included. Instead, we include only on-site anharmonic
interactions, which are chosen in such a way that the an-
harmonic couplings for £ = 0 modes of the real system
are correctly reproduced. This “local anharmonicity ap-
proximation” is an important feature which helps make
our scheme tractable and efficient. To go beyond this
approximation, one could carry out a careful series of
frozen-phonon LDA calculations on supercells to deter-
mine anharmonic couplings at other points in the BZ.
However, past experience has shown that calculations of
this kind are very cumbersome because of the large num-
ber of parameters which has to be determined.'®

With these approximations, our Hamiltonian consists
of five parts: a local-mode self-energy, a long-range
dipole-dipole interaction, a short-range interaction be-
tween soft modes, an elastic energy, and an interaction
between the local modes and local strain. Symbolically,

Etot — Enself({u}) + Edpl‘({u}) + Eshort({u})
+E*({m}) + E™*({u}, {m}) , (1)

where u is the local soft-mode amplitude vector and 7 is
the six-component local strain tensor in Voigt notation
(m = e11, M4 = 2e23). In the following subsections, we
present the explicit formulas for these five contributions.

B. Local mode self energy

The first term is

B ({u}) = 3 B(w), @)

where E(u;) is the energy of an isolated local mode at cell
R; with amplitude u;, relative to that of the perfect cubic
structure. To describe the FE phase, F(u;) must contain
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anharmonic as well as harmonic contributions. Since the
reference structure is cubic, only even-order terms can
enter; we choose to truncate at fourth order. Symmetry
considerations then require that it take the form

E(w) = rouf + auf +y(uluf, + ulyul +ulul,), (3)
where u; = |u;| and k2, a, and v are expansion parame-
ters to be determined from first-principles calculations.

C. Dipole-dipole interaction

The second term in the effective Hamiltonian repre-
sents long-range interactions between local modes. Only
dipole-dipole interactions are considered, since higher-
order terms tend to be of short range and their effect will
be included in the short-range contribution E*h°r*({u}).
The dipole moment associated with the local mode in cell
i is d; = Z*u,. Here, Z* is the Born effective charge for
the soft mode, which can be obtained as

Z* =8aZ) +E&BZp + €020 + 260125, (4)

from the eigenvector of the soft mode, once the Born
effective charges for the ions are known.!? In atomic units
(energy in Hartree), we have

zZ*2 w; -u; — 3(Ry; - ) (Ryj - v
Edpl({u}) — :—Z J J ( 1;3 7-)( ) J) .
X i<y i

()

Here, € is the optical dielectric constant of the material,
Ri]' = IRijI, Rij = R,, - Rj, and Ri_.,‘ - R”/R,J

In practice, Eq. (5) is not directly useful for three-
dimensional systems with periodic boundary conditions;
instead, we use an Ewald construction to evaluate EdP!,
We effectively terminate the sum in such a way that
the £ = 0 modes of the supercell will represent physi-
cal TO(I') modes. For a TO mode, the induced depo-
larization electric field is zero; from the point of view of
the dipole sum, it is as though the material were sur-
rounded by a layer of metal. In the Ewald construction,
this is equivalent to setting the surface terms to zero.l®
Under these conditions and choosing the decay A of the
Gaussian charge packets to be small enough so that the
real-space summation can be entirely neglected, we have

e (-I50) So@ w)(@ w)eos(@ Ry - S| (6)

i

i

where 2. is the cell volume and G is the reciprocal lattice vector.

Because of its long-range nature, the calculation of E9P! is the most time-consuming part of our Monte Carlo
simulations. It is thus worth some special treatment to reduce the computational load. In principle, the term R;;
appearing in the denominator of Eq. (5) should be strain dependent. However, as we have chosen to expand the
intersite interactions between local modes only up to harmonic order, it is consistent to ignore this effect, since
strain-induced changes of the dipole-dipole interaction will enter only at higher order. This is equivalent to fixing the
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reciprocal lattice vectors G and all the atomic position vectors R;. The dipole energy can then be written as

E%® = 3" Qijapttial;s; )

ij,aB

with

Here, o and 3 denote Cartesian components. The matrix
Q is thus treated as a constant; it is calculated once and
for all, and stored for later calculation of the dipole en-
ergy. This strategy increases the computational efficiency
by at least one order of magnitude.

D. Short-range interaction

Esbert({fu}) is the energy contribution due to the short-
range interactions between neighboring local modes,
with dipole-dipole interactions excluded. This contribu-
tion stems from differences of the short-range repulsion
and electronic hybridization between two adjacent local
modes and two isolated local modes. Together with the
dipole-dipole interaction, this interaction determines the
soft-mode energy away from the zone center. Expanded
up to second order, it can be written as

Eshort({u}) — .21.. Z Z Jij,aﬁuiaujﬁ . (9)

i#j of

The coupling matrix Jjj g is a function of R;; and should
decay very fast with increasing |R;;|. Here, we consider
the short-range interaction up to third nearest neighbor
(NN), whose local mode shares atoms with the local mode
on the origin. Local modes between further neighbors
involve displacements of atoms at least two hops away
(in tight-binding language) and their core-core repulsion
or hybridization should be much less important than the
dipole-dipole interaction which is taken care of in E9P!,

The interaction matrix J;; o3 can be greatly simplified
by symmetry. For a cubic lattice, we have

first NN @ Jijap= (51 + (G2 — 51)| Bij .l )0 ;
second NN 1 J;; op= (ja + V2(j3z — j4)|Rij,a|)5aﬁ
+2j5 RijaRijp(1 — ap) ;
third NN :  Jyj 0= jedap + 3j7RijaRijp(1 — 8ap) ,

(10)

where Rij’a is the a component of R;;/R;;. So we have
only seven interaction parameters for a cubic lattice. The
coefficients j1, ja, ..., 7 in the above equations have phys-
ical meanings that are sketched schematically in Fig. 1.
For example, j; represents the interaction strength of
“n”-like interactions between first neighbors.

) COS(G . R,-j)GaGg - é—‘saﬁfsij . (8)

E. Elastic energy

We will describe the state of elastic deformation of
the BaTiO3 crystal using local strain variables m(R;),
where the Voigt convention is used (I = 1,...,6) and
R; labels a cell center (Ti) site. In fact, the six vari-
ables per unit cell {n;(R;)} are not independent, but are
obtained from three independent displacement variables
per unit cell. In our analysis, these are taken as the di-
mensionless displacements v(R;) (in units of the lattice
constant a) defined at the unit cell corner (Ba) positions
R; + (a¢/2,a/2,a/2). In terms of these, the inhomoge-
neous strain variables 77 ;(R;) are defined in the next
subsection. Because of our use of a periodic supercell
in the Monte Carlo simulations, however, homogeneous
strain deformations are not included in the configuration
space {v(R;)}. Therefore, we introduce six additional
homogeneous strain components ng,; to allow the simu-
lation cell to vary in shape. The total elastic energy is
expanded to quadratic order as

E**({m}) = Es**({nr1}) + E**({nm,}) , (11)

where the homogeneous strain energy is simply given by

N
B ({nm}) = % Bua (v + 2 + i)
+ NBuz(naane,2 + 01,2083 + 1H,37H,1)

N
+ “2—344(71?1,4 + "7%{,5 + "ﬁ{,s)' (12)
i1 iz i3 ia
I
Js ja j7

FIG. 1. The independent intersite interactions correspond-
ing to the parameters ji1, j2 (first neighbor), js, ja, js (second
neighbor), and je¢ and jr (third neighbor).



352 FIRST-PRINCIPLES THEORY OF FERROELECTRIC PHASE. . .

Here Bi;, Biz, and By are the elastic constants ex-
pressed in energy units (B;; = a3Cjy, etc.), and N is
the number of primitive cells in the supercell.

Rather than use an expression like (12) for the inho-
mogeneous strain energy, we have found it preferable to
express this part directly in terms of the v(R;).2° This
approach keeps the acoustic phonon frequencies well be-
haved throughout the Brillouin zone. To satisfy require-
ments of invariance under translations and rotations of
the crystal as a whole, the energy is expanded in scalar
products of differences between the v(R;). The cubic
crystal symmetry leads to a great reduction of the inde-
pendent parameters in the expansion. The energies of the
long-wavelength strain deformations can be reproduced
by an expansion of the form

Efs = Z {’Yu[vz(Ri) — vz (R; £ x)]?

k2

+712[v0 (Rs) — vz (R £ x)][vy (Ri) — vy (R: £ y)]
+’Y44[’Uz (R’L) — Vg (Ri + Y) + 'Uy(Ri)
—vy (R; £ x)]% + cyclic permutations} , (13)

corresponding to bond stretching, bond correlation, and
bond bending, respectively. Here, x = aXx, y = ay, z =
az, and =+ indicates multiple terms to be summed. The ~
coeflicients are related to the elastic constants by 11 =
B11/4, y12 = B12/8, and 44 = B44/8.

F. Elastic-mode interaction

To describe the coupling between the elastic deforma-
tions and the local modes, we use the on-site interaction

E=({u}, (m}) = 3 33 Biasm(Ro)ua(Ri)us(Ry)

i laf
(14)
As a result of cubic symmetry, there are only three inde-
pendent coupling constants Bjag:
Bl:c:l: = B2yy = B3zz ’
Blyy = By, = B2y = B2, = B3zr = B3yy ’
B4yz = B4zy = BSzz = B5zz = Bﬁzy = BGyz .
The strain contains both homogeneous and inhomoge-
neous parts. 7 (R;) = nai(R;) + nri(R;). The latter
are expressed in terms of the local displacement vectors

v as follows. We first define the six average differential
displacements associated with site R; as

Avg, = Z [vz(R; —d — x) —v:(R; —d)] ,

d=0,y,s,y+2

Avgy = Z

d=0,y,s,y+=

[vy(R; —d — x) —vy(R; —d)] ,

and their cyclic permutations, recalling that v(R;) is
associated with position R; + (a/2,a/2,a/2). Then
1,1 (Ri) = Avge /4, nra(Ri) = (Avy, + Av,y)/4, etc.
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III. FIRST-PRINCIPLES CALCULATIONS

We have shown that, with the two approximations we
made, the total-energy functional of the perovskite sys-
tem is fully specified by a set of parameters. These pa-
rameters can be obtained from first-principles calcula-
tions. We use density-functional theory within the lo-
cal density approximation (LDA). The technical details
and convergence tests of the calculations can be found in
Refs. 9, 10. The most important feature of the calcula-
tions is the Vanderbilt ultrasoft pseudopotential,'® which
allows a low-energy cutoff to be used for first-row ele-
ments. This makes high-accuracy large-scale calculations
of materials involving oxygen and 3d transition metal el-
ements affordable. The ultrasoft pseudopotential also al-
lows for exceptionally transferable pseudopotentials. It
ensures that all-electron atom and pseudoatom scatter-
ing properties agree over a very large energy range and
preserves the chemical hardness of the atom. A gener-
alized Kohn-Sham functional is directly minimized using
a preconditioned conjugate gradient method.!%:21:22 We
use a (6,6,6) Monkhorst-Pack k-point mesh?? for single-
cell calculations, i.e., 216 k points in the full Brillouin
zone (FBZ). For supercell calculations, the k& mesh is kept
the same to minimize errors due to the k-point sampling.
Therefore, a smaller number of k£ points is used because
of the smaller FBZ.

We start with the construction of the local-mode vec-
tors. All the eigenvalues and eigenvectors of the force-
constant matrix at £k = 0 for the cubic BaTiOj3 struc-
ture are calculated from frozen-phonon calculations, as
in Ref. 10. The mode with imaginary frequency is iden-
tified as the soft mode. The soft-mode eigenvector has
been reported previously!® as £g, = 0.20, £1; = 0.76,
€oj| = —0.53, and o1 = —0.21. The local mode is then
constructed from it using the scheme proposed in Sec.
IIA.

Determination of many of the parameters in the ef-
fective Hamiltonian involves only calculations for zone-
center distortions. These parameters have been re-
ported previously.!®12 They include the fourth-order
terms of on-site energy « and +; the elastic constants
Bi1,B12,B44; and the on-site elastic-mode interaction
parameters Bz, Biyy, Bay-. The mode effective charge
Z* of Eq. (4) is calculated from the values Z3=2.75,
Zp="1.16, Z3 H:_S’GQ’ and Zg, =—2.11 published in
Ref. 12. (The resulting value Z*=9.96 is slightly differ-
ent from the one given in Ref. 12; there, the eigenvector
of the dynamical matrix, not the force-constant matrix,
was used.) We use the experimental value €., = 5.24
of the optical dielectric constant, since for this quantity,
the LDA seems not to be a well-justified approximation,
while exact density-functional theory results are not ac-
cessible. We find, however, that the effect of a small inac-
curacy in the dielectric constant affects thermodynamic
properties such as transition temperatures only slightly.

The second-order energy parameter « for zone-center
distortions is a linear combination of the local-mode self-
energy parameter xg, the intersite interactions j;, and
the dipole-dipole interaction. The calculations of inter-
site interaction parameters involve determination of the
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energy for distortions at the zone-boundary k points X =
(w/a,0,0), M = (w/a,r/a,0), and R = (7/a,m/a,x/a),
where a is the lattice constant. Five frozen-phonon cal-
culations on doubled unit cells are sufficient to extract
all the information available from these k& points. The
arrangements of the local-mode vectors for each case, as
well as for the zone-center distortion at I'=(0,0,0), are
shown in Fig. 2. The actual ionic configurations are con-
structed by superpositions of displacements associated
with adjacent local modes. For example, letting u be
the amplitude of the Ti-centered local mode defined in
Sec. IT A, the displacement of the Ti atoms is just uéT; in
Fig. 2(a) and *uért; in Fig. 2(b), while Ba is affected by
eight neighboring local modes so that its displacement is
8ufpa/8 = ufpa. in Fig. 2(a) and 0 in Fig. 2(b).

The above five doubled-cell calculations can be used
to determine the parameters ji, j2, j3, ja4, and js. The
determination of j5 + 2j7 requires a four-cell calculation
involving 20 atoms with low symmetry [Fig. 2(g)]. Ta-
ble I lists the energy expressions for all the configurations
calculated in terms of the quadratic expansion parame-
ters.

A further decomposition of js and j7 would require an
expensive eight-cell calculation. Furthermore, the inter-
action parameter j7 is the third nearest-neighbor interac-
tion and is thus presumably not very important. This ar-
gument is justified by our Monte Carlo simulations which

TABLE I. The energy per five-atom unit cell (excluding
the dipole energy) in terms of intersite interaction parameters
of Fig. 2, for configurations shown in Fig. 3.

Configuration Expression
(a) K2 + 271 + j2 + 4753 + 274 + 476
(b) K2 + 2j1 — j2 — 473 + 2j4 — 4Js
(<) K2 + j2 — 274 — 476
(d) K2 — 2j1 + j2 — 473 + 2j4 + 4Je
(e) K2 + J2 — 2j4 + 476
f) K2 — 2j1 — j2 + 473 + 252 — 4je

(g) K2/2 + j1 — 235 — 457

FIG. 2. The local-mode arrangements for
which first-principles total-energy calcula-
tions were performed to determine the in-
tersite interaction parameters. The arrange-
ments can be labeled by the wave vector k
and a polarization vector (p). The arrows
represent local-mode vectors. The dotted
lines indicate the unit cells of the simple cu-
bic lattice. The solid lines show the supercells
used in the calculations. (a) ', p = 2 ; (b)
X,p=2;(c)X,p=%; d M p=2%;
(e) M,p=%; (f) R, p =2 ; (g) four-cell
calculation.

show that the calculated transition temperature is in-
sensitive to different decompositions of j5 and j7;. This
prompts us to make an approximate decomposition based
on a simple physical argument: We expect the interaction
to be smallest for two interacting local modes oriented
such that reversing the relative sign of the vectors pro-
duces the least change of bond lengths. Applied to third
nearest neighbors, this argument implies js — 257 = O,
thus fixing the value of j;.

The resulting interaction parameters are shown in Ta-
ble II, together with other parameters published previ-
ously. It may be surprising to see that the on-site x;
is positive, while the cubic structure is known to be un-
stable against £k = 0 distortion. The cubic structure is
thus stable against forming an isolated local mode; in-
stability actually comes from the intersite interactions
between local modes. To be more precise, we find that
it is the long-range Coulomb (dipole-dipole) interaction
which makes the ferroelectric state favorable. If we turn
off the dipole-dipole interaction by setting the effective
charge Z* = 0, we find that the ferroelectric instability
disappears. This is consistent with the previous point of
view that long-range Coulomb forces favor the ferroelec-
tric state, while short-range repulsions favor the nonpolar
cubic state.

From Table II, we see that the intersite interaction pa-
rameters decay very fast with increasing distance, indi-
cating the short-range nature of the intersite interactions
after the long-range Coulomb interactions have been sep-
arated out. The ratio of the magnitudes of the strongest

TABLE II. Expansion parameters of the Hamiltonian for
BaTiOj;. Energies are in hartrees.

On-site K2 0.0568| « 0.320| ~« —0.473
J1 —0.02734| j, 0.04020

Intersite 73 0.00927| j 4 —0.00815{ js 0.00580
Je 0.00370| j7 0.00185

Elastic Bl1 4.64 312 1.65 B44 1.85

Coupling| Bigs —2.18| Biyy —0.20| Bay: —0.08

Dipole z* 9.956| € 5.24
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first-, second-, and third-neighbor interactions turns out
to be approximately 1 : 0.23 : 0.09. This decays even
faster than the dipole-dipole interactions, for which the
corresponding ratio (oc 1/R3) is 1 : 0.35 : 0.19. These
results help justify our approximation of including only
up to third nearest neighbors for the short-range inter-
actions.

IV. MONTE CARLO SIMULATIONS

For the quantitative study of the nonuniversal finite-
temperature behavior of a given model, Monte Carlo
simulation!?24 has emerged as the most reliable and pow-
erful technique. It is especially appropriate for a model
such as ours, with two continuous vector degrees of free-
dom per unit cell and both short- and long-range interac-
tions, for which analytical approaches such as renormal-
ization group or high-temperature expansions would be
cumbersome and involve additional approximations. In
comparison, the Monte Carlo approach requires only the
ability to compute changes in total-energy as the config-
uration is changed. Furthermore, with suitable analysis
of statistical errors and finite-size effects, the results of
Monte Carlo simulation can be made arbitrarily accurate.
Finally, with little additional effort, a number of physical
quantities can be computed to aid in characterization of
the transition.

We solve the effective Hamiltonian [Egs. (2), (7), (9),
(11), and (14)] using Monte Carlo simulations with the
Metropolis algorithm?® on an L x L x L cubic lattice with
periodic boundary conditions. Since most energy contri-
butions (except E9P!) are local, we choose the single-flip
algorithm. That is, a trial move consists of an attempted
update of a single variable, after which the total energy
change is calculated to determine whether to accept the
move. The step sizes are adjusted to ensure an accep-
tance ratio of approximately 0.2. In one Monte Carlo
sweep (MCS), we first make a trial move on each u; in
sequence, then each v; in sequence, then iterate several
times (typically 2L times) on the homogeneous strain
variables. For L = 12, each MCS takes about one sec-
ond on an HP 735 workstation. The typical correlation
time for the total energy is found to be several hundred
MCS’s close to the phase transition; this long correlation
time makes certain new MC techniques using energy dis-
tribution functions?® unfavorable. The correlation times
for the local-mode amplitudes are one order of magni-
tude shorter, and thus 10000 MCS’s are usually enough
to equilibrate and to obtain averages of local-mode vari-
ables with a statistical error of < 10%.

In our simulation, we concentrate on identifying the
succession of low-temperature phases, determining the
phase transition temperatures and extracting qualitative
features of the transitions. This analysis will allow us to
identify the features of the effective Hamiltonian which
most strongly affect the transition properties. For these
purposes, it is most convenient to monitor directly the
behavior of the homogeneous strain and the vector order
parameter. In the case of the ferroelectric phase tran-
sition, the latter is just the average local-mode vector

u = Y .u;/N, which is proportional to the polariza-
tion. Here, u; is the local-mode vector at site 7 and IV
is the total number of sites. As a reference, the aver-
age local mode amplitude v = Y, |u;|/N is also mon-
itored. To avoid effects of symmetry-equivalent rota-
tions of the order parameter and to identify the differ-
ent phases clearly, we accumulate the absolute values of
the largest, middle, and smallest components of the av-
eraged local-mode vector for each step, denoted by u;,
ug, and ug, respectively (u; > uz > us). The cubic (C),
tetragonal (T"), orthorhombic (O), and rhombohedral (R)
phases are then characterized by zero, one, two, and three
nonzero order-parameter components, respectively. The
effect of symmetry-equivalent rotations on the homoge-
neous strain is handled analogously, with the largest, the
medium, and the smallest linear strain components de-
noted by 7, 772, and 73, respectively, and shear strain
components by 74, 75, and 7.

The ferroelectric phase transition is very sensitive to
hydrostatic pressure or, equivalently, to the lattice con-
stant. The LDA-calculated lattice constants are typi-
cally 1% too small, and even this small error can lead to
large errors in the zero-pressure transition temperatures.
One approach, which largely compensates for the effect
of this systematic error, is to exert a negative pressure
that expands the lattice constant to the experimental
value. We determine the value of the pressure by cal-
culating volumes for four different phases and comparing
with experimental measurements.?” We find P = —4.8
GPa gives the best overall agreement (although the ap-
plication of pressure does lead to a slight change in the
low-temperature structure). Except for the simulations
for the construction of the temperature-pressure phase
diagram, the following simulations and analysis are for
this pressure.

V. RESULTS AND DISCUSSION

In this section, the finite-temperature behavior of the
model is presented and analyzed. First, we examine the
order parameters as a function of temperature in a typical
simulation to obtain a measure of the transition tempera-
tures. From the results of simulations for a range of pres-
sures, we construct the temperature-pressure phase dia-
gram. For the system at ambient pressure, more detailed
simulations are performed. The order of the transitions,
the nature of the paraelectric phase, and the properties
of the low-temperature phases are investigated and com-
pared with experimental observations. Finally, the roles
played by different terms in the effective Hamiltonian and
the sensitivity of the results to various approximations
are examined.

A. Order parameters and phase diagram

We start the simulations at a high temperature (T >
400 K) and equilibrate for 10 000 MCS’s. The tempera-
ture is then reduced in small steps, typically 10 K. After
each step, the system is allowed to equilibrate for 10 000
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MCS’s. The order parameter averages are then accumu-
lated over a period of 7000 MCS’s, yielding a typical
standard deviation of less than 10%. The temperature
step size is reduced and the number of MCS’s is doubled
for temperatures close to the phase transition.

We describe a typical simulation for an L = 12 lattice
at P = —4.8 GPa. At high temperatures, the averaged
local mode amplitudes u;, uz, and ug are all very close
to zero. As the system is cooled down below 295 K,
u; increases and becomes significantly larger than uy or
ugz. This indicates the transition to the tetragonal phase.
Two additional phase transitions occur as the temper-
ature is reduced further. The T-O transition (sudden
increase of uz) occurs at 230 K and the O-R transition
(sudden increase of u3) occurs at 190 K. This behavior is
plotted in Fig. 2 of Ref. 16. The sequence of transitions
exhibited by the simulation is the same as that observed
experimentally.

The averaged homogeneous strain variables obtained
from the above simulation are shown in Fig. 3. These
strains are measured relative to the LDA-calculated equi-
librium cubic structure, and so the linear strains are
significantly nonzero at higher temperatures due to the
negative pressure applied. As expected, the simulation
cell changes shape at the same temperatures at which
the jumps of the order-parameter components are ob-
served. At high temperatures, we have approximately
m = 1nm2 = n3 and 7y = s = neg = 0, correspond-
ing to the cubic structure. As the system is cooled
down, the shape of the simulation cell changes to T', O,
and R phases. The orthorhombic (O) structure has a
nonzero shear strain, in agreement with the centered or-
thorhombic structure observed experimentally. Quanti-
tatively, our calculated distortions are also in good agree-
ment with the experiment, with the calculated distortions
tending to be slightly smaller. For example, 17,73 for the
tetragonal phase is 1.1% as measured from experiment??
and 0.9% from our calculation.

The simulations are repeated for a range of applied
pressures to obtain the temperatures at which the order-
parameter components and homogeneous strain jump on
cooling down. The resulting temperature-pressure phase
diagram is shown in Fig. 4. (This measure of the transi-
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FIG. 3. The averaged homogeneous strain ng as a function
of temperature in the cooling-down simulation of a 12x12x12
lattice described in Sec. IV. The strains are measured rela-
tive to the LDA minimum-energy cubic structure with lattice
constant 7.46 a.u. The dotted lines are guides to the eye.
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FIG. 4. The calculated pressure-temperature phase dia-
gram. The cubic-tetragonal (C-T'), tetragonal-orthorhombic
(T-0), and orthorhombic-rhombohedral (O-R) transitions are
labeled by solid triangles, circles, and squares, respectively.
The vertical dash-dotted line at P=—4.8 GPa, corresponds to
zero pressure in the experiment to compensate for the LDA
volume error.

tion temperature is actually a lower bound, due to hys-
teresis around 5% for T-O and O-R transitions and neg-
ligible for the C-T transition, to be discussed further be-
low.) All three transition temperatures decrease almost
linearly with increasing pressure. At the experimental
lattice constant, the values for dT./dP are found to be
—28, —22, and —15 K/GPa for the C-T, T-O, and O-R
transitions, respectively. The experimental values for the
C-T transition range from —40 K/GPa (Ref. 28) to —66
K/GPa.?? For the T-O transition the measured value is
—28 K/GPa,?® and for the O-R transition it is —10 to
—15 K/GPa.?® At pressures as high as P = 5 GPa, the
sequence of phases C-T-O-R is still observed in the simu-
lation. When the pressure is increased further, the phase
boundary in the simulation becomes unclear due to fluc-
tuations. Our calculated critical pressure (beyond which
the cubic structure is stable at T=0 K) is P, = 8.4 GPa.
Taking into account the pressure correction for the LDA
volume underestimate, this corresponds to a predicted
physical P, = 13.2 GPa. We are not aware of any exper-
imental value for P. with which to compare this value.
However, we find that the magnitude of our d7T./dP is
significantly smaller than experimental value, at least for
the C-T and T-O transitions. This may partly be due to
the neglect of higher-order strain coupling terms in the ef-
fective Hamiltonian. We have tested the effect of includ-
ing a volume dependence for the short-range interaction
parameters j;. This correction does not change the se-
quence of phases, and it only increases the magnitudes of
dT./dP slightly. Therefore, our results are reported with-
out this correction. The accuracy of the phase diagram
may be further improved by including higher-order terms
in the elastic energy or the coupling of j; to anisotropic
strain.

Transition temperatures at P = —4.8 GPa for the
three system sizes L = 10, 12, and 14 are reported and
compared with experiment in Table III. (The details of
the determination of these values and their error esti-
mates appears in the next subsection.) The calculated
transition temperatures are well converged with respect
to system size and are in reasonable agreement with ex-
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TABLE III. Calculated transition temperatures T., sat-
urated spontaneous polarizations p,, and estimated latent
heats I, as a function of simulation cell size.

Phase| L=10 L=12 L=14 Expt.®
O-R| 197+3 200£10 2005 183
T. (K) T-O | 230+10 23242  230+10 278
C-T ~290 2961 29741 403
R 0.43 0.43 0.43 0.33
ps (C/m?) o 0.35 0.35 0.35 0.36
T 0.28 0.28 0.28 0.27
O-R 50 60 60 33-60
1 (J/mol) T-0 90 90 100 65-92
C-T 150 196-209

®Ref. 27.

periment. While discrepancies of up to 30% between the-
ory and experiment may seem large, we believe this level
of agreement is quite good for an entirely ab initio ap-
proach, especially given the extreme sensitivity of the
transition temperatures to the lattice constant. Indeed,
it can be seen from Fig. 4 that a change of the fictitious
applied pressure from —5 to —7 GPa, corresponding to
a change of lattice constant of only about 0.4%, would
roughly be sufficient to bring the transition temperatures
into line with experiment. Thus, we believe that the dis-
crepancies with experiment are closely related to the in-
trinsic LDA lattice-constant error, which is incompletely
compensated for by the artifice of working at a predeter-
mined negative fictitious pressure.

B. Hysteresis and latent heat

For the investigation of the order of the transitions,
the nature of the paraelectric phase, and the properties
of the low-temperature phases, we performed more de-
tailed simulations at P = —4.8 GPa for the three system
sizes L = 10, 12, and 14. In the cooling-down simula-
tions, the length of each simulation was increased from
10000 to up to 35000 MCS’s at temperatures close (+10
K) to the phase transition to include a longer equilibra-
tion. The size of the temperature step was decreased to
5 K or less in the vicinity of the transition. In addition,
a heating simulation was performed, starting from the
lower-temperature phase, to detect any possible hystere-
sis. The calculated transition temperatures, obtained as
the average of the cooling and heating transition tem-
peratures, are given in Table III. The error estimates
in the table are determined by the width of the hystere-
sis, which persists even for the longest simulation lengths
considered. (The C-T transition temperature for L = 10
is difficult to identify because of large fluctuations be-
tween phases.)

Table III also gives the saturated spontaneous polar-
ization p, at T = 0 in the R phase, and just above the
O-R and T-O transitions in the O and T phases, respec-
tively. These are calculated from the average local-mode
vector u and the local mode Z*. We find almost no
finite-size dependence for this quantity, as long as it is
determined at a temperature which does not lie in one of

the hysteresis regions near the transition temperatures.
The agreement with experiment is very good for the O
and T phases. The disagreement for the R phase may
result in part from twinning effects in the experimental
sample.30

From the jumps in structural parameters and the ob-
served hysteresis in heating and cooling, we conclude
that the phase transitions are first order. An accurate
determination of the latent heats would require consid-
erable effort;3! here, we only try to provide estimates
sufficiently accurate for meaningful comparison with ex-
periment. We approach each transition from both high-
temperature and low-temperature sides until the point is
reached where both phases appear equally stable. (That
is, the typical time for the system to fluctuate into the
opposite phase is roughly independent of which phase the
simulation is started in.) The difference of the average
total energy is then the latent heat.3? This approach is
practical as long as some hysteresis is present. The calcu-
lated latent heats (Table IIT) show non-negligible finite-
size dependence. Taking this into account, we find that
the latent heats for all three transitions are significantly
nonzero and in rough agreement with the rather scattered
experimental data. For the T-O and O-R transitions,
the first-order character of the transition is predicted by
Landau theory, since in these two cases the symmetry
group of the low-temperature structure is not a subgroup
of that of the high-temperature structure. For the C-T
transition, the first-order character is not a consequence
of symmetry, but rather of the values of the effective
Hamiltonian parameters. Although it has the largest la-
tent heat of the three transitions, the C-T transition also
exhibits large finite-size effects in the latent heat and in
the smearing of order-parameter components and strain
discontinuities in the simulation (Fig. 2 of Ref. 16 and
Fig. 3). This suggests the presence of long-wavelength
fluctuations characteristic of second-order phase transi-
tions and critical phenomena, and the classification of
the C-T transition as a weak first-order transition.

C. Displacive vs order-disorder

Using the microscopic information available in the sim-
ulations, we are able to investigate the extent to which
the cubic-tetragonal transition can be characterized as
an order-disorder or displacive transition. These possi-
bilities can be distinguished by inspecting the distribu-
tion of the real-space local-mode vector u; in the cubic
phase just above the transition. A displacive (microscop-
ically nonpolar) or order-disorder (microscopically polar)
transition should be characterized by a single-peaked or
double-peaked structure, respectively. The distribution
of u, at T = 400 K is shown in Fig. 5. It exhibits a rather
weak tendency to a double-peaked structure, indicating a
transition which has some degree of order-disorder char-
acter. We also see indications of this in the u-T rela-
tion in Fig. 2 of Ref. 16. Even in the cubic phase, the
average of the local-mode magnitude u is significantly
nonzero and close to that of the rhombohedral phase,
while the magnitudes of the average local-mode compo-
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FIG. 5. The probability distribution of the Cartesian com-
ponent of the local-mode variable u, in the cubic phase at
T = 320 K (solid line), 350 K (dashed line), and 500 K (dot-
ted line).

nents change dramatically during the phase transitions.

In reciprocal space, a system close to a displacive
transition should show large and strongly temperature-
dependent fluctuations of certain modes associated with
a small portion of the Brillouin zone (BZ) (for a ferroelec-
tric transition, near I'). For an extreme order-disorder
transition, on the other hand, the fluctuations are ex-
pected to be distributed over the whole BZ. For BaTiO3,
we calculated the average Fourier modulus F(k,T) =
(lu(k)|?) for eigenmodes at several high-symmetry &
points (along I'-X, I'-M, and I'-R) for a range of tem-
peratures above the C-T transition. These eigenmodes
are identified by their symmetry properties as one longi-
tudinal optical (LO) branch and two transverse optical
(TO) branches at each point. For a purely harmonic
system, T/F(k,T) can be shown to be a temperature-
independent constant proportional to the square of the
eigenfrequency w?(k) of the corresponding eigenmode. A
strong decrease of T/F(k,T) as T — T, from high tem-
perature can be interpreted as mode softening due to
anharmonicity.

The results at the k point (7/4a, 7/4a, 0) illustrate
the main features of this analysis. From symmetry, three
nondegenerate eigenmodes LO, TO1, TO2 are identified.
The polarization of LO, TO1, and TO2 are in the di-
rection of X + y, X — ¥, and Z, respectively. For each

T T T 1F T T T T T T
(a) LO (b) TO1 [ (c) TO2
o4 F amn-mecn A 0.2 | i
E ]
T2t 4 - 01 S
5 L ;
. s

0 0o 0
0 200 400 600 0 200 400 600 0 200 400 600

Temperature (K) Temperature (K) Temperature (K)

FIG. 6. Temperature dependence of squared eigenfre-
quency w? at k = (7/4a,n/4a,0) for (a) LO, (b) TO1, and
(c) TO2 modes.
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eigenmode, the temperature dependence of the calculated
w?(k,T) is shown in Fig. 6. The almost linear behavior of
w?(k,T) vs T (the Curie-Weiss form) is observed for the
other k points as well. Both the LO and TO1 branches
are almost temperature independent. The TO2 branch
is strongly temperature dependent and is thus a “soft”
mode. According to the soft-mode theory of structural
phase transitions, T, is the lowest temperature at which
all w?(k,T) > 0. Linear extrapolation indicates that the
TO2 mode frequency goes to zero at T' =~ 200 K, which
is a lower bound for T, consistent with the value ob-
tained in Monte Carlo simulations. A similar calculation
of w?(k,T) for the TO modes at I'=(0,0,0) extrapolates
to zero at the higher temperature 7" =~ 300 K, in excellent
agreement with the Monte Carlo value of 295 K.

Within this formalism, the microscopic character of the
paraelectric phase is determined by the extent of the soft
mode in the BZ. We define a quantity

2F (k, 350 K)
pl) = T 700 K) (15)
to indicate the hardness of the modes. In Fig. 7, p(k)
is shown for the various k points along some special di-
rections in the BZ. If p(k) < 1, the corresponding eigen-
frequency extrapolates to zero at some positive temper-
ature, and the mode is regarded as soft. If w?(k) is inde-
pendent of temperature, p(k) = 2, corresponding to the
hardest mode.

For all the k£ points considered, all the LO modes are
almost temperature independent [p(k) = 2] and are not
included in the figure. Along the I'-X direction, the dou-
bly degenerate TO modes are soft all the way to the zone
boundary. In contrast, along the I'-R direction, both
TO modes become hard immediately after leaving the
I" point. Along the I'M direction, the TO1 mode be-
comes hard quickly, while the TO2 branch remains soft
at least halfway to the zone boundary. This behavior, es-
pecially along I'-X, does not conform completely to the
displacive limit. This supports the interpretation of the
C-T transition as intermediate between a displacive and
order-disorder transition, with a slightly stronger order-
disorder character. Thus, from the example of BaTiO3,
it seems that a positive on-site quadratic coefficient does
not automatically imply a displacive character for the
transition. Rather, the relevant criterion is the extent to
which the unstable modes extend throughout the BZ.
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FIG. 7. Calculated mode hardness quantity p(k), Eq. (15),
along special directions in the Brillouin zone.
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D. Roles of different interactions

Our theoretical approach allows us to investigate the
roles played by different types of interaction in the phase
transition. First, we study the effect of strain. Recall
that the strain degrees of freedom were separated into
local and homogeneous parts, representing finite- and
infinite-wavelength acoustic modes, respectively. Both
parts were included in the simulations. If we eliminate
the local strain (while still allowing homogeneous strain),
we find almost no change in the transition temperatures.
This indicates that the effect of the short-wavelength
acoustic modes may not be important for the ferroelec-
tric phase transition. If the homogeneous strain is frozen
at zero, however, we find a direct cubic-rhombohedral
phase transition, instead of the correct series of three
transitions. This demonstrates the important role of ho-
mogeneous strain.

Second, we studied the significance of the long-range
Coulomb interaction in the simulation. To do this, we
changed the effective charge of the local mode (and thus
the dipole-dipole interaction strength), while modifying
the second-order self-energy parameter k2, so that the
frequencies of the zone-center and zone-boundary modes
remain in agreement with the LDA values. We found
only a slight change (10%) of the transition temperatures
when the dipole-dipole interaction strength was doubled.
However, elimination of the dipole-dipole interaction al-
together changed the results dramatically; the ground
state becomes a complex antiferroelectric structure sim-
ilar to the room-temperature structure of PbZrOj. This
result shows that it is essential to include the long-range
interaction, although small inaccuracies in the calculated
values of the effective charges or dielectric constants may
not be very critical.

Third, we investigated the sensitivity of our results to
variations of the short-range interaction parameters. We
find the accuracy of the first-neighbor interaction param-
eters (ji,j2) is very important, and a mere 10% devi-
ation can change the calculated transition temperatures
dramatically, and can sometimes even change the ground
state structure. Second nearest-neighbor interactions are
less important, and for the third-neighbor interactions,
even a 100% change does not seem to have a strong ef-
fect on the values of T.. This result is to be expected, and
partly justifies our choice of including only up to third
neighbors for the short-range interactions. We have also
tested the effect of our assumption jg — 2j7 = 0. We find
that any reasonable choice leads to a barely noticeable
change in T..

In short, highly accurate LDA calculations do appear

to be a prerequisite for an accurate determination of the
transition temperatures, but as long as certain features
of the energy surface are correctly described, other ap-
proximations can be made without significantly affecting
the results.

VI. CONCLUSIONS

We have developed a first-principles approach to
the study of structural phase transitions and finite-
temperature properties in perovskite compounds. We
construct an effective Hamiltonian based on Taylor ex-
pansion of the energy surface around the cubic structure,
including soft optical modes and strain components as
the possible distortions. The expansion parameters are
determined by first-principles density-functional calcula-
tions using Vanderbilt’s ultrasoft pseudopotential.

We have applied this scheme to BaTiO3 and calcu-
lated the pressure-temperature phase diagram. We have
obtained the sequence of low-temperature phases, the
transition temperatures, and the spontaneous polariza-
tions, and found them to be in good agreement with ex-
periment. We find that long-wavelength acoustic modes
and long-range dipolar interactions both play an impor-
tant role in the phase transition, while short-wavelength
acoustic modes are not as significant. Accurate LDA
calculations are required for accurate determination of
the transition temperatures. The C-T phase transition
is not found to be well described as a simple displacive
transition; on the contrary, if anything it has more order-
disorder character.

With slight modifications, our approach should be
applicable to other perovskite compounds, as long as
their structure is close to cubic and there are some low-
energy distortions responsible for the phase transitions.
It can be easily applied to ferroelectric materials like
PbTiO3 (under study by another group'*) and KNbOs.
It can also be applied to antiferroelectric materials like
PbZrO3;. The application to antiferrodistortive materi-
als like SrTiOj; is slightly more involved, though also
successful.?3
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