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UPd3 is a hexagonal crystal that exhibits quadrupolar ordering at low temperatures. The order
parameter has three components corresponding to modulations in three directions in the basal plane
of the hexagonal crystal. For the case that no symmetry-breaking fields are present the ordered
phase has been identified as a trigonal triple-Q phase. Using group theory, we show that under the
in8uence of symmetry-breaking fields up to eight distinct quadrupolar ordered phases are realized
in the crystal. We deduce the phase diagram from a Landau free energy that includes magnetic
fields and stress and find lines of tetracritical points and one point at which eight phases coexist,
an "octacritical" point. By reviewing renormalization-group results we address the efFect of critical
Huctuations on the phase diagram. Finally, we discuss experimental tests of our model for the
quadrupolar phases of UPd3.

I. INTRODUCTION

Due to the magnetic dipole and electric quadrupole
moments of its uranium ions UPd3, a hexagonal crystal
with space group P6simmc, exhibits two types of or-
dered phases at low temperatures. In the absence of ex-
ternal fields, UPd3 undergoes a transition to a quadrupo-
lar ordered phase at a temperature Tq 7 K and a mag-
netic transition at T2 4.5 K. In this work we are
going to focus on quadrupolar ordering in UPd3.

Diffraction experiments ' indicate that the ordering is
associated with modulations of wave vector Qi ——2ia',
and that the transition at T~ is continuous within the
experimental uncertainty. In an earlier work, Walker et
al. determined the symmetry of the order parameter and
concluded that the order parameter belongs to the one-
dimensional irreducible representation B2~ of the little
cogroup D2h(mmm) of the wave vector Qi. Since the
star of Qi consists of three wave vectors Q;, i = 1, 2, 3, cf.
Fig. 1, the order parameter has three components g; each
describing the amplitude of an ordered quadrupole mo-
ment and ion-displacement wave corresponding to wave
vector Q;. Depending on the number of nonzero com-
ponents of the order parameter, we refer to ordered
phases as single-, double-, and triple-Q phases, respec-
tively. In the absence of external fields, the quadrupolar
ordered phase in Upds is a trigonal triple-Q phase, i.e. ,
gg —7/2 —f73 ~

7

While a &ee energy that describes UPd3 in the absence
of external fields is symmetric in the components g; of the
order parameter, this is no longer true for a &ee energy
that includes the coupling of magnetic 6elds and stress
to the order parameter. Including symmetry-breaking
terms to lowest order we 6nd that new quadrupolar or-
dered phases are stabilized, where the type of phase de-
pends on three parameters, namely two 6eld and one
temperaturelike variable. For general applied 6elds, the
symmetry between all three components of the order pa-
rameter is broken, but the three-dimensional parameter

space contains two-dimensional "surfaces of special sym-
metry" where only one of the components of the order
parameter is singled out, while the &ee energy is sym-
metric in the other two. In connection with the thermal-
expansion measurements of Zochowsky and McEwen, we
discussed in our previous work the quadrupolar ordered
phases of UPd3 for external fields on such a surface of spe-
cial symmetry. In that case, the phase diagram consists
of four distinct phases separated by lines of continuous
phase transitions that meet at a tetracritical point. In
this work we go beyond the surfaces of special symmetry
in parameter space and investigate the quadrupolar or-
dered phases of UPd3 under the inBuence of more general
symmetry-breaking 6elds.

The outline of the paper is as follows: In Sec. II we
use group-theoretical methods to determine what type
of quadrupolar ordered phases can occur in UPd3 From
the Landau &ee energy presented in Ref. 9 we derive
in Sec. III the phase diagram for quadrupolar ordering
of UPd3 in the three-dimensional parameter space of
two 6eld and one temperaturelike variable. The phase
diagram consists of eight distinct quadrupolar ordered
phases, separated by sheets of continuous phase transi-

1/2 b*

1/2 a*= Q,

FIG. 1. Basal plane of the hexagonal lattice in reciprocal
space with definition of coordinate axes and the elements Q;
of the star of Qi.
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tions. These critical surfaces meet in tetracritical lines
which in turn converge at one point in the diagram. At
this point, all eight distinct quadrupolar ordered phases
coexist, which makes this point an "octacritical" point.
In Sec. IV we review renormalization-group results to
discuss the effect of critical fIuctuations on our system.
Experimental tests of predictions of our model for the
quadrupole phases of UPd3 are the subject of our con-
cluding section, Sec. V.

Gs ——KxIs,
where K is the kernel defined in Eq. (1), and where Is is
isomorphic to Is.

For a system with three-dimensional order parameter
and image Og the free energy in the absence of symmetry-
breaking fields depends only on the following three func-
tions of the components g; of the order parameter, the
so-called entire rational basis of invariants:

II. SYMMETRY OF QUADRUPOLAR ORDERED
PHASES

J1 I1 + I2 + +3) J2 +1 + ~2 + b&
2 2 2 4 4 4

2 2 2
3 —917/293.

UPd3 can order in a number of distinct quadrupo-
lar phases that difFer from each other by their symme-
try properties. In this section we use group-theoretical
methods to determine the ordered phases and their space
groups.

In the absence of symmetry-breaking fields the space
group of UPds is G = P6s/mmc. The symmetry opera-
tions of G are irreducibly represented by 3 x 3 matrices
on the space F spanned by the components g, of the order
parameter. The set of distinct matrices of this irreducible
representation forms a group, the image I of G on E', so
that the space group G can be written as

By minimizing the most general expression for a free
energy in terms of the invariants J;, Gufan and
Sakhnenko obtained all possible ordered phases of such
a system. In the first seven rows of Table I we present a
list of these phases along with the space groups obtained
through Eq. (2). Terms up to eighth order in the or-
der parameter have to be included in the free energy to
stabilize a given phase.

Including only terms to fourth order in the order pa-
rameter, the free energy in the absence of symmetry-
breaking fields can be written as

G=K x I, Gp ——AJi+ (B+C)J, —CJ2, (4)

where the kernel K contains all those elements of G that
are represented on E' by the unit matrix, while I is iso-
morphic to the image I. We constructed the image of
the space group G = P6s/mmc and found it to be iso-
morphic to the cubic group Oh.

Since each ordered phase defines a subspace E's of E'

that is invariant under a subgroup Is of the image I
we can use the analog of Eq. (1) to determine the space
group Gs of the phase

~here A = n(T —Ti) with n & 0 gives rise to a con-
tinuous phase transition at the temperature T = T1,
while thermodynamic stability requires that B ) 0 and
3B + 2C ) 0. For T & T1 the free energy Go is mini-
mized either by a single-Q phase (C & 0) or by the trig-
onal triple-Q phase (C ( 0). Walker et al. determined
that C ( 0 is appropriate for UPd3. To indicate that the
hexagonal normal phase ([hN]) and the trigonal triple-Q
phase ([1=2=3])can be realized in UPds in the absence

TABLE I. Quadrupolar ordered phases of UPds and their space groups. The last column indi-
cates when the phases are expected to occur: (a) in the absence of symmetry-breaking fields, (s)
for fields on surfaces of special symmetry, and (n) for fields not on surfaces of special symmetry.

[hN]

[1=2=3]

[oi]

9=k]

[i, j=k]

[1,2,3)

[oN]

[mN]

[mi]

gg ——g2 ——g3 ——0

gl —g2 —g3

gi, g~ =qg ——0

Ii) 'gj = Ik

gi =0, g~, gI,

Ii 7 I~'l I3

gy
——gg

——g3 ——0

gg
——gg ——g3 ——0

gi, g~ =@I,=0

Hexagonal normal

Trigonal triple-Q

Orthorhombic single-Q

Orthorhombic double-Q

Monoclinic triple-Q

Mouoclinic double-Q

Tricliuic triple-Q

Orthorhombic normal

Monoclinic normal

Monoclinic single-Q
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2g 2 2gP———
n m n
2 2 21C———
cm b

C—2
m

Pll—
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2 2 21C———
cmm

Pll-
m

Pll —'
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(a)

(s)

(s)

(s)

(n)

(n)

(s)

(n)

(n)



52 QUADRUPOLAR PHASES IN UPd3 6287

of symmetry-breaking fields we marked these two phases
with an "(a)" in the last column of Table I.

To describe UPd3 in the presence of stress and mag-
netic fields the &ee energy Go is generalized to include
terms in the applied fields and the order parameter
components that are invariant under the operations of
P6s/mmc. In Sec. III we discuss this free energy and
the resulting ordered phases in detail. At this point we
consider changes in symmetry due to the applied fields.
Since fields along the z direction preserve the symmetry
of the crystal they are not further considered here. Some
components of applied fields, e.g. , the xz component of
the stress tensor, do not couple to the order parameter
to lowest order and are therefore not discussed here. In-
stead, we focus on Gelds in the basal plane and require
0+z: 0y: 0 for the components of the stress tensor,
and. H H, = H„Hz = 0 for the magnetic Geld.

When UPd3 is subject to symmetry-breaking fields
even its disordered phase is not invariant under all op-
erations of the hexagonal space group P6s/mmc. To be
definite, consider a crystal at a temperature well above
the transition temperature and subject to stress along
the y axis. This system has lost its invariance under ro-
tations through 2vr/3 about the z axis (Cs operation) so
that the symmetry of the disordered phase is reduced to
the orthorhombic space group C ——~, where the basis
vectors of the unit cell are parallel to the z, y, and z
axis. If the stress is applied instead along the axis C3y
or C3y, the resulting normal phases are again orthorhom-
bic, and their unit cells are aligned with C3x and C3x,
respectively. In general, applied fields that break only
the C3 symmetry induce an orthorhombic normal phase
([oN]) with space group C——~, where the orientation
of the unit cell can be one of the three mentioned above,
depending on the direction of the applied Geld.

Symmetry-breaking fields do not only reduce the sym-
metry of the normal phase but also aÃect quadrupolar
ordering. First of all, the trigonal triple-Q phase cannot
be an ordered phase of UPd3 subject to a C3-symmetry-
breaking Geld, since the space group of an ordered phase
has to be a subgroup of the space group of the normal
phase. I"urthermore, a field that breaks only the C3
symmetry singles out one of the components of the order
parameter while maintaining the symmetry between the
other two components. We refer to such fields as "fields
on surfaces of special symmetry" and provide expressions
for them in terms of components of the magnetic field
and the stress tensor in Sec. III. In our previous work,
we determined the quadrupolar ordered. phases of UPd3
subject to applied fields on a surface surface of special
symmetry and found them to be the orthorhombic single-
Q ([oi]), orthorhombic double-Q ([j=k]), and monoclinic
triple-Q ([i,j=k]) phases. We have marked these ordered
phases and the orthorhombic normal phase ([oN]) with
an "(s)" in the last column of Table I to indicate that
they can be realized for applied fields on surfaces of spe-
cial symmetry.

For an applied field not on a surface of special sym-
metry, not only the C3 symmetry, but also the symme-
tries of rotation by vr about the x and y axis are broken.
Consequently, the symmetry of the disordered phase is

XII. LANDAU MODEL

In this section we determine the phase-diagram for
quadrupolar ordered UPd3 in the presence of symmetry-
breaking fields. The appropriate Landau &ee energy, in-
cluding coupling between the external Gelds and the com-
ponents of the order parameter to lowest order, and in-
variant und. er all symmetry operations of the space group
P6s/mmc, has been presented in Ref. 9 and is most con-
veniently written as

a = 3) n,'+a ) n,
' +c) n,'n,'

,=i &;=i )
+2fn,'+( f+g)n,'+( f-g)n.', -—(6)

where the coefficients A, f, and g depend on external
fields as specified below. In zero field this &ee energy
reduces to, cf. Eq. (4),

3 3 2

Gp ——A) n, +B ) n, +C)
i=1 i'=. ) igj

(7)

where A = o.(T —Tx) with n ) 0, C ( 0 gives rise to a

reduced to the monoclinic space group P11—'. Due to
the reduced symmetry of the normal phase, the ordered
phases discussed before and marked with (a) and (s) in
Table I are not available in this case. Applied fields not
on a surface of special symmetry break the symmetry be-
tween all three components of the order parameter. The
corresponding &ee energy, which we discuss in detail in
Sec. III, yields single-Q, monoclinic double-Q ([j,A, ]) and
triclinic triple-Q ([1,2,3]) phases. Under the inffuence
of general symmetry-breaking fields in the basal plane
the single-Q phases are not orthorhombic but monoclinic
([mi]). The single-Q phase [ml], for example, has the
monoclinic space group P11~ with basis vectors a' = 2a,
b, and c. The unit cells of the space groups of the other
two monoclinic single-Q phases are obtained from this
one by rotation through +27r/3 about the z axis. The
space groups of the monoclinic double-Q phases diff'er

from those of the monoclixuc single-Q phases by the size
of the unit cell. The phase [1,2], for example, has the
space group P11—', with basis vectors a' = 2a, b' = 2b,
and c.

The quadrupolar phases that occur for a Geld not on a
surface of special symxnetry are indicated by an "(n)" in
the last column of Table I. Looking at these phases we
note, first of all, that there are seven ordered phases in
addition to the monoclinic normal phase, namely three
monoclinic single-Q, three monoclinic double-Q, and a
triclinic triple-Q phase. We thus expect up to eight dis-
tinct quadrupolar phases when UPd3 is exposed to gen-
eral symmetry-breaking fields in the basal plane. From
the group-subgroup relationships between the phases we
expect a phase sequence of

[mN] m [mi] —+ [i,j] m [1,2, 3].
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transition to the trigonal triple-Q phase at T = Tq, while
3H + 2t ) 0 for thermodynamic stability.

One e6'ect of external fields is to change the transition
temperature Tq. This is reBected in the coeKcient A
which we write as

A = A+ [gi„(o + os„) + gi o.„]
+ [Gi (H + H„) + Gi, H ],

where the cr;z and H;, i,j E {x,y, z), denote ap-
plied stress and magnetic fields, respectively, while
gq„, gq, Gq „and |q are coupling coeKcients. The
symmetry-breaking effect of the applied fields is apparent
in the second line of Eq. (6), where the coefficients f and
g are a shorthand notation for the following combinations
of external fields:

f = g2(o. —o„s) + G2(H —H„),
g = 2~3(g,o.„+G,H.H„),

(9)

(Io)

where g2 and |2 are coupling coeFicients.
To derive the phase diagram it is convenient to intro-

duce "polar coordinates. " We define the length g of the
order parameter, and. two angles 8 and gt through

77' = g cos 8)

772 = 'g Sln 8 Sln Qi

'gs = 'g sin 8 cos f.

(Iia)
(Ilb)
(llc)

By minimizing the free energy (6) and testing the solu-
tions for stability we arrived at the distribution of phases
summarized in Table II. We note, first of all, that eight

TABLE II. Quadrupolar ordered phases of UPds in the presence of symmetry-breaking fields.

Monoclinic single-q

gg
——g3 ——0

—A —2f
-2B

cos~8 = 1

A& —2f
A) 3B+2Cf+ B

C
A ) 3B+2Cf

3f+Igl & o

3f+lgl &o, g&o
3f+lgl &o,g»

gy
——g3 ——0

—A+ f —g
2B

cos 8 = 0

cos PI=0

A& f —g

A) 3B+Cf B+C
C

A) f 2B+F
C

3f + lgl », g & o

3lfl —
lgl & o g & o

3f —lgl) o, g&0

gy
——gg

——0

Monoclinic double-Q

gg
——0,

92 't I3

—A+ f+g
2B

cos 8 = 0

cos = 1

—A —f
2B+ C

cos 8 = 0

cos P = —
I

1+ 2B+ C
C A —f)

A& f+g
A) 3B+Cf+ B+C

C
A) f+ 2B+F

C

A ) 23B+ 2Cf
C2B+ C

C
A& f+ 2B+C

C

3f+ lgl »,g»
3lfl —

lgl «g»
3f —

lgl & o, g & o

3f —
lgl ) 0

3f —
lgl &o, g&o

3f —
lgl & o, g & o

gg
——0,

g3 ——0)

Triclinic triple-Q

9& & 92) 93

—A —(f —g)/2
2B+ C

coss8 i Ir1 2B+C 3f+g
A+ (f —g)/2)

cos P= 1

—A —(f + g)/2
2B+ C

cos 8= —
I

1 — +
A+ (f + g)/2)

cos P = 0

—3A.
3B+2C'

8 i
1 3B + 2C

3

cos —X 1 + 3B + 2C
CA+ f(3B+ 2C)

A ) 3B+2C(f )C
A& 3B+Cf+ B+C

C' g

3B+2Cf ~g

A & 3B+2C(f+ )C
A( 3B+Cf B+C

g

A ( 3B+2Cf+ B~g

2 & 23B+ 2Cf
3B+2C(f )C
3B+.2C(f + )C

3l f1 —
lgl «, g & 0

3f+lgl «, g & 0

3f —
Igl & o g & o

3lfl —lgl & o, g & o

3f + lgl & o, g & 0

3f —
lgl & o

3f —
lgl & og) o

3f —
lgl & o, g «
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monoclinic double-Q, [2,3], in Fig. 6. Since these higher-
symmetry phases are described by evaluating the gen-
eral results, cf. Table II, on surfaces of special symmetry
there are no phase transitions between either orthorhom-
bic and monoclinic single-Q phases, or orthorhombic and
monoclinic double-Q phases or trigonal, monoclinic and
triclinic triple-Q phases.

We note, Anally, that the lines of tetracritical points
given in Eqs. (12) and (13) lie on surfaces of special
symmetry, cf. Eq. (14). A comparison of Eqs. (12) and
(13) with Table II reveals that the lines of tetracriti-
cal points constitute two of the four critical lines in a
surface of special symmetry, namely the lines separating
the disordered from the double-Q, and the single-Q Rom
the triple-Q phase. Furthermore, the octacritical poixit

(f = g = A = 0) of the three-dimensional parameter
space becomes the tetracritical point when we restrict
ourselves to a surface of special symmetry as in Fig. 5.

IV. FLUCTUATION EFFECTS

The Landau theory employed in the preceding sections
assumes the order parameter to be uniform throughout
the system. SufEciently far &om a critical point this is
a reasonable approximation since the fluctuations of the

A lj

O [ol

FIG. 5. Phase diagram on a surface of special symmetry.
The solid lines indicate continuous transitions between the
phases, named as in Table I.

order parameter are small, but close to a critical point
the fluctuations become large and can no longer be ne-
glected. In this section we use results of renormalization-
group and scaling theory to discuss the effects of critical
Huctuations on our system.

To construct the Landau-Ginzburg-Wilson (LGW)
Hamiltonian for our system we consider the second-order
terms of spatial derivatives of the order parameter com-
ponents g; that are invariant under the operations of the
symmetry group P6s/mmc:

0

(a)

(~*~')'+ (~.~')' ) (~.~*)'
i=1 i=1
2 (8 xlx)' —(O„xjx)'
— (~*»)' —(~w»)' — (~*»)' —(~9»)'
—2~~[(o»)(~ ») —(c)»)(ci »)].

0

In principle, these terms appear in the LGW Hamiltonian
with independent coeKcients, i.e. , the gradient terms are
not isotropic. Since renormalization-group calculations
show that this anisotropy does not affect the critical be-
havior of the system to erst order in e, ' we include
an isotropic gradient term in our LGW Hamiltonian '8,
instead:

A

0

0

0 Hx

FIG. 4. Intercept of a plane A = const with the surfaces
of special syxnmetry: The solid lines represent Eq. (14) in the
f gplane (a), and -in the plane of magnetic fields H and H„
for magnetic 6elds in the basal plane in the absence of stress
(b). The dashed lines indicate the intercept with the surface
without special symmetry of Fig. 6.

0

FIG. 6. Phase diagram on a surface without special sym-
metry. The solid lines indicate continuous transitions between
the phases, named as in Table I.
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3
d3r Ag,'-+ Vg,

i=1

( '. ,I+B )
)

+2fn'+ ( f +—g)n'+ ( f ——a)n' . (16)

This is a well-known Hamiltonian, see Ref. 15 and ref-
erences therein, for a system with an n = 3 component
order paraineter. It exhibits cubic anisotropy for C g 0
and anisotropy in the components of the order parameter
due to the symmetry-breaking fields f and g.

Renormalization-group calculations show that the
Hamiltonian (16) in the absence of symmetry-breaking
fields has one stable fixed point, namely the isotropic
or Heisenberg Gxed point. This fixed point is attractive
if the coefBcients B and C are such that B ) 2C and
B ) —C. A comparison with the stability condition
3B+2C ) 0 of the Landau theory reveals that for C ( 0
a Hamiltonian with —2C/3 ( E3 ( —C fulfills the Landau
stability condition, but is not in the range of attraction
of the stable fixed point. In this case the Auctuations
drive the system into a region of thermodynamic insta-
bility and thus induce a first order phase transition where
the Landau theory predicts a continuous one. Hence, in
order to assure that the transition to the trigonal triple-
Q state is continuous, we have to replace the stability
condition 3B + 2C ) 0 by

B+C) 0, (17)

(18)

(19)

where Ti(f) indicates the transition temperature &om
the disordered phase [oN] to a partially ordered phase,

where C ( 0. Since this condition is independent of
the number of components of the order parameter, the
other phase transitions will also be continuous as long as
the external fields are sufBciently small. If the applied
fields are very large they may change the fourth-order
terms in the Hamiltonian and thus change the character
of the transitions.

Bruce and Aharony investigated the Hamiltonian
(16) for symmetry-breaking fields on a surface of special
symmetry, g = 0. Their results show that critical Huctu-
ations do not alter the phase diagram Fig. 5 drastically.
The critical lines that separate the disordered ([oN]) and
the monoclinic triple-Q ([1,2=3]) phase &om the partially
ordered phases ([ol] and [2=3]) no longer meet at a fi-
nite angle at the tetracritical point, but approach each
other and the f = 0 axis tangentially, where the new crit-
ical lines correspond to lower values of the temperature-
variable A than the original ones. The shape of the crit-
ical lines in the vicinity of the tetracritical point T = T,
f = 0 can be expressed in terms of power laws in the
external fields

while T2(f ) is the transition temperature &om a partially
ordered phase to the monoclinic triple-Q phase. The so-
called shift exponent @i ——Py 1.25 (Ref. 18) is asso-
ciated with the crossover &om the Heisenberg, n = 3,
critical behavior in the absence of external fields, to the
n = 1 (f ( 0) and n = 2 (f ) 0) critical behavior in
the presence of the symmetry-breaking Geld. The criti-
cal exponent for the lower phase-transition lines is given
by @2 ——Py —Pc, where the exponent P~ is associated
with the cubic anisotropy crossover and quite small and
negative.

In summary, critical Quctuations affect the condition
for the phase transitions to be continuous, cf. Eq. (17),
and the shape of the phase transition surfaces in the
vicinity of the tetracritical lines and the octacritical
point. Furthermore, the values of the critical expo-
nents predicted by the renormalization-group theory dif-
fer &om those calculated &om a Landau model.

V. RELATION TO EXPERIMENT

In this section we discuss experimental tests of pre-
dictions from our model for the quadrupolar phases of
UPd3. We start by summarizing some of the main fea-
tures of the phase diagram which are independent of the
as yet undetermined values of the system dependent pa-
rameters of the model. We expect the system to pass
through the octacritical point when cooled in the absence
of symmetry-breaking fields. This corresponds to one
phase transition, namely &om the disordered to the trig-
onal triple-Q phase. For symmetry-breaking fields that
belong to a surface of special symmetry, cf. Eq. (14) and
Fig. 4, two phase transitions are expected upon cooling
at constant applied fields: &om the disordered to a par-
tially ordered phase, orthorhombic single-Q or double-Q,
and then to the monoclinic triple-Q phase, cf. Fig. 5. For
Gelds in the basal plane that do not belong to a surface
of special symmetry, finally, three phase transitions are
expected: &om the disordered to a monoclinic single-Q,
&om there to a monoclinic double-Q, and then to the
triclinic triple-Q phase, cf. Fig. 6.

External fields that break the symmetry of the com-
ponents of the quadrupolar order parameter can be re-
alized with the aid of applied stress and magnetic fields,
cf. Eqs. (9) and (10). In the absence of magnetic fields,
for example, the system is confined to a surface of special
symmetry when a stress is applied in the basal plane so
that o —o» g 0 but o „=0. Similarly, magnetic fields
along the directions indicated in Fig. 4 (b) correspond
to surfaces of special symmetry even in the presence of
stress as long as cr „=0. Thus experiments performed
under controlled stress and magnetic fields can be used
to explore the phase diagrams Figs. 2 and 3, and Figs. 5
and 6.

There are several experimental techniques that can be
used to detect these phase transitions but elastic neu-
tron scattering seems to be particularly suitable. First of
all, neutron scattering allows us to distinguish between
single-Q and multiple (double or triple)-Q phases and,
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secondly, the use of spin-polarized neutrons makes it pos-
sible to detect the onset of magnetic ordering, which
is expected at temperatures somewhat below Tq and
whose effects might otherwise be confused with those
due to quadrupolar ordering. Neutron-scattering experi-
ments ' have been performed in the absence of external
fields and led to the conclusion that the ordered phase is
trigonal triple-Q.

In thermal-expansion experiments strains e;~
—(clG/Bo. ;~), i,j E (x, y, z) are measured. Within our
Landau model for UPd3, the strains are related to lin-
ear combinations of squares of the components g, of the
order parameter, so that a continuous phase transition
appears as a change in slope of the thermal-expansion
as a function of temperature. The same, by the way, is
true for the temperature dependence of the magnetiza-
tion of a sample. Zochowski and McEwen performed
thermal-expansion measurements in a stressed sample
of UPd3 with and without applied magnetic fields along
the x and y axis, i.e. , the applied fields correspond to
a surface of special symmetry, cf. Fig. 5. Their results
which we discussed in detail in our previous work con-
firm that there are two phase transition upon cooling the
sample. Furthermore, the results indicate that the effect
of stress is much more pronounced than that of applied
magnetic fields. In contrast to our predictions, however,
the value of the thermal expansion seems to jump rather
than to change continuously at the lower temperature
phase transition (to the triple-Q ordered phase). Higher-
order terms in the Landau &ee energy, cf. Sec. II, or fIuc-
tuations together with large external fields, cf. Sec. IV,
could account for a first-order phase transition. More
information about the experimental phase diagram is re-
quired, though, before extensions of our model can be
investigated. It is also possible that the observed dis-
continuity is due to a small misalignment of the sample.
This would in effect remove the system &om a surface of

special symmetry, in which case we expect three phase
transitions. For a small misalignment two of the tran-
sitions would be spaced closely enough to appear as a
discontinuity in the curve.

Predictions &om the renormalization-group theory
concern mostly the asymptotic critical behavior near the
surfaces of phase transitions. Due to the fact that the
system exhibits multicritical behavior we expect a vari-
ety of crossover phenomena to occur. With properly cho-
sen applied fields transitions from the disordered phase
to the single-Q, double-Q and triple-Q phase can be ob-
served and are expected to be Ising like (n = 1), XY-
like (n = 2), and Heisenberg like (n = 3), respectively.
Furthermore, when the octacritical point is approached
&om below, there is a crossover due to the effects of the
cubic anisotropy. Careful measurements of the critical
lines for fields in special directions can be used to deter-
mine the shift exponents @i = 1.25 and Q2, defined in
Eq. (18) and (19), and thus the crossover exponents Py
and g~. Furthermore, generalized scalingis predicts that
the strains e» and eyy obey an asymptotic power law of
the form e;; ~T —To~~r with py = 2 —n —pt = 0.85
when the system goes through the octacritical point in
the absence of symmetry-breaking fields. Thus, the rele-
vant crossover exponents are in principle accessible, but
it will be very difIicult to decide in practice whether the
asymptotic critical region has indeed been reached, since
the Landau values for these exponents, gi ——@2 ——1
and Py = 1, are quite close to the ones predicted by
renormalization-group theory.
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