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Stresses in strained GeSi stripes: Calculation and determination from Raman measurements
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Three mechanisms by which edges induce stress relaxation in GeSi strained stripes are described and
their relative importance is discussed. Relaxation of stresses in the middle of the layers with
I/h( =half-width/thickness) varying from 3 to 100 is calculated including the efFect of the two mecha-
nisms which are important in this range. The values calculated in this manner agree with our recent
finite element calculations. Since the stresses in the stripes in the two orthogonal directions are not
equal and since the stripes are usually grown in the [110]direction on a (100) substrate, determination of
stress and strain using Raman measurements is not straightforward. A relation between the shifts Aco3 in
the LO Raman frequency and stresses and strains in the stripe is established. With the help of this rela-
tion, a single measurement of Aco3 is sufficient to determine all the stresses and strains in the middle of
the top layer of the stripe. Using recently measured values of Am3 and known values of phonon deforma-
tion potentials, stresses in Geo &4Si086 stripes are determined. The values determined in this manner
agree with the calculated values within the uncertainty in the available values of deformation potentials.
The method developed is general and can be used for other semiconductor stripes irrespective of wheth-
er the strain is thermal or due to lattice mismatch.

I. INTRODUCTIQN

GeSi strained layers are of great importance for design-
ing and fabricating new devices and enhancing the per-
formance of existing devices. ' Recently several authors
have studied theoretically and experimentally
stresses in narrow long stripes (see Fig. 1). The structures
investigated include GaAs on Si, Inp on Si, ' InGaAs
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FIG. 1. Schematic diagram of a stripe grown on a Si sub-
strate.

on GaAs, and GeSi stripes on Si. ' We show in this pa-
per that approximations made in the theoretical pa-
pers give large errors in the values of stresses in nar-
row stripes and calculate more accurate values. Experi-
mental studies of the stripes have been made using Ra-
man and electroluminescence (EL) measurements. Since
the stresses in the stripe coordinate o' and o. ' are not
equal, it was not possible to determine accurately stresses
(or strains) using these measurements. Reliable theoreti-
cal or experimental values of the edge-induced stresses in
the stripes are not available. In this paper we calculate
and determine from the existing Raman measurements
the stresses (and strains) in GeSi stripes.

The paper is divided into five sections. The theory of
edge-induced stress relaxation is discussed in Sec. II. The
three mechanisms by which the edges relax stresses in the
stripes are discussed and their relative importance is de-
scribed. The values of tr„'„/tro (ere is the stress in an
infinitely wide stripe) at the midline of the stripes are also
calculated for difFerent values of l/h in this section. A
relation between the shift hco3 and stresses (and strains)
in the top layer of the stripe is established in Sec. III. A
method to determine stress and strain in the stripes using
this relation and Raman measurements is described. Us-
ing this relation and values of b,~3 measured by Dietrich
et al. ,

' experimental values of cr„' /o. o are determined
and compared with the calculated values in Sec. IV. A
summary of important results and concluding remarks is
given in Sec. V.
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II. THEORY OF EDGE-INDUCED STRESS
RELAXATION IN NARROW STRIPES

For convenience of discussion we consider a layer un-
der compression, though the arguments given here also
apply to layers under tension. The two edges of a narrow
strained stripe induce strain relaxation by three di6'erent
mechanisms illustrated in Fig. 2. Figure 2(a) shows the
stripe, pqrs, before the edges relax the stress. In mecha-
nism 1, the edges of the layer move outwards and in so
doing, drag the lattice planes of the substrate along with
them as shown in Fig. 2(b). This process relaxes stress in
the layer and at the same time induces stress in the sub-
strate. In mechanism 2 [illustrated in Fig. 2(c)] the
edges of the film again move outwards, but the substrate
is not distorted. ' We have made finite element calcula-
tions and found that in addition to the two mechanisms
mentioned above, the edges cause stress relaxation by a
third mechanism. In this mechanism shown in Fig. 2(d),
the edges of the layer bend down and the central portion
bulges up, making it curved, convex upwards. ' Sub-
strate planes also bend with a curvature which decreases
as the distance from the interface increases. The details
of the calculations will be published elsewhere. ' The im-
portance of this mechanism is also apparent in the experi-
ments of Eaglesham et al. ' and in recent finite element
calculations of the stresses in islands. '

Since in both mechanisms 1 and 2 the edges of the
compressed layer move out, it is important to understand
the di6'erence between the two mechanisms of stress re-
laxation. Lack of this understanding has caused much
confusion in the existing literature. ' ' '" In general the
authors of earlier papers considered only one of these two
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mechanisms and assumed erroneously that the mecha-
nism considered by them describes the total relaxation.
In mechanism 1, the points p and r move together so that
the line pr remains vertical. Relative motion of p and r is
not permitted. In mechanism 2, the restriction that the
points p and r must move by the same amounts is relaxed.
However, in this mechanism acting alone the substrate
distortion is neglected as if the substrate had infinite rigi-
dity. No change of the dimensions of the interface is al-
lowed during relaxation. Vertical displacement of any
point in the interface is also not allowed. The point p
moves outwards by a larger amount than the point r and
thus relaxation in the upper parts of the layer is more
than in the lower parts. Our finite element calculations
show that in general all three mechanisms contribute to
stress relaxation, but the third mechanism for stress re-
laxation at the middle of the stripe (x'=1) is important
only for very narrow stripes with i/h (2, whereas the
first and second mechanism are always important. Prior
to our finite element calculations, the analytical mod-
els ' '" or finite element calculations ' of the stresses in
the stripes took into account only either the first or the
second mechanism.

Raman frequency has been measured only in the mid-
dle, x =I, of the surface layer of stripes. ' Considerable
simplification of the problem occurs if we confine our at-
tention to this region. Our finite element calculations
show that at x'=l the stress is approximately indepen-
dent of the substrate width 2l, for l jh & 3. This is impor-
tant because in Dietrich's experiments, l =l, and in the
experiments on GaAs stripes on silicon, I, » l (Ref. 5,
and references given therein).

The Cartesian crystal coordinates are in the [100],
[010], and [001] directions and are denoted by (x,y, z).
The Cartesian stripe coordinates are in the [110],[110],
and [001] directions and are denoted by (x',y', z') (see
Fig. 1). The long dimension of the stripe is in the [110]
y' direction. The width is in the x' direction and height
in the z'=z direction. For convenience we will use
primed symbols in the mesa coordinates (coordinate axes
are defined in Fig. 1) instead of primed indices in the sub-
scripts, i.e., we wi11 use O.

yy
for o. ~ .. Since the dimension

of the stripe in the y' direction is large, c'„remains con-
stant at the value f determined by the misfit between
the layer and the substrate. However stresses o. ' and
o. ' are coupled together by Poisson's ratio and both vary
with width due to relaxation at the edges of the stripe.
The actual stress in the middle of the stripes is generally
biaxial, i.e., the two orthogonal components o. ' and o. '

are not equal to each other. Relaxation of stress due to
mechanism 1 in a semi infinite stripe -is given by~

o „'„(x)=o 0
—r„' (x),

where

FICi. 2. Diferent mechanisms of strain relaxation are illus-
trated: (a) a pseudomorphic stripe pqrs before the edge induced
relaxation is allowed to occur, (b) mechanism 1, (c) mechanism
2, and (d) mechanism 3.

is the stress relaxation in a semi-infinite stripe (i.e., with
one edge) and
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E,(1—vf )
KH„=

Ef(1—v, )
(3)

is a constant which depends on Young's modulus E and
Poisson's ratio v. The subscripts f and s denote the
stripe and the substrate, respectively. o„' (x) has been
calculated by Hu for the semi-infinite layer. Fischer and
Richter used the principle of superposition to convert
Hu's solution into that applicable to a stripe of finite
width. However this procedure is not correct because the
result does not satisfy the boundary condition that o. ' at
the edges must be zero. We have solved Hu's equation
numerically for a finite stripe, i.e., by evaluating numeri-
cally the integral in Eq. (2) between the finite limits 0 and
2l. Since we will use these results for interpreting experi-
ments on GeSi layers (with small Ge concentration) we
have used XH„=1. Values of relaxation due to mecha-
nism 1, obtained in this manner, are plotted as the dashed
curve in Fig. 3. Complete distributions of stresses for
several widths of the stripes and their comparison with
analytical solutions are given in Ref. 17.

The stress relaxation due to mechanism 2 has been cal-
culated by Sakai, Kawasaki, and Wada (see also Ref. 13
where an error in the original work has been corrected)
and Van Mieghem et al. using a finite element method.
The strain relaxation due to this mechanism is shown by
the long-short-dashed curve in Fig. 3. In linear elasticity
theory relaxations due to different mechanisms can be
added to obtain the final relaxations. Since mechanism 3
is not important for 1/h &3, the total relaxation is ob-
tained by adding the relaxations due to the first two
mechanisms and is shown by the solid curve. For
l/h & 3, this curve agrees with our finite element calcula-
tions in which all the three mechanisms of stress relaxa-
tion have been included. ' Since in earlier calculations
only one of the first two mechanisms was used, they all
underestimate the true relaxation.

The curves in Fig. 3 show many interesting features.
For 1/h &50, none of the relaxation mechanisms pro-
duces appreciable relaxation in the middle of the layer,
the stress is the same as in an infinitely large layer to a
good approximation. As 1/h decreases stress relaxation
increases and the relaxation due to substrate distortion
(mechanism 1) increases more rapidly than that due to
mechanism 2. Though relaxation due to mechanism 1

continues to be larger for l/h & 2, the relaxation due to
mechanism 2 is quite large and is not negligible. It is
30% of the relaxation due to mechanism 1 for 1/h =10,
increases rapidly as l/h decreases and becomes equal to
that due to mechanism 1 for 1/h =2. For I/h (2, relax-
ation due to mechanism 2 dominates over that caused by
mechanism 1. As already mentioned mechanism 3 also
becomes important in this regime.
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FIG. 3. Stress relaxation in the middle (x = l) of a stripe as a
function of l/h. The dashed curve shows the relaxation due to
substrate distortion (mechanism 1), the long-short-dashed curve
gives relaxation without substrate distortion (mechanism 2), and
the solid curve is the total relaxation obtained by adding these
two relaxations. Relaxation due to mechanism 3 is not impor-
tant for l/h )3. Symbols connected with error bars are the ex-
perimental values of stress relaxation obtained from Raman
measurements.

III. SHIFI' QF RAMAN FREQUENCY
BY A COMBINATION OF UNIAXIAL

AND BIAXIAL STRESSES

Dietrich et al. ' have made accurate measurements of
the shift b,co3 of the Raman longitudinal optical (LQ)
mode due to stresses in the middle of the top layer of nar-
row Geo &4Sio s6 stripes grown on patterned Si (100) sub-
strates. The stripes were grown with their long dimen-
sion in the [110] direction. Measured values of b,co3 for
different widths 2l of the stripes were reported, but since
an explicit relation between the stresses and Raman shifts
was not known, values of stress and strain were not deter-
mined. We establish the required relation in this section.

In the presence of a biaxial or uniaxial stress, the triply
degenerate phonon frequency coo splits and the three com-
ponents are shifted from coo by amounts equal to 4co;
where i takes values from 1 to 3. The relation between
crystal strain components E;~ (i and j take the values x, y,
and z when used with the strain or stress components and
1, 2, and 3 when used with the elastic constants or with
the shift hco) and shifts b,co; is determined by the solution
of the following secular equation derived by Anastas-
sakjs:

K|( E„„+Xiq(sly+ e„)—A,

2+44 ~ye

2E44c

2+44 ~xy

K»e +K,z(e„+s„„)—A,

2K44c,

2%44 E'xz

2%44m, ,
E» e„+K,2(e„+E~~ )

—A,

=0.
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Here E», X,2, and E~ are the phonon deformation po-
tentials DP's,

2
Eco;

COp

and cop is the Raman frequency of the bulk material. Two
sets of values of DP's measured by Anastassakis' and
Chandrasekhar, Renucci, and Cardona' are available
and are given in Table I. To solve Eq. (4) we need the
values of the strain components c; in the crystal coordi-
nates. We erst calculate the strain and stress components
in the stripe coordinates and then transform them into
the crystal coordinates.

In a cubic crystal there are six independent strain com-
ponents and six independent stress components related to
each other by Hooke's law,

I ~ I I
Cij kl ~kl

kl

In our case tQe middle top surface of the CrexSi, x stripe
is characterized by four known strain components and
one known stress component. The strain components are

ao, —aSis' =f (X)=—X

and s;'=0 for i' The .stress component o,', =0 be-
cause of the free surface boundary condition. This allows
us to solve the Hooke's equation and determine all the

TABLE I. Values of phonon deformation potentials and Ra-
man frequency in bulk Si and Ge.

Material coo (cm ') K» K)2 T (K) Refs.

Si
Ge
Si
Ge

521
300
521
300

—1.85
—1.45
—1.47
—1.07

—2.3
—1.95
—1.95
—1.6

—0.7
—1.1
—0.61
—1.01

110
300
RT

18
18
19
22

stress and strain components in terms of one parameter
o „'„. We assume 0 „'„=acrp where

2

O=f s=f~ c„+c„—2
11

is the stress in an in6nitely wide stripe. The constant a
depends upon the dimensions of the stripe and it is as yet
unknown. It corresponds to a pure uniaxial stress when
a=0 and bisotropic stress (i.e., biaxial stress with o„'„
equal to o' ) when a=1. We can now solve Hooke's
equation and obtain all the stress and strain components
in the stripe coordinates in terms of a. The elastic con-
stants of GeSi in the crystal coordinates are obtained by
linear interpolation between the elastic constants of Ge
and Si given in Ref. 21. These elastic constants are con-
verted into stripe coordinates as described in the Appen-
dix at the end of the paper. The strain tensor is found to
be

sac) )
—C)|( C|2—H /2) +C |2 0

Cii(C„+H/2) Cf~—
0

0

0

0
sa C12 +2C12 C44.

C„(C„+H/2) C,2—
TABLE II. Calculated shifts hen;, i = 1,2, 3 in Raman frequency of GeSi strained layers (with respect

to unstrained alloy) and diferent values of a=cd„'„/00. Values calculated using deformation potentials
of Anastassakis (Ref. 18) as well as of Chandrasekhar et al. (Ref. 19) are given.

Using K;J of Ref. 18
hco& (cm ') Ecole (cm ') hm3 (cm ')

Using K,g of Ref. 19
hco& (cm ') hco2 (cm ') hcu3 (cm ')

0
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

2.84
2.91
2.97
3.03
3.10
3.16
3.23
3.29
3.35
3.42
3.48

0.44
0.74
1.05
1.35
1.65
1.96
2.26
2.57
2.87
3.18
3.48

2.21
2.46
2.71
2.96
3.21
3.45
3.70
3.95
4.20
4.45
4.70

2.37
2.41
2.45
2.50
2.54
2.58
2.62
2.66
2.70
2.75
2.79

0.25
0.51
0.76
1.01
1.27
1.52
1.77
2.03
2.28
2.53
2.79

1.92
2.14
2.36
2.57
2.79
3.00
3.22
3.44
3.65
3.87
4.08
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where

H =2C44+Ci2 —Cii . (10)

ing equations with the values of ao„'„/ciao shown in Fig.
4

Similarly the stress tensor is given by

ao.o 0

o „'„/o o=0.463hco3 —0.890

using Chandrasekhar's DP's (Ref. 19) and

(15)

Icr') = 0 C',ze„'„+Citeyy+Ci3s~ 0

0 0

The strain components are now transformed to the
crystal coordinates (see the Appendix} to give

—,'(s„'„+a~~ ) —,'(s„'„—s„' ) 0

Iej =
—,'(8„'„—E~~) —,'(s„'„+s„'~) 0 (12)

0 0

Using the strain components in the crystal coordinates
given in Eq. (12), we solve the secular equation (4) and
obtain

A |z=Ki is„„+Knez(s„+e„„)+ 2K~a„y,

A,3=%)ic +2K)2c„„.

(13)

(14)

Using DPs of

1.0 - & Using DPs of

0.8-

0.6-

0.4-

Here hco; are the strain induced frequency shifts, e.;J are
the strain components in the crystal coordinates and X; is
deftned in Eq. (5).

Using the values of s," given in Eq. (12) [with the value
of s' given by Eq. (7) for x =0.14] in Eqs. (13) and (14),
and values of a in the range 0 to 1, we obtain the values
of Raman shifts hco; given in Table II. Only hco3 is ob-
served in the back scattering geometry used in Dietrich's
experiments. The calculated values of Aco3 are shown by
symbols in Fig. 4. We have fitted numerically the follow-

o „'„/o o
=0.40236,cos —0.890 (16)

using Anastassiki's DP's. ' The frequency Aco3 in Eqs.
(15) and (16) is in cm . Solid curves in Fig. 4 show the
plots of these equations. Equations (15) and (16) are the
key results of this section. We will use these equations
and Fig. 4 to determine o.' using Dietrich s experimen-
tal results in Sec. IV.

Having determined a for a given stripe, all strain and
stress components can be easily calculated using Eqs. (9)
and (11).

IV. EXPERIMENTAL VALUES
OF STRESS RELAXATION:

COMPARISON OF EXPERIMENTAL
AND THEORETICAL RESULTS

In the experiments of Dietrich et al. , ' 0.096-pm-thick
Geo &4Sio 86 stripes of di8'erent widths were grown on Si
mesa stripes formed by patterning a (100) Si substrate by
KOH anisotropic etch. Raman shifts Aco3 were measured
at midline on top of the stripes, in the valleys and outside
the patterned region. The shifts in valleys and outside
the patterned regions agreed with the values calculated
for the bisotropic stress. The concentration of misfit
dislocations in the stripes was measured using transmis-
sion electron microscopy and was found to be negligible.
The observed shifts in the stripes are shown in Table III.
Values of thickness and widths are also shown. Values of
the normalized stress a=cr„'„/oo for the observed shifts
for each value of 1/h are read from Fig. 4 or calculated
using Eqs. (15) and (16). We get two values of stress (and
stress relaxation 1 —o „„}for each sample, corresponding
to the two values of the DP's. The values of stress relaxa-
tion for each sample are shown, joined by an "error bar, "
in Fig. 3. It is seen that the theoretical curve passes in
between the two sets of experimental values except for
the largest width. Thus experimental values agree with
the calculated values within the uncertainty in the values
of the DP's. The value of cr„'„/oo for the widest stripe

0.2-

0.0
0

&~3 (cm )

TABLE III. Observed shifts of Raman frequency in 0.096-
pm-thick Gep &4Sip 86 stripes of different widths (Ref. 10). Note
that the frequency shifts given in Ref. 10 are with respect to Si
frequency. We have obtained the shifts with respect to un-
strained Gep &&Sip «alloy by subtracting them from the alloy
shift of 9.55 cm

FIG. 4. Calculated values of cr„'„/crp for different values of
Raman shifts bco3 are shown by symbols. Shifts calculated us-
ing two sets of values of phonon deformation potentials (DP's)
measured by Chandrasekhar et aI. (Ref. 19) (symbols, QG) and
Anastassakis (Ref. 18) (symbols, OO) are used. Curves are the
plots of Eqs. (15) and (16) which are numerical fits to the data.

2l (p,m)

17.2
2.1

1.0
0.6

86
10.5
5.0
3.0

ha)3 (cm ')

4.71
3.96
3.38
3.08
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based on one of the DP's is more than unit; an impossi-
ble result. Since the Raman measurements and stress cal-
culation for this stripe are the most reliable, it is clear
that more reliable values of DP's are required. We have
also estimated the correction necessary due to the finite
width (about 0.8 pm) of the laser beam used to measure
the Raman shift. ' The laser beam "sees" not only the
line in the middle of the stripe but areas adjacent to it, up
to 0.4 pm away on each side. Using our finite element re-
sults, we estimated approximately the average stress over
the width of the laser beam. The correction, the
difference between the average stress and the stress at the
middle, is practically zero for the stripe with I/h =86
and is about 10% for the narrowest stripe with I/h =3.
The experimental points move downwards due to this
correction. This correction does not change significantly
the agreement between the calculated and experimental
values of the relaxation.

Before concluding this section we must point out that
the method described in this paper is general and can be
used for stripes of any cubic semiconductor, irrespective
of whether the strain is due to a difference in thermal ex-
pansion coefficients or due to lattice mismatch. The only
important input from the experiment is the strain cyy
defined by Eq. (7). In the case of thermal strain, E' is
determined by the difference in the thermal expansion
coefficients of the stripe and the substrate and the tem-
perature from which the heterostructure is cooled.

V. SUMMARY OF IMPORTANT RESULTS
AND CONCLUDING REMARKS

We have calculated the stress in the middle of a narrow
stripe (for I/h )3) including the effect of the two relaxa-
tion mechanisms which are relevant for these dimensions.
For smaller values of this ratio, calculation of stress be-
comes more complicated and it is necessary to use finite
element calculations including all three mechanisms.
However, to date no experiments have been performed on
such narrow stripes. Using existing values of phonon
DP's, we have calculated shifts in Raman frequency due
to any arbitrary relative values of stresses in the two in-
plane perpendicular directions of the stripe. This allows
us to determine experimentally the stress values in the
stripes using observed shifts in Raman frequency. The
values of DP's determined by two different investigators
diff'er significantly. Theoretical values of stress lie in be-
tween those determined from Raman experiments using
the two sets of DP's. It is pointed out that improved
values of DP's are required. We have also shown that
the method developed in this paper is quite general and
can be used for stripes of any cubic semiconductor and
for thermal as well as lattice mismatch strains.

stripe coordinates has the following form in the 6X6
representation:

C11 C12 C13 0

C12 C11 C13

0

0 0

C13 C13 C33 0 0 0

o o o c' o o

0 0 0 0 C44 0

0 0 0 0 0 C6,

Here the subscripts m and n of C' „have their conven-
tional relationship to the generalized elastic constants
~l
~ij kl

When the crystal axes are cubic (as is the case here) the
matrix elements in Eq. (Al) can be calculated using the
expression (see Ref. 21, p. 435)

3

Cijkl Cijkl 0 X Tin ~jn Tkn Tin ~ij ~kl~ik
n=1

(A2)

In this expression C;.kl are the elastic constants in the
crystal axes, H is the anisotropy parameter defined in Eq.
(10), and T~ are the m. atrix elements in the matrix that
transforms the axes from the crystal system to the stripe
system. In the special case considered here, the transfor-
mation is a rotation of 45' about the z axis and the matrix
is (Ref. 21, p. 4)

1 1

v'2 v'2 0

{TI = — — — 0
2 2

0 0 1

(A3)

C„—C„+—,H

C33 C11

C12 =C12 —2~

C13 =C

C44=C

(A4)

Substitution in Eq. (A2) yields the following relationship
between C' „and C „:

APPENDIX: TRANSFORMATION
OF ELASTIC CONSTANTS TO STRIPE COORDINATES

AND STRAINS TO CRYSTAL COORDINATES

Strains in the stripe coordinates are transformed to
strains in the crystal coordinates using (Ref. 21, p. 39)

In the stripe coordinates the z' axis has fourfold sym-
metry and the x' and y' axes both have twofold symme-
try. Accordingly the matrix of elastic constants in the

s, =g gT„T,E', . .

l m

In the present case this is evaluated as

(A5)
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2(Exx+Eyy) 'xy g('xx Eyy)
1
,—(E„,—cy, )~2

—,'(E„'„+'„' )+E„'y .—(E„',+Ey, )xz (A6)

I I(a„,—c;)~2 (E„',+Ey, )Z

t
&zz
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