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Quasielastic neutron scattering from anharmonic oscillators subject to weak frictional forces
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A Fokker-Planck approach is used to calculate the quasielastic line in the dynamic structure factor for
a one-dimensional anharmonic oscillator subject to weak frictional forces. The problem is reduced to
solving a diffusion equation in energy space. A general eigenfunction method of solution is developed
using the exact solution to the harmonic oscillator as a guide. It is shown that energy relaxation speeds

up, inducing a broadening of the quasielastic line, if a small positive anharmonic term is added to the
harmonic potential. The method is then applied to analyze a model embodying essential properties of
the soft potentials used in the study of glasses and undercooled liquids.

I. INTRODUCTION

Quasielectric neutron scattering is a major source of
experimental information regarding slow dynamic pro-
cesses in supercooled liquids and glasses, as well as in
other complex, disordered systems. ' For the physical
interpretation of such information, relatively simple mod-
els of general type can be useful. We have shown recently
that one-dimensional particle motion in anharmonic po-
tentials subject to weak frictional forces generally yields a
quasielastic line in the dynamic structure factor S(k, Q),
even for single-well potentials. The coordinate of the
one-dimensional motion may in fact be a generalized
coordinate describing a slow mode of collective motion
within a small spatial region. Our result is based on the
observation that for strictly Hamiltonian motion without
friction the intensity of the elastic line is generally larger
than that given by the Debye-Wailer factor. The
difference is found in the intensity of the quasielastic line
when frictional forces are added. The result was applied
to the soft-potential model ' for glasses by Bhattacharya
et al. , who found that the intensity of the quasielastic
line is of observable magnitude. The purpose of the
present paper is to calculate the width of this quasielastic
line and to establish its relation with energy relaxation.

We follow the method of Dykman and coworkers ' of
transforming the Fokker-Planck equation in the energy-
phase representation. The Fokker-Planck equation de-
scribes the one-dimensional motion of a particle subject
to an anharmonic potential and weak frictional and sto-
chastic forces. It is shown that the quasielastic com-
ponent of the dynamic structure factor is obtained from
the solution of a generalized diffusion equation in energy
space. This solution can be calculated as an expansion in
Laguerre polynomials, the resulting quasielastic line be-
ing a superposition of Lorentzians. This expansion will
enable us to obtain general results for the quasielastic line
width, and to answer such questions as whether the qua-
sielastic line widens or narrows when a small anharmonic
term is added to a harmonic potential.

Nonzero damping always generates a quasielastic peak
in S(k, Q). The situation is different if we consider the
spectral distribution S(Q) of the position-position corre-
lation function. Since it determines the susceptibility for
systems in thermal equilibrium, the function S(Q) has
been studied in great detail for systems subject to weak
stochastic forces. It has been shown that, for single-
minimum potentials, the quasielastic peak appears only if
the potential contains an asymmetry, so that the oscilla-
tor equilibrium position shifts with frequency. For two-
minima potentials, there is an exponentially narrow qua-
sielastic peak caused by fluctuational transitions between
the minima.

We are aware of only two previous calculations of the
dynamic structure factor for particles subject to both po-
tential and frictional forces. In a model for superioinic
conductors, Dieterich et al. treated the Brownian motion
of a particle in periodic potentials. ' '" Here the dynamic
structure factor consists of a quasielastic part related to
diffusion and an inelastic part due to oscillatory particle
motion. On the other hand, Volino and Dianoux con-
sidered a cosine potential in their study of diffusion
through smectic layers.

This paper is organized as follows: In Sec. II a heuris-
tic derivation is given for the formula for the quasielastic
component in the presence of weak friction. The
Fokker-Planck equation in energy-phase space is derived
and the low friction approximation introduced in Sec.
III. Section IV contains an analysis of the diffusion equa-
tion in energy space. This equation is exactly solved in
Sec. V for a harmonic-oscillator potential. The general
method of solution for anharmonic potentials is present-
ed in Sec. VI, where we analyze the relation between
anharmonicity and the quasielastic linewidth.

II. QUASIELASTIC LINE AND ENERGY RELAXATION

Here we give a heuristic argument to show that the
quasielastic component of the dynamic structure factor
for one-dimensional motion in single-well potentials is
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determined by energy relaxation in the case of weak fric-
tion. The intermediate scattering function is defined as

( ik[q(t ) —q(o)] )

where k is the momentum transfer, q(t) the oscillator
coordinate at the time t, and the angular brackets
represent an average over the initial conditions and over

the realizations of the stochastic force, which is required
to balance the frictional force. We may choose the ener-

gy E and the phase 4 as the variables over which to per-
form the averages. Since the quasielastic component of
S(k,0) is directly related to the long-time part of F(k, t ),
and at long times the value of the phase is uncorrelated
with the initial conditions, we can separately average
over the initial and final phases and write,

F(k, t)= fdE fdEo(e'"q'")Ep(E, tlE„O)(e '"q"') p (E )

Ep E t i'�(t)
0

The function Po(E, t ) is a weighted average of the tran-
sition probability density P(E, t lEo, 0) over the initial en-
ergy. It describes energy relaxation. The brackets in
Eqs. (2) and (3) indicate that we have integrated over a
cycle while keeping the energy constant (for weak friction
the energy changes very little over a period). Since

P(E,OlE(), 0)=5(E E()), —

the initial condition for Po(E, t ) is,

P, (E,O)=p„(E)&e-'"q), .

(4)

This argument leading to Eq. (2) will be corroborated

where I', is the equilibrium distribution for the energy,
P(E, tlEo, 0) the transition probability density between
the energies Eo and E, and Po(E, t ) is given by

Po(E, t)= f dEoP(E, tlEo, 0)P, (Eo)(e '"q' ')E . (3)

in Sec. III by a systematic treatment of the Fokker-
Planck equation that yields a differential equation for
Po(E, t). This equation is identical to Kramers' general-
ized diffusion equation for diffusion along the energy axis.

III. FOKKER-PLANCK DESCRIPTION

To compute dynamical averages of properties associat-
ed with the scatterer we need the probability density
W(p, q, tlpo, qo, O) that at time t its generalized coordi-
nate and momentum are q and p, given that at t =0 their
values were q0 and p0, respectively. The initial condition
satisfied by 8'is

W(p q Olpo qo 0)=&(p —po»(q —qo)

Once W is known, we can compute the time-dependent
correlation function for a dynamic variable
g [q ](:g[q(t ) ] ) as follo—ws:

&g[q(t)]g'[qo]&= Z f dqdP fdqodPog[q]g*[qo]W(P q tlPo qo 0)e (7)

where Z is the partition function and H(po, qo) the Hamiltonian. We assume the particle has unit mass and take the
Boltzmann constant equal to unity.

The spectral distribution of the correlation function (7) is given by

Ss g (Q) =—Re f dte' '& g (q(t ) ]g *[qo ] ) .

In the special case g[q(t )]=e'"q'", Eqs. (7) and (8) yield the intermediate scattering function F(k, t ) and the dynamic
structure factor, respectively. We now make the transformation (p, q)~(E, %') to energy and phase variables. The in-
termediate scattering function then reads

F(k, t)= f dE f d+e'kq(E +)p(E (p t),
0 0

where the function

P(E,4; t )= f dqodpoe
'

W [p (E,4),q (E,%'), t lpo, qo, 0]ecoEZ (10)

is, apart from the factor [to(E)], the average of the transition probability density times exp( ikqo) over the initi—al
conditions. Here to(E), the energy-dependent oscillation frequency in the absence of noise, is the inverse of the trans-
formation Jacobian.
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An equation for 8' that incorporates the simultaneous influences of potential and stochastic forces on the scatterer
motion is the Fokker-Planck (or Kramers) equation, ' '

aw aw aU aw a a
at p

aq aq ap ap ap
p+T

where U(q) is the potential energy and I' is the friction coefficient. The time-dependent correlation function, Eq. (7),
can be rewritten as

& g [q(t }Jg '[qo &
=f dqdpg [q j@'(p q; t },

where the function

=1 —H(po, qo)/T@'(p q t}= d—qodpog'[qo]W(p q tlpo qo o}e

(12)

(13)

satisfies the same Fokker-Planck equation as O'. From
Eq. (6) it is clear that the initial condition for 0'is @'(E,%;t}= g W (E,t)e' (20)

@'(p,q, 0)=—g '[q ]e
1

(14) From Eqs. (17) and (20) we obtain a set of coupled
equations for the W 's,

Since we are interested in the low-friction case, for
which the energy changes very little during an oscillation,
we make the transformation (p, q }~(E,%). The deriva-
tives in Eq. (11)are transformed according to the rules9

BW
+imago(E)W~ =2I gL „W„,Bt

where

(21)

a a
(15) i&tl% Le l8%1 z~

2' 0
(22)

and

B BU B +co(E)
1

dU
aq aq aE p 'dq (16)

= —~(E} +2rLA,
ag ag

(17)

where qz =Bq /BE. The Fokker-Planck equation for
k(E, V) reads

We have made no approximations up to this point.
For low friction, i.e., I «co(E ) for all E that are likely to
be visited at a given temperature (E &~T), there is little
mixing between the different components 8' . We can
then uncouple Eqs. (21) and analyze each component sep-
arately. In the following, we will consider the region
Q «co(E }, for which only the m =0 component contrib-
utes.

The probability density in (E,%) space is given by

with
P(E,%)= 0 (E,%) . (23)

aL = p co(E)q~—
L

X p 1+T Tco(E)qz—B B
(18}

(E,t)+ (E,t)=0 .
Po aj
Bt

(24)

To investigate the behavior of Ss s(Q) in the quasielas-
tic region, it sufFices to know the zeroth-order component
of P(E,V), Po(E), which, after the uncoupling of Eqs.
(21},can be shown to satisfy the continuity equation,

E= —2I p +pf(t), (19)

We could have also derived Eq. (17) by first transform-
ing the usual Langevin equation pair for the variables p
and q into a pair of Langevin equations for E and %', and
then evaluating the corresponding Kramers-Moyal
coe%cients. ' For future reference we give the Langevin
equation for the energy

The current density j along the energy axis is given by

j (E,t)= —2I 1+T to(E)Po(E, t) .p (E)
Co E aE (25)

Note that the eff'ects of the potential U(q ) appear only
through the frequency co(E ) and the average of the kinet-
ic energy over a cycle,

where f(t ) is the stochastic force.
Since the functions P(E,4), q(E, 4) and, consequently,

@"(E,%;t ) are periodic in 4, we follow Refs. 7 and 8 and
expand 8'in a Fourier series,

p (E)= f d%'p (E, '0) .

These two magnitudes are related by the equation

(26)
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p (E)=to(E)f (27)

and

A (E)=2I Tp (E), (36)

j (0, t)=j( ~, t)=0, (28)

if the energy origin is chosen so that the potential
minimum is at E=O. If the potential has two or more
minima, it can be separated into domains. ' ' In this
case, we must impose the condition that the current is
continuous across the domain-separating energies.

With expansion (20) and the uncoupling approxima-
tion, we can express the intermediate scattering function,
Eq. (1), as the superposition

F(k, t)= g F (k, t), (29)

where

The current density, Eq. (25), satisfies the boundary
conditions B(E)=2Ip (E) 1+—

07 dE

Eq. (32) is transformed into

Ky(E) =Ay(E)

with

K = A(E) +B(E)= d d
dE

being a self-adjoint operator in the sense that

f dEG(E)y i (E)Ky p(E )
0

(37)

(38)

(39)

W (E, t)F (k, t)= dE d%e'"~' ' 'e™~,
o to(E) o

(30)

EGEy2EEy& E (40)

with q(E, V) being the solution to the Hamiltonian equa-
tion of the motion. In particular, Fo(k, t) is precisely the
result obtained heuristically in Sec. II. The quasielastic
component of the dynamic structure factor can be ob-
tained by substituting Fo(k, t ) into Eq. (8),

So(k, 0)=—Ref dt e' 'Fo(k, t ) . (31)

In the following section we analyze the differential equa-
tion satisfied by the probability density component Po.

aP,
Bt

p2I 1+T toPo =0,a
(32)

describes, as it was first pointed out by Kramers, '

diffusion along the E coordinate. Together with the
boundary conditions (28), it contains the information we
need for our analysis of the quasielastic region. An equa-
tion of this type was also obtained by Carmeli and Nitzan
in their theory of non-Markovian activated rate process-
es. ' The initial condition for Po can be obtained from
Eqs. (14), (20), and (23). These yield

IV. THE DIFFUSION EQUATION IN ENERGY SPACE

The differential equation for the probability density
component Po(E, t ),

r r

In order to satisfy Eq. (40) and the boundary condi-
tions (28), the weight function G(E ) must be chosen as

G(E)=exp f dxA '(x)B(x)
0

I
to(0)ZP, (E) (41)

We remark that the low-energy limit to(0) of the oscil-
lation frequency must be finite. We will therefore require
that the potential bottom be harmonic, a condition gen-
erally satisfied by physically meaningful potentials. Con-
dition (40) ensures the orthogonality of solutions corre-
sponding to different values of A, .

It is interesting to observe that the current density, Eq.
(25), can be decomposed into diffusive (jd ) and drift (jf )

components,

apo
jd = D(E)— (42)

and

jf= V(E)Po, (43)

D(E)=2I Tp (E), (44)

where the magnitude of the energy-dependent diffusion
coefBcient,

P (E,O) = f d%g [q(E, %')]e (33) increases with the average kinetic energy and the friction-
al forces. The magnitude of the "drift velocity, "

The equilibriuin solution of Eq. (32) is

—E/TP, (E)= e (34)
V(E)= —2rp (E) 1+—T dco

co dE
(45)

Po(E, t )=e 'y(E), (35)

Conditions (28) ensure that this is the only allowed
steady-state solution. To investigate its nonequilibrium
solutions, it is convenient to rewrite Eq. (32) in the
Sturm-Liouville form. ' Defining

can become very large in energy regions where ~dcoldE
~

is large and ~ is small. This occurs at energies close to a
rounded potential maximum. An example is the "P "po-
tential (see Fig. 1 in Ref. 2). The functions D(E) and
V(E) control energy relaxation; both are proportional to
the kinetic energy averaged over a cycle.
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V. THE HARMONIC OSCILLATOR Po(E, t)= g y y (E)e (56)

U(q ) =—,'nio~q (46)

In this section we consider the simple harmonic oscilla-
tor, for which Eq. (32} admits an exact analytical solu-
tion. This solution can be used as a starting point to treat
the more complicated cases to be discussed in Sec. VI.
The potential energy for the harmonic oscillator is

m=p

where the coefficients y are determined using the initial
condition (33). After some algebra, we obtain

P (E t )
— y e

—ee EITL—(E/T)e 2I —mt

2~T p
m~

(57)
Some simple results follow easily,

p =E,
(2E)'"

q(E, V)= cos(%),
COp

(47)

(48)

with e=(T/2)(k Iron) . The sum can be carried out ex-
actly. Using Eqs. (31) and (50) we obtain

—2e e2J 2.
So(k, Q)=e 5(Q)+ g . , ~

. (58)
1 iJ=' (2jl ) +Q

and
—E/T

P,q(E) = (49)

Fo(k, r ) =2m f dEPO(E, t )Jc &2E
p cop

(50)

where Jp is a Bessel function of the first kind. We next
calculate Po(E, t ). Defining g= E /T, Eq—. (38) reads

Inserting Eq. (48} into Eq. (30) we see that Fo(k, t ) can
be written as

The first term in Eq. (58) is the elastic component,
whose intensity is given by the Debye-Wailer factor
e . The quasielastic component, which is formed by a
superposition of Lorentzians of increasing width, is also
affected by the Debye-Wailer factor. There are a few
points worth noting.

(1) If we take the I ~0 limit, the quasielastic com-
ponent disappears and we obtain the well-known result
for the elastic component in the absence of friction. '

(2) The total intensity i& scattered in the quasielastic
region can be obtained by integrating Eq. (58) over Q.
We obtain

+(1—g)- — 1 — y =0 .
d g2 dg 21

(51)

y(E)-M(A, /2I, 1,E/T)e (52)

with M defined as in Ref. 19. If we further demand that
the current density decays exponentially as E/T~~,
the allowed values of k must be restricted to

This is Kummer's equation, whose solutions are
conQuent hypergeometric functions. Eliminating the
solution that does not satisfy regularity requirements at
the origin and using Kummer's transformation' we find

i& =e [Io(26)—1], (59)

with Ip being a modified Bessel function. By adding the
elastic intensity in the presence of friction, e, we re-
cover the total elastic intensity in the absence of friction.
The total quasielastic intensity i& is independent of I,
since the quasielastic structure is associated with the
disappearance of long-time correlations, which are des-
troyed by any nonzero value of I . What remains of the
correlation as t~ 00 is due to the confinement and does
not depend on I . This residual correlation is responsible
for what is left of the elastic component in the presence

= —2m I (53)

with m a non-negative integer. Other values of A. would
imply an unphysical power-law decay of j(E ) as
E/T~ ac. [Note the inaccuracy of Eq. (13.1.4) in Ref.
19:M must be a polynomial if its first argument is a nega-
tive integer. j If A, = —2ml', the hypergeometric function
reduces to a Laguerre polynomial, M( —m, l,x )=L (x ).
The Laguerre polynomials are orthonormal, with the
weight factor e

Since the weight function (41) required to satisfy the
self-adjoint property is G(E)=e ~, the particular solu-
tions of Eq. (51) must be chosen as

0.250
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0.150-

0.100—
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I ~ I i I i I

y (E)= T ' L (E/T)e

These satisfy the normalization condition

f dEy (E )y„(E)G(E ) =5

(54)

(55)

0.00 I
I

I
)

I
(

I
f

I
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The probability density component Pp can be expanded
in terms of the set [y (E)I,

FIG. 1. Quasielastic peak height times the friction constant
for the harmonic oscillator as a function of 8=(T/2)(k !coo) .
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know from Sec. IV that our fundamental equation is self-
adjoint in the sense of Eq. (40) for potentials in this class.
Since the solution for purely harmonic potentials is given
by a linear combination of Laguerre polynomials, it is
natural to expand the solution for anharmonic potentials
in terms of Laguerre polynomials. The harmonic-
oscillator solution can thus be used as a benchmark for
the analysis of anharmonic problems. We write the gen-
eral solution to Eq. (38) in the form

ao B ()y~(E)= g ~™- 0
e ."L.-(E/T) .

0
v'T co(E)

(60)

Substituting y (E ) into Eq. (38), using Laguerre's
differential equation, ' and remembering that the weight
factor G(E)=[co(E)lco(0)]e must be used for the
inner product of the solutions, we obtain the system of
algebraic equations,

where the coefficients p& are determined using the initial
condition, Eq. (33). We have therefore a program to
compute the function PD(E, t) and, consequently, the in-
termediate scattering function and the dynamic structure
factor. This program will be fully implemented in a
separate publication.

Since a„D=P„0=0, A, =O (corresponding to the elastic
line) is always a solution. A calculation of pc and ya(E)
would then suffice to obtain the Debye-Wailer factor.

From Eqs. (30), (31) and (65), we see that the quasielas-
tic line can be expressed as a sum of Lorentzian com-
ponents. This is not surprising, since these components
arise from diffusional modes (see Sec. 6.2 and 7.6 in Ref.
2). In the rest of the paper we use Eq. (61) to obtain some
general results for the width of the quasielastic Lorentzi-
ans.

g [a„—P„—(A, /2I )a„]Bq =0
m=0

with

(61)
B. Weakly anharmonic systems

We next seek an answer to the following question:
What happens to the width of the quasielastic peak if a
small anharmonic term is added to the potential in Eq.
(46)? Let us try the symmetrical form

(62)
Np 2acoo2 4

U(q)= q + q2 3
(66)

P„=m f dg 1 — L„(g)L,(g),

and

(63) If a)0, the potential is "hardened'* by the quartic
term and the oscillation frequency co(E) is an increasing
function of E. If the anharmonic term is small,
~a ~

T && 1, we can write approximately

=f dg L (g)L (g). (64) co(E ) =—co0(1+2aE ) . (67)

Here g =E /T. The allowed values of A, can be ob-
tained by truncating the equation system and applying
the compatibility condition. Once the A, s are deter-
mined, the coefficients B can be found with the usual
methods of linear algebra. The next step is to write the
probability density component as a linear combination of
the allowed solutions y&,

p (E)=E(1+aE) . — (68)

Using Eq. (27) and eliminating terms of O(a ) and
higher, we readily 6nd that the average of the square
momentum over an orbit is

P (E,t)=g e 'p~ (E), (65) The matrix elements in Eq. (61) can now be easily cal-
culated, and we obtain the following system:

m=0
m (2maT —1)— + (2m +1)aTA, mA,

2I r 5„aT m (m —1)+— 5„

aT m(m+1)+— 5„+& Bz =0 (69)
(m+1)A,

By keeping only terms with m, n (3, we And the fol-
lowing compatibility condition:

2I
+(3+16aT) +2(1+10aT)=0 . (70)2r

The solutions to this equation, whose magnitudes yield
directly the widths of the first Lorentzians in SD ( k, Q ),

are

A,o=0,
A,

&

= —2I (1+4aT), (71)

A~= —41'(1+6aT) .
Of course, A,o corresponds to the elastic component.
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From Eqs. (71) we find that the width of the quasielastic
Lorentzians increases if a small positive anharmonic term
is included in the potential. This broadening of the quasi-
elastic peak is due to the speeding up of energy relaxation
that takes place when the average kinetic energy is in-
creased. According to the Langevin equation for the en-
ergy, Eq. (19), the frictional terms become more efficient
with increasing p. Equations (44) and (45) also indicate
that energy diffusion and drift are faster at higher values
of the average kinetic energy.

In the approximation we used here, the orthonormal
set of basis functions Iyz ] is given by

y, (E)= e "I.,(E/T),

e
—E/T

y, (E)= —[ 2aTLo—(E/T)

(72)

and

+(1—2aE)Li(E/T)

+2aTL2(E/T)],

—E/T
y, (E)= v'T [ 6aTL, (E—/T)

+(1—2aE)L2(E/T)] .

(73)

(74)

The function Po(E, t) can now be expanded in terms of
these functions, the coefficients being determined from
the initial conditions.

values of E, p (E) grows faster than for the harmonic os-
cillator due to the hardening of the potential.

From our discussion in Sec. VI B, we expect that at low
temperatures, i.e., T &&EM, the width of the quasielastic
peak will decrease with increasing temperatures because
the oscillator records the potential softening. At higher
temperatures, i.e., T +~E~, the peak width should grow
as many oscillators in the ensemble record the potential
hardening at E) 1. That this is indeed the case can be
seen from Fig. 5, where we show the widths of the first
three Lorentzians as functions of the temperature. These
widths were calculated following the procedure
developed in Sec. VIA. The ratio between the initial
slopes (A,2~ and ~k, ~

is 3, in agreement with Eq. (71). This
was to be expected, because at low temperatures the
scatterer can only reach weakly anharmonic regions. The
minimum width becomes more marked and shifts to
lower temperatures with increasing order. Following a
wide maximum, the Lorentzian widths decay to the
harmonic-oscillator values at high temperatures (this is
not shown in Fig. 5). Increasing the magnitude of a the
curves preserve their general shapes, although the mini-
ma become deeper and the maxima higher.

The preceding argument indicates that a signature of a
"softening" potential at low temperatures would be a nar-
rowing of the quasielastic line when the temperature is
increased at fixed momentum transfer. At high tempera-
tures the line should widen with increasing temperature if
the potential "hardens" again at high energies.

C. Strongly anharmonic system

As we mentioned in the Introduction, the soft-potential
model has become an. important tool in glass physics. '

A key feature of these models is the frequency reduction
at intermediate energies due to potential softening. The
conventional forms for the potential can be used, but the
resulting functions co(E ) and p (E) are exceedingly com-
plicated. It is therefore convenient to model directly the
frequency as a function of E. We choose the form

co(E ) =co(0) 1— aE
1+E (75)

with 0& a ~ 2. If a =0, we recover the harmonic oscilla-
tor, but if aAO, Eq. (75) corresponds to oscillations in a
potential whose low- and high-energy regions are har-
monic, but which exhibits a softening at intermediate en-
ergies. The magnitude of this softening and the ensuing
energy reduction increases with growing a. With the
units chosen in Eq. (75), co(E ) has a minimum at
E=E~=1. [We must avoid the a~2 limit, however,
since ro(E) would then grow too slowly after vanishing at
E =1. On the other hand, ro(E) =0 would imply a zero
range of validity for our approximation. ]

Using Eq. (27), we can now calculate p (E). At first,
this function decreases below the value corresponding to
the harmonic oscillator: the softening of the potential
corresponds to a decrease in the average kinetic energy
which becomes stronger with increasing a. At higher

0 0
[

0.5 1.0 1.5

FIG. 5. Temperature dependence of the width of the first
three Lorentzians for a strongly anharmonic potential. The en-

ergy dependence of the oscillation frequency is given by Eq. (75)
with a =1. The dashed lines correspond to the widths for the
harmonic problem of frequency co(0).
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Throughout the foregoing analysis we have assumed
that the friction constant I is temperature independent.
Since the eigenvalues scale with I, it would not be
difFicult to extend our discussion to cases for which I is a
function of T. This could occur if the nature of the main
fluctuating force changes as the temperature is raised.

VII. CONCLUSION

We have used a Fokker-Planck approach to analyze
the quasielastic peak in the neutron-scattering cross sec-
tion for harmonic and anharmonic oscillators subject to
weak frictional forces. By solving a diffusion equation in
energy space, we have been able to investigate the effects
of anharmonicity on quasielastic linewidth. The pro-
cedure used in this paper is particularly illuminating con-
cerning the physics underlying the generation of the qua-
sielastic peak by the addition of stochasticity. Our re-

suits may contribute to a better understanding of the phe-
nomena investigated by quasielastic neutron-scattering
experiments.

Although we have discussed our work in the context of
local motions in glasses, our results could be applied to
other systems for which local motions are relevant (e.g.,
zeolites and other porous materials ).
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