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Long-range Coulomb repulsion and finite-size approximations
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We show that when sizable long-range Coulomb repulsion is included in numerical studies of small
clusters, different sizes and shapes should be considered to obtain a ground state whicb represents
correctly the physics of the ground state (GS) in the thermodynamic limit. Also cutting off the
interaction at small distances might lead to a spurious GS. In particular the GS reported in the
literature for the two-dimensional three-band Hubbard model in the static limit at hole concentration
x = 0.25 is in fact a slightly excited state when an important (screened or not) Coulomb repulsion
at all distances is included.

In spite of the fact that the number of carriers in high-
T compounds is very low and therefore the screening of
the Coulomb interactions is expected to be poor, very
few studies of the electronic structure of these materials
include electron repulsions beyond nearest neighbors.
This is due to the difficulty of the theoretical study of
the strongly correlated systems even without long-range
Coulomb interactions. The efFect of the latter is expected
to reduce or suppress the regions of parameters for which
phase separation takes place, favoring superconductiv-
ity in some cases. However, a recent numerical study
shows that for certain doping levels, the regions of phase
separation are replaced by charge-density waves instead
of superconductivity. Classical models including long-
range Coulomb repulsions were successful in explaining
the essential features of the ordering of oxygen atoms in
YBa2Cu306+ .

In a recent paper, Riera and Dagotto have studied the
efFect of long-range repulsions in the three-band Hubbard
model. ' This model is believed to contain the essen-
tial ingredients of high-T superconductors, and has been
the starting point in the derivation of effective one-band
models, like the widely studied t-J model and gener-
alizations of it. ' The interaction included is a screened
Coulomb interaction:

V) nn

where d~ is the distance between sites l and m, n~ and
n are the hole occupations at these sites, and A is the
screening length. The competition among superconduc-
tivity, charge-density waves, and phase separation has
been studied in chains of six unit cells. The atomic limit
(zero hopping energy) was studied in chains of 12, 24, and
48 CuO cells and in periodic square clusters containing
4 x 4 and 6 x 6 Cu02 unit cells.

It is important to note that to capture the correct
physics in the thermodynamic limit, for certain hole con-
centrations, it is necessary to consider other cluster sizes.
For example, in the two-dimensional (2D) case, in the
atomic limit, for hole doping x =- 0.2 and small V, the
ground state has unit cell ~5 x ~5, and cannot be de-
scribed by the calculations of Ref. 4. In fact, for small
V in the atomic limit, all Cu atoms have one hole and

the problem reduces to distribute x unit charges per unit
cell in the square sublattice of.oxygen atoms. The ground
state of this problem has been studied in detail in Refs. 16
and 17. In general, for x & 2/3, the added charges tend
to arrange themselves into the smallest possible defor-
mation of a perfect hexagonal simple lattice (type p6m),
needed to place these charges onto the oxygen sublattice
(see Table I of Ref. 16). The ground state in 1D has
been obtained exactly by Pokrovsky and Uimin~ and
Hubbard. ~s For x = 1/3 or x = 2/3, the unit cell has
length 3 and is contained exactly in the chains studied in
Ref. 4. Thus the problem of the correct choice of the clus-
ter size does not afFect the ground state of these chains,
as a representation of the system in the thermodynamic
limit.

Since the on-site oxygen Coulomb repulsion U„ is be-
lieved to be larger than two times the nearest-neighbor
CuO repulsion, the regime of small V discussed above
in the atomic limit is probably the more realistic one,
even if the Cu-0 charge-transfer energy 4 were very
small. For increasing V and small A there is a second
regime in 2D, not discussed in Ref. 4 in which holes in
nearest-neighbor Cu and 0 atoms are avoided, but no
double occupancy of 0 atoms exists. ~ For sufficiently
large A and V, and small or negative U„, the holes enter
in pairs in 0 atoms, and the problem in the static limit
reduces to distribute y = (1+x)/2 charges of magnitude
2e in the oxygen sublattice, minimizing Eq. (1). Again,
this problem is equivalent to that studied in Refs. 16 and
17 and in Refs. 18 and 19 in 1D. According to Ref. 16, the
structure of the doubly occupied 0 atoms in the ground
state for x = 1/4 has the form shown in Fig. 5 of Ref. 16,
which is reproduced in Fig. 1(a) here. Instead, for large
V and A, the structure shown in Fig. 1(d) of Ref. 4,
reproduced here in Fig. 1(b), has been obtained by sim-
ulated annealing in a periodic 4 x 4 cluster (the structures
of Fig. 1 cannot be obtained in a periodic 6 x 6 cluster).
In the following we denote the structures shown in Figs.
1(a) and l(b) as A and B, respectively.

One might suspect that the simulated annealing pro-
cedure led to a metastable state, as it happened in sim-
ilar problems, but this is not the case. Our investi-
gation (explained below) allows us to conclude that the
structure B is a slightly excited state, but it becomes
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the ground state if all the interactions between one atom
and any other lying outside a 4 x 4 square centered at the
first are neglected, while the interactions with atoms ly-
ing on the boundary are counted with a factor I/2. This
is actually equivalent to the procedure used in Ref. 4 to

FIG. 1. (a) Ground state of the three-band Hubbard model
(Refs. 6 and 12) supplemented with long-range repulsions [Eq.
(1)] in the atomic limit (zero hopping), for doping level x =
0.25 and large V and A. Cresses denote Cu atoms without
holes (Cu+ ), empty circles correspond to empty 0 atoms
[0 and solid circles denote the double-occupied 0 atoms
(DOO)]. Dashed and dotted lines show possible choices of the
unit cell. (b) Same as in (a) when all interactions at distances
K = (R, R„) lying out of the square )R

~

= (R„( = 2 lattice
parameters, are neglected and those lying on the boundary
are reduced by a factor 1/2.

FIG. 3. Same as in Fig. 2 when the interactions are cut
off as in Ref. 4 [see caption of Fig. 1(b) and text]. The inset
shows the region of small A in more detail.

count the interactions as explained at the end of Sec. I
of the paper. We had already found in thermodynamic
studies of YBa2Cu306+ that cutting off the interactions
beyond fifth nearest-neighbor 0 atoms might lead to spu-
rious ground states. 2

In Fig. 2 we show the difference between the ener-
gies of structures B and A when all interactions are in-
cluded. Figure 3 displays the corresponding result using
the procedure of Ref. 4 to cutoff interactions. The differ-
ence is apparent and can be understood in simple terms:
when all interactions are included, it has been found pre-
viously that for y ( 2/3, and any A, the ground state
is obtained minimizing successively the number of first,
second, third, and further nearest-neighbor (NN) double-
occupied 0 atoms (DOO). is'i7 Both structures A and B
have no first NN DOO and half second NN DOO per Cu.
The number of third NN DOO (at distance ~2) is 1/2
for structure A and 1 for B and this explains why the
energy of A is lower. A has one fourth NN DOO per
Cu [distance (5/2) i~2j and no fifth NN DOO (distance 2)
and these numbers are permuted for structure B. With
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FIG. 2. Difference between the energy of the structures
shown in Figs. 1 (b) and 1(a) (denoted H and A, respectively)
as a function of the screening length A for the model including
all interactions [see caption of Fig. 1(a)].

0 2

FIG. 4. Energy of the structure A (full line) and H (dashed
line) as a function of A, when all interactions at distances
K = (R,R„) lying out of the square ~R

~

= ~R„~ = Ri;~
are neglected, for two different quite close values of R~; (e
is a positive infinitesimal). The average of the energies corre-
sponds to the cutoff procedure of Riera and Dagotto (Ref. 4).
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the method of Ref. 4, only half of the interaction between
fifth NN DOO is added. In spite of the fact that B has
a larger number of third NN, it has replaced the fourth
NN DOO of A by fifth NN DOO with a considerable
(artificial) reduction of energy. Also the interactions at
distance ~5 and 2~2 of B are afFected by a factor 1/2
with the method of Ref. 4 (they also lie at the boundary
of the 4 x 4 square of included interactions). As a conse-
quence, for large A, the energy of B is smaller than that
of A. For sufBciently small A, the effect of the third NN
DOO dominates and A has lower energy (see Fig. 3).

In previous studies including all interactions, for fixed
composition, the ground state was always the same for all
values of A. ' Thus it is not surprising that the energy
of B is always larger than that of A. However, for small
values of A phase separation can take place.

To show how the energy difference is afFected when an
abrupt cutofF is used (as in Ref. 5), we show in Fig. 4
the energy as a function of A for two different but very
similar areas of included interactions (AII), such that for
each 0 atom, the repulsions between it and any charge
lying outside the AII centered at the atom is neglected.
In agreement with previous studies, structures with 0
atoms close to the border of each of the AII but outside
them are considerably reduced in energy and artificially
favored by the cutoff procedure.

In 1D the convexity of the interaction is essential to
obtain the correct ground state 8': each interaction V
at a distance n should satisfy the inequality 2V & V q+
V„+q. If all interactions are replaced by zero for n & m,
then this condition is violated for n = m —1 or n ) m
and the ground state for certain doping levels is modified.

Although the method of counting the interactions used
in Ref. 4 has led to a ground state which does not cor-
respond to the correct one in the thermodynamic limit
(the structure B instead of A), the conclusion that phase
separation is inhibited by the long-range repulsions is not
affected. We believe also that the 1D results of Sec. III
of Ref. 4 are not afFected seriously either by the choice
of the cluster or the above mentioned method. However,
several aspects of the physics of the three-band Hubbard
model which might be important in 2D are missing in
1D. For example to represent the physics of 2D-excitonic
states in 1D, one has to assume an unrealistic very low
on-site oxygen repulsion Vp.

In summary, to obtain the ground state of a model
with long-range repulsions in cluster calculations, which
reproduces correctly the physics of the thermodynamic
limit it is necessary to study clusters with different shapes
and to include the interactions between an atom and all
periodic images of the second one. The atomic limit is a
good guide to determine the right shape of the clusters.
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