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Extended high-temperature series for the W-vector spin models
on three-dimensional bipartite lattices
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High-temperature expansions for the susceptibility and the second correlation moment of the
classical N-vector model [O(N) symmetric Heisenberg model] on the sc and the bcc lattices are
extended to order P for arbitrary N. For N = 2, 3, 4, ... we present revised estimates of the critical
parameters from the newly computed coefBcients.

There has been a resurgence of interest in series ex-
pansions for the statistical mechanics of lattice models
witnessed by the recent publication of several remark-
ably long high-temperature (HT) and low-temperature
(LT) series, in particular for the ¹ector model~ with
N = 0 (the self-avoiding walk model), 2 with N = 1 (the
Ising model), and with N = 2 (the AY model), 4 in 2-
and 3-space dimensions. The best results, however, are
still restricted to the N = 0 and 1 cases, where series are
obtained by counting techniques which achieve maximal
efEciency in low dimensions and only with discrete site
variable models. Presently, on the sc lattice, the zero Beld
susceptibility y(N; P) and the second correlation moment
p2 (N; P) are known to O(P24) and O($2~) (Refs. 2 and 5),
respectively, for N = 0, to O(P~s) and O(P~s) (Refs. 6
and 7), respectively, for N = 1, to O(P ) (Ref. 4) for
N = 2, and to O(P~4) (Refs. 8 and 9) for any other
N. On the bcc lattice, y and p2 have been computed to
Q(P s) for N = 0 s to O(P ) for N = 1 10 11 to O(P12)
for N = 2, ~2 and to O(P~~) for N = 3.~s Apart &om the
interest of an increasingly precise direct determination of
the critical properties of the lattice models, there is no
lack of other good reasons to undertake such a labori-
ous calculation as a long series expansion: they include
more accurate tests of the validity both of the assump-
tion of universality, on which the renormalization-group
(RG) approach to critical phenomena is based, and of
the approximation procedures required to produce esti-
mates of universal quantities by field theory methods. In
fact, for want of more rigorous arguments, as stressed in
Ref. 14, a crucial test of the validity of Borel resummed
e expansions or fixed dimension g expansions is still
provided by the comparison with experimental or numer-
ical data.

Here we present a brief analysis of a new extension
&om O(P ) to O(P~s) of the high-temperature (HT)
expansions in zero Beld for the susceptibility and. the
second correlation moment of the ¹vector model both
on the sc lattice and on the bcc lattice. More results
to O(P ) in d = 2, 3, 4, ... space dimensions, and a
study of the second field derivative of the susceptibil-
ity yi )(N;P) = d yidH will appear elsewhere. We
have determined the series coefEcients as explicit func-
tions of the spin dimensionality N by using the vertex

renormalized linked cluster expansion (LCE) method.
Our calculation substantially extends previous work in
that it provides coeKcient tables of considerable length
irrespective of the spin dimensionality and of the lat-
tice structure: HT series for the general ¹ ector model
were previously available only for the (hyper)sc lattice in
d = 2, 3, 4 dimensions up to O(P ). '

Concerning the LCE technique, we have found the fol-
lowing works particularly useful: the review papers, the
N = 1 computations, ~ ' 9 and the more recent work
by Luescher and Weisz (LW), s devoted to the model, the
O(N) symmetric P(P2) lattice field theory, described by
the partition function

Z= IIdp p, exp '

where y; is a ¹component vector. With the choice
dp, (P2) = h(P2 —1)dP; of the single spin measure, (1)
reduces to the partition function of the ¹vector model,
but also a broad class of other models of interest in sta-
tistical mechanics can all be represented in this form.
LW have devised or simplified some algorithms required
for the calculations, and have tabulated HT expansions
of y, ps, yi i on the (hyper)sc lattices for the N-vector
model to O(@~4).s's Also, starting &om (1), we have ex-
tended the calculation to the class of bipartite lattices, in
particular to the (hyper)sc and (hyper)bcc lattices. By
redesigning the algorithms in order to take full advan-
tage of the structural properties of the bipartite lattices
and by writing an entirely new optimized code, we have
significantly reduced the growth of the complexity with
the order of expansion. Thus, we have been able to push
our calculation well beyond O(P ), where LW had to
give up. We can give a rough idea of the size and the
complexity of the calculation by mentioning that over
2 x 10 graphs enter into the evaluation of y and p2
through O(P s). This should be compared with the cor-
responding Bgure: 1.1 x 104, in the LW computation.
Since these figures by no means represent our computa-
tional limits, a further extension of our calculations is
feasible. We are confident that our results are correct
also because, in each space dimension d = 1, 2, 3, ..., by
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the extensive formulas giving the closed form structure
of the HT series coefFicients as functions of N. Therefore,
as an example of our results, we shall only report here
the HT series in the N = 3 case (classical Heisenberg
model) on the sc and the bcc lattices, respectively, where
we have contributed &om Ave to eight new coeKcients
beyond those given in Refs. 8, 9, and 13.

The susceptibility HT series for the sc lattice is

28

14

a single procedure, we produce numbers in agreement
with all expansion coeKcients already available for N =
0,1,2,3 and oo (spherical model). ~ Our codes were run
on an IBM Risc 6000/530 power station with 32 Mbyte
memory capacity and 1.5 Gbyte of disk storage. Typi-
cal CPU times were extremely modest, and the random
access memory (RAM) is far &om being saturated. For
reasons of space neither a detailed discussion of the main
steps of this computation can 6t here nor we can display

I

10 q 244 s 230 q 37612 s 864788 s 19773464
+ 2 + +

3 45 27 2835 42525 637875
89686514 s 25478812 s 140348301868 le 477383158731608
1913625 360855 1326142125 3016973334375

426768736125964 l~ 28560817226680664 ls 775988604270248
1810184000625 81458280028125 1491909890625

16004552656617124832 ls 354950851980427607594
20771861407171875 311577921107578125

1464128352813955096312676 lq 1068764655864454858376417828+ 870237133653465703125 430767381158465523046875
259814093690188797550933157144

71076617891146811302734375
The second correlation moment HT series for the sc lattice is

964 q 2192 ~ 57116 s 8340368 s 33324872 q 1263947744
45 45 567 42525 91125 1913625

73478278372 s 13325285538064 le 3434294378983784 ll 5181988210150198
63149625 6630710625 1005657778125 9050920003125

773005999283909656 ls 19031243835736702816 lq 225650609227937809568
81458280028125 1221874200421875 8902226317359375

267912260258927725784384 ls 171544906778131647970688684
6543136343259140625 2610711400960397109375

45158335170568649028207863344 ls 19874973349328684680550746792+ 430767381158465523046875 119456500657389598828125
The susceptibility HT series for the bcc lattice is

8 56 ~ 1936 s 12904 ~ 119600 s 2784992 s 632918848
3 9 135 405 1701 18225 1913625

4075984504 s 287925718448 q 64384719769312 lo 186782368415874752
5740875 189448875 19892131875 27152760009375

1186773786369487616 l~ 7528780320376815776 ls 732954612970918048
81458280028125 244374840084375 11278838773125

127972570589148818590048 ls 807291210775528531339816
934733763322734375 2804201289968203125

47366222654681, 09492081181616 lq 1639367056527449858924222363488
7832134202881191328125 1292302143475396569140625

566937383305125856734568614018688
213229853673440433908203125

The second correlation moment HT series for the bcc lattice is
8 128 ~ 784 s 67072 ~ 4081648 q 167636864 s 944026304
3 9 15 405 8505 127575 273375

p&" = — +
16849951744 s 4153759481008 s 1065794492624896 lo 11667722372474865+ 1913625 189448875 19892131875 9050920003125

+ +
8314233519972990976 lq 175799675893471696544 ls 409170117445661176448+ 27152760009375 244374840084375 244374840084375

+
3613059270200364483884384 ls 173915360520409186670373376+ 934733763322734375 19629409029777421875

+ 31611058478034436738314658288 l7 8438325986405406805596333786112
1566426840576238265625 184614591925056652734375

21963940464232232523449671606261888
213229853673440433908203125



BRIEF REPORTS 6187

Let us now comment on our updated estimates for the critical temperatures and the critical exponents p and v in the
N = 2, 3, 4, ... cases, where our new series are significantly longer than those previously available. The main difhculty
of the analysis here comes &om the expected singular corrections24 (conHuent singularities) to the leading power-law
behavior of thermodynamical quantities. For example, the susceptibility should be described, in the vicinity of its
critical point P, by

with the universal (for each N) exponent 8(N) 0.5
for small N (Ref. 14) and 8(N) = 1 + O(1/N) for
large N (Ref. 23). The standard ratio and Pade approxi-
mant (PA) methods are insufBcient to cope with this very
unstable double exponential fitting problem. Therefore,
we have to resort also to the inhomogeneous differential
approximants (DA's) method, 2 a generalization of the
PA method better suited to represent functions behav-
ing like Pq(x)(x —xo) ~ + $2(x) near a singular point
xo, where Pq(x) is a regular function of x and $2(x) may
contain a (confluent) singularity of strength smaller than

We have essentially followed the protocol of series
analysis by the DA's suggested in Ref. 26, which is un-
biased for confluent singularities. We have computed P,
and p &om the susceptibility series and have used this
estimate of P, to bias the computation of v from the se-
ries for the square of the (second moment) correlation
length $2. The results are reported in Table I along with
the previous estimates by other methods. In the sc lat-
tice case our exponent estimates are consistent with the

I

RG e-expansion results, ' but they are slightly larger
(by 1'Fo) than the g-expansion results. In the bcc lat-
tice case the estimates are perfectly compatible with the
most recent seventh-order or sixth-order ~ g-expansion
results. This is analogous to what is observed in the most
accurate unbiased analyses of the N = 1 case and sug-
gests that the series for lattices with lower coordination
number have a slower convergence26 and also that un-
biased DA's might be unable to account completely for
the conQuent singularities. For N ) 3 Do elaborate es-
timates of the exponents by the e-expansion method are
available, and only very recently has an extensive com-
putation by the (sixth-order) g-expansion method been
published. Unfortunately, no estimates of error for the
exponents are given in Ref. 17, but we can safely assume
uncertainties of the order of 0.5%%uj& for moderate values of
N and possibly smaller for N & 8.

Analyzing our sc series by the simplest biased PA
method designed to account explicitly for the con8u-
ent singularities, does not significantly alter our DA esti-

TABLE I. A summary of the estimates of critical parameters for various values of ¹

10

Method and Ref.
Expt. (Ref. 29)

HT sc
HT bcc

HT fcc (Ref. 12)
RG g expansion (Ref. 16)
RG s expansion (Ref. 14)
Monte Carlo sc (Ref. 30)
Monte Carlo sc (Ref. 31)

HT sc
HT bcc

HT fcc (Ref. 13)
RG g expansion (Ref. 16)
RG e expansion (Ref. 14)
Monte Carlo sc (Ref. 32)

Monte Carlo bcc (Ref. 32)
HT sc

HT bcc
RG g expansion (Ref. 34)
RG g expansion (Ref. 17)
Monte Carlo sc (Ref. 33)

HT sc
HT bcc

RG g expansion (Ref. 17)
HT sc

HT bcc
RG g expansion (Ref. 17)

HT sc
HT bcc

RG g expansion (Ref. 17)

0.45420(6)
0.320434(8)
0.2075(1)

0.45420(2)
0.4542 (1)
0.69302(7)
0.48681(2)
0.3149(6)

O. 693O35(37)
0.486798 (12)
0.93582(8)
0.65526 (3)

0.9360(1)
1.42838(9)
0.99608(6)

1.9262 (3)
1.33976(8)

2.4267(3)
1.6850(2)

1.328(6)
1.323(2)
1.323(15)
1.318(2)
1.315(7)
1.308(16)
1.316(5)
1.403(6)
1.396(3)
1.40(3)

1.3926(20)
1.39(1)

1.3896(70)
1.385(10)
1.471(6)
1.458(3)
1.45(3)
1.449

1.477(18)
1.577(6)
1.564(3)

1.556
1.656(6)
1.641(3)

1.637
1.712(6)
1.696(3)

1.697

0.6705 (6)
0.679(3)
O.674(2)
0.670(7)

0.6715(15)
0.671(5)
0.662(7)
0.670(7)
0.715(3)
0.711(2)
0.72(1)

0.7096(15)
0.710(7)

0.7036(23)
0.7059(37)

O.749(4)
o.742(2)
0.74(1)
0.738

0.7479 (90)
0.801(4)
0.795(2)

0.790
o.84o(4)
0.832(2)

0.830
0.867(4)
0.859(2)

0.859
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mates. Therefore, in order to assess with a higher level of
precision the influence of these confluent singularities and
completely reconcile the series results with those f'rom the
RG, further work is required including the computation
of even longer series and, as indicated by the experience
with the N = 1 case, a study of suitable continuous fam-
ilies of models for each universality class. ' The un-
certainties we have quoted for our exponent estimates,
generously allowing for the scatter of the results in the
DA analysis, leave small differences between our central
values for the sc lattice, and those from the 6xed dimen-
sion RG. This suggests that the still insuFicient length
of the HT series and/or the still incomplete account of

the confluent singularities add to some of our estimates
a systematic uncertainty twice as large as we have in-
dicated. Even under this conservative proviso, we have
signi6cantly improved the precision of the values of the
critical parameters &om HT series and have not pointed
out any serious inconsistency with the estimates either
from RG or from stochastic simulations.
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