
PHYSICAL REVIEW B VOLUME 52, NUMBER 9 1 SEPTEMBER 1995-I

Pseudo-marginal-Fermi-liquid behavior in antiferromagnetic metals
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EfFects of interactions of conduction electrons with spin waves on electronic properties of a
metallic antiferromagnet are investigated. At the lowest temperatures T ( T' (b,/Es)T~ (b,
is the antiferromagnetic splitting of the electron spectrum) Fermi-liquid behavior takes place, and
nonanalytic T ln T contributions to specific heat are present for three dimensions (3D). At the same
time, for T )T, in 2D and "nested" 3D systems the picture corresponds to a marginal Fermi liquid
(T ln T contributions to specific heat and nearly T-linear dependence of resistivity). A comparison
with the case of a ferromagnet is performed.

Recently, a possible formation of states which differ
&om the usual Fermi liquid was extensively discussed
for highly correlated electron systems. The non-Fermi-
liquid behavior of the excitation spectrum down to the
lowest energies is now reliably established in the one-
dimensional case (the "Luttinger liquid" i). However,
such a situation can also be assumed in some two-
dimensional (2D) and even 3D systems with strong elec-
tron correlations. To describe properties of high-T su-
perconductors (HTSC's), Varma et al. s proposed a phe-
nomenological "marginal Fermi liquid" (MFL) theory
where electron damping is linear in energy E (referred
to the Fermi level) and the efFective mass is logarithmi-
cally divergent at E + 0. According to Ref. 3, such be-
havior is the result of interaction with local Bose excita-
tions which possess a peculiar (linear in their energy and
weakly q-dependent) spectral density. The MFL theory
was developed further in a number of papers (see, e.g. ,
Refs. 4—6). In the simplest way, the MFL electron spec-
trum may be reproduced in some crossover energy region
for interacting electron systems under the requirement of
almost perfect nesting in 2D case, ~ which seems to be
too strict for real systems. Similar results were obtained
with account of antiferromagnetic (AFM) spin fluctua-
tions in the vicinity of the AFM instability. i Almost
T-linear behavior of the resistivity in paramagnetic 2D
metals with strong AFM fluctuations was obtained by
Moriya et al. in a broad temperature region.

A behavior corresponding to the MFL (T lnT term
in the electronic speci6c heat, unusual power-law T
dependences of resistivity and magnetic susceptibil-
ity, etc.) in some temperature intervals was found
experimentally in a number of uranium and cerium
systems [U Yi Pds, UPt3 Pd, UCu5 Pd
CeCu6 Au, U Thi Bei3, Thi ~U~Ru2Si2, and
Ce Lai Cu2Si2 (Ref. 17)]. This behavior is as a
rule interpreted within a two-channel Kondo scattering
mechanism. At the same time, in a number of sys-
tems (UCus Pd, CeCus Au, U Yi ~Pds) the non-
Fermi-liquid behavior correlates apparently with the on-
set of antiferromagnetic (AFM) ordering, is'is i.e. , is con-
nected with multicenter efFects.

In the present work we propose a description of the
MFL state formation in AFM metals with a 2D spec-

trum (HTSC's) or nesting features of the Fermi surface
for D = 3 (anomalous Ce- and U-based systems) owing
to interaction with the usual spin waves. Treatment of
this mechanism seems to be justified in that almost all
the systems under consideration are characterized by pro-
nounced local magnetic moments and spin fluctuations.

The peculiarities of the spectrum and damping of the
quasiparticles near the Fermi level are due to the interac-
tion with low-energy collective excitations, either well de-
fined or of dissipative nature (phonons, zero sound, para-
magnons, etc.). Migdal2o proved for D = 3 in a general
form that the corresponding nonanalytic contributions
to the self-energy Z(E) are of the order of EslnE, which
results in T lnT terms in the electronic specific heat.
Fermi-liquid behavior might seem to take place for AFM
metals since in the long-wavelength limit (q ~ 0) the
electron-magnon interaction is equivalent to the interac-
tion with acoustical phonons (the spectrum of the Bose
excitations is linear and the scattering amplitude is pro-
portional to qi~2). However, in the case of AFM spin
waves there exists one more "dangerous" region q—+ Q
(Q is the wave vector of the AFM structure), where the
magnon &equency uq tends to zero and the scattering
amplitude diverges as uq . At very small E such pro-

—i/2

cesses are forbidden because of the presence of the AFM
splitting in the electron spectrum. At the same time,
at not too small E one may expect that these processes
lead to stronger singularities. Thus the Fermi-liquid pic-
ture may be violated in this energy region. We shall
demonstrate that a number of physical properties of 2D
and "nested" 3D antiferromagnets exhibit MFI behav-
ior in some temperature interval, although the collective
excitation spectrum is quite diferent &om that in the
theory. In this sense we use the term "pseudo-marginal-
Fermi-liquid. "

To investigate the efFects of interaction of current carri-
ers with local moments we use the s-d( f) exchange model

t) tkcg~ckcr —I) ) Sqcg~o era icg+qnl
ku qk o a'

+ ) JqSqS q,
q

where ck, ck, and Sq are operators for conduction elec-
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1
Ekl, 2 = (tk + tk+C}) + Ek ) (2)

Ek ——(~k+ I S ), Tk = —(tk —tk+g)
2

(S is the sublattice magnetization) is included in the zero-
order approximation.

One obtains for the correction to the density of states

b'N(E) = ——) [ImZ~ {k,E)/(E —Eg~)
jk

—ReZ~ (k,E)8'(E —Ek~ )].

The first term in (3) corresponds to the incoherent {non-
quasiparticle) contribution, and the second one describes
the renormalization of the quasiparticle spectrum. The
self-energies are given by

Z;(k, E) = I S) )— (Lk~[(—1)'+'+ ]
j,l=1,2

—(—1)'+'Mk~[{—1)'"+'l)&k (E~x) (4)

trons and localized spins in the quasimomentum repre-
sentation, I is the s d(-f) exchange parameter, and cr

are the Pauli matrices. Introducing spinor operators
= (c&~&, cd+&&) (2Q is taken for sixnplicity equal to

a reciprocal lattice vector) and passing to the magxion
representation for spin operators, we calculate the ma-
trix electron Green's function G(k, E) to second order
in the electron-magnon interaction (this approximation
corresponds to first order in the quasiclassical small pa-
rameter 1/2S; see Ref. 22). The AFM splitting of the
electron spectrum with the subbands

where

Lk~(+) = (u + v )(1 + I S /EkEk+~)
+2uqVqTk7k+q/EkEk+q ~

Mk~(l-) = IS(1/Ek + 1/Ek+„) ) (6)

f (+Ek+~) + N~
(7)E —Ek+~ + (dg

f(E) and N~ = NJx(uz) are the Fermi and Bose distri-
bution functions. The Bogoliubov transformation. coefE-
cients and the magnon &equency are given by

u = 1+v„= —[1+S(J~+g + J~ —2Jg)/(u~],

~~ = 2S(J~-a —J~)' '(J~ —J~)'~'.
It should be noted that, despite the absence of long-range
order at finite temperatures, the result (4) is valid also in
the 2D case up to T J, S being replaced by the square
root of the Ornstein-Cernike peak intensity in the pair
correlation function.

Nonanalytic contributions to N(E) at E -+ 0, T = 0
originate froxn spin waves with q ~ 0, q ~ Q. Because
of the q dependence of the interaction matrix elements
[(uz —v~) oc q and (u~ + v~)2 oc q iat q -+ 0], the
intersubband contributions (say, to Zi which originate
from Ax(E~2)) are, generally speaking, more singular
than the intrasubband ones. However, because of the
quasimomentum and energy conservation laws, intersub-
band transitions are possible at q, lq —Ql ) qo 6/vx-
(A = 2IS is the antiferromagnetic splitting and n~ is the
electron velocity at the Fermi level), so that the corre-
sponding divergences are cut at T' = cqo T~A/v~ (in
the 2D case, Txv ~ J).

Averaging Z;(k, E) over the Fermi surface Ek, = 0, we
obtain for the intrasubband contribution in the 3D case
at T « lEl

z;(E) = —,(IEI'+ ~'IEIT')([Lk, (—) —(—1)'sgnEM„( —)]/~, )a„,. ~„, f=,[~,(~(Ek+„))~„f,]

where c is the magnon velocity. After analytical con-
tinuation, the contributions to ImZ(E), proportional to
E lEl, result in corrections of the form b'ReZ(E) oc
E lnlEl, which agrees with the microscopic Fermi-liquid
theory. 2 Then the second term in (3) yields contribu-
tions of the form bN(E) oc E lnlEl. The corresponding
contribution to the electronic specific heat,

C(T) = dH/dT = dEf(E)EN(E),

is proportional to T3 ln(T/J) (cf. Ref. 21).
For D = 2 the symmetric (even in E) part of ImZ(E) is

proportional to E and does not result in the occurrence
of nonanalytic terms in ReZ(E) and N(E). In a 2D para-
magnet, electron-electron scattering results in the contri-
butions ImZ{E) oc E ln lEl and in T lnT terxns in the
resistivity. In our case the non-Fermi-liquid terms in
(4), which contain M and are proportional to I (they
describe the Kondo effect in the AFM state s 25), result

ImZ(E) = —2p ) Aq

4)gg~Q, T &co~()Ei
(10)

with

( o — ~)) (k) (k+~) P=). (k)
k k

in asymmetrical damping ImZ(E) oc ElEl. The latter
yields after analytical continuation ReZ(E) oc E lnlEl
and bN(E) oc ElnlE'l. However, being odd in E, such
terms in N(E) do not lead to nonanalytic corrections to
C(T) after integrating over E.

At lEl ) T' we may use instead of (4) the simple
second-order perturbation expression

Zk(E) = I S).(u~ "~) +k~(tx k
ql

the intersubband contributions corresponding to pro-
cesses with small lq —&I. A~~raging in k over the F~~mi
surface we obtain
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(tg is referred to the Fermi level). In the general 3D case
we have ImZ(E) oc E2. For D = 2 we derive

ImZ(E) = — Ag~E~
1

7l Pc

so that ImZ(E) oc ~E~. Then, by virtue of the analytical
properties of Z(E), ReZ(E) oc Eln ~E~ and

blV(E) = — Ag ln ~E(.
4

(12)

A similar picture occurs in the peculiar 3D case where
the electron spectrum satisfies the "nesting" condition
tk ———tg+g in a significant part of the Brillouin zone,
so that Az oc 1/~q —Q~. Such a situation is typical for
itinerant-electron AFM systems since the onset of AFM
ordering is connected with the nesting. Besides that, for
localized-moment metallic magnets, which are described
by the s fmod-el, the value of Q is also often determined
by the nesting condition.

It Inay be shown that the incoherent contribution to
N(E) [see (3)], which is owing to intersubband transi-
tions, is linear in ~E~ up to E = 0 for D = 2 (but not
in the 3D nesting situation). This contibution may be
observed in tunneling experiments.

For the 2D "nested" antiferromagnet, the perturbation
theory damping is very large, ImZ(E) oc ln ~E~. Estimat-
ing the damping in the second-order self-consistent ap-
proximation [i.e., replacing the denominator in (9) and
(7) by the exact electron Green's function] we derive
ImZ(E) oc ]E] /' . Thus one has to expect in this case a
strongly non-Fermi-liquid behavior at not too small ~E~.
Note that the situation is di8'erent from the power-law
nonanalyticity in the Anderson model at very small ~E~,
which is an artifact of the noncrossing approximation
(NCA). 2

The intersubband contribution to C(T) reads

is analogous to the electron-phonon scattering one and is
proportional to T (Ref. 32)]. In the 2D or "nesting" 3D
situation one obtains

R(T) oc T in[1 —exp( —T'/T)] T ln(T/T').

Thus in our model, unlike Ref. 3, the linear dependence of
ImZ(E) results in T lnT rather than T-linear behavior
of the resistivity because of the lower-limit divergence
of the integral with the Bose function. However, the
deviation from the linear law is hardly important &om
the experimental point of view.

The impurity contribution to transport properties is
determined by the energy dependence of N(E) near the
Fermi level,

BE; c(T)/E* cc —V J dE[ Bf(E)/B—E]BN(E),

where V is the impurity potential. The quasiparticle
renormalization effects owing to 1 —dReZ(E)/dE
1/Z do not contribute to impurity scattering since
w -+ w/Z and v~-+v~Z, so that the mean free path is
unrenormalized. At the same time, incoherent terms in
IV(E) yield in the 2D case b'R; ~(T) oc T down to the
lowest temperatures.

The asymmetric "Kondo" contribution to N(E) in the
2D case, which is proportional to E~[E~, should result
in a large temperature-independent contribution to the
thermoelectric power (cf. Ref. 30):

BQ(T) cc —f dE[ Bf(E)/BE]EBN—(E)

For 3D metallic ferromagnets with the quadratic dis-
persion law of magnons (Q = 0), we have for a given spin
projection

Zg~(E) = 2I S) A~' (t~ ~ IS).
A~/(u2. (13)

q Q,T&u)~

In the 2D or "nesting" 3D situation the integral is loga-
rithmically divergent at q-+Q, and the divergence is cut
at uq T, so that we obtain the TlnT dependence of
the specific heat. In the model accepted, the nonanalytic
contributions to the magnetic susceptibility should mutu-
ally cancel, as well as for electron-phonon interaction.
However, such contributions may occur in the presence
of relativistic interactions (heavy atoms).

Now we discuss transport properties. To second order
in I, using the Kubo formula, we obtain for the inverse
transport relaxation time at T & T'

1/~ = ((vg+g —vg) )d =o

) v„b(tg) (14)

with vg = Bt) /Ok. For D = 3 we have a quadratic tem-
perature dependence of the spin-wave resistivity, R(T) oc

(T/Tfv )2. Note that the intersubband contribution (14)
dominates over the intrasubband contribution [the latter

Then we obtain the one-sided singular contributions
ImZ (E) ~ ~(~E)lE[ at IE~ & T' - (b/v~)'Tc, so
that the crossover energy scale is considerably smaller
than in the AFM case (see Refs. 33 and 34); these pa-
pers treat also the quasiparticle damping at small E due
to electron-magnon scattering, which occurs in the sec-
ond order in 1/2S). Then we obtain bI)I (E) oc —ln ~E~
for ~E~ & T*. At the same time, the incoherent con-
tribution, which survives up to E = 0, has the form

(E) oc 0(g E)~E~s/2 ~~ ~4

For T ) T* the TlnT term in the specific heat of
the ferromagnet is present. ' On the other hand, the
spin-wave resistivity at T & T* is proportional to T
for D = 3 (and To~2 for D = 2) because of the factor
(vg —v~+z) [cf. (14)]. However, this factor is absent for
the scattering between spin subbands, which yields the
T ln T term in the resistivity of ferromagnetic alloys.

The situation in a 2D ferromagnet is similar to that
in the above-discussed "nested" 2D antiferromagnet: the
damping in the perturbation theory is large, ImZ(E) oc

~E~ /, this result being valid in the self-consistent ap-
proximation too.
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To conclude, electronic properties of 2D and "nested"
3D metallic antiferromagnets agree on the whole with the
MFL picture in a rather wide interval T' & T ( J, the
value of the crossover temperature being determined by
the s f-exchange parameter. At T ( T* this behavior
is changed to the usual Fermi-liquid one. At the same
time, in contrast to Ref. 3, no special assumptions about
the spectrum of the Bose excitations are used: in our
model they are just spin waves with a linear dispersion
law. Unlike Refs. 11 and 12 we need. not consider the spe-
cial case of the vicinity to the AFM instability, but can
treat the AFM metal with well-de6ned local moments.
Thus AFM ordering itself, together with the rather nat-
ural assumption about the "nesting, " may explain vio-
lations of the Fermi-liquid. picture which are observed in

some anomalous rare-earth and actinide systems. The
use of perturbation theory in the electron-magnon in-
teraction within the s-d(f) exchange model seems to be
a reasonable phenomenological approach for highly cor-
related electron systems, which takes into account the
SU(2) symmetry of exchange interactions. The electron
spectrum tg and parameter I may be considered as ef-
fective ones (including many-electron renormalizations).
Note that similar results for the electron-magnon inter-
action effects may be obtained in the Hubbard model
(I —+ U, cf. Refs. 33 and 22).
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