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Recently, high resolution angle-resolved photoemission spectroscopy has been used to determine
the detailed momentum dependence of the superconducting gap in the high-temperature super-
conductor Bi2srqCaCu208. In this paper, we first describe tight-binding fits to the normal-state
dispersion and superlattice modulation eKects. We then discuss various theoretical models in light
of the gap measurements. We find that the simplest model which 6ts the data is the anisotropic
s-wave gap cos(k ) cos(k„), which within a one-band BCS framework suggests the importance of
next-near-neighbor Cu-Cu interactions. Various alternative interpretations of the observed gap are
also discussed, along with the implications for microscopic theories of high-temperature supercon-
ductors.

I. INTRODUCTION

One of the key issues today in the field of high-
temperature superconductivity is the symmetry of the
superconducting order parameter. Penetration depth
measurements on Y-Ba-Cu-0 indicate that the gap has
line nodes in momentum space. This information by
itself is not suKcient to determine the symmetry of
the order parameter. Various Josephson interference
experiments ' on Y-Ba-Cu-0 are consistent with an or-
der parameter which has d 2 „2 symmetry; some of these
directly probe the sign change in the the order param-
eter under a 90 rotation. These results are, however,
not consistent with c-axis Josephson tunneling data and
other interference experiments. The situation is mad. e
even more confusing by experiments on other high-T, ma-
terials: penetration depth measurements and tunneling
data on Nd-Ce-Cu-0 and tunneling data on the single
layer Hg cuprate indicate an apparently isotropic gap.

The improvement in resolution of angle-resolved pho-
toemission spectroscopy (ARPES) as well as the large
gaps associated with the high transition temperatures
of the cuprates allows the possibility of directly map-
ping out the momentum dependence of the gap. We
are indeed fortunate that the (quasi) two-dimensional
nature of the cuprates allows ARPES to directly mea-
sure the spectral function of the electrons. Recently, the
Stanford group presented the first ARPES data indicat-
ing significant momentum anisotropy in the gap func-
tion for the two layer Bi cuprate (Bi-2212), with the
gap being large along the CuO bond direction (vr, 0)
and small, possibly zero, in the diagonal direction (m, 7r)
in contrast to early ARPES data on Bi-2212 which
showed no gap anisotropy. More recent work ' has

confirmed the Stanford results and found that the ob-
served gap anisotropy is sensitive to sample quality and
surface conditions with some samples showing a much
smaller, though nonzero, gap along the (m, vr) direction
compared with that along (7r, 0). Even in the Stanford
data the anisotropy decreased significantly with sample
aging, probably due to gas absorption on the surface.
It must be mentioned that attempts to see the gap with
ARPES on other cuprates, particularly Y-Ba-Cu-0 have
not been successful. The reason appears to be that in Bi-
2212 the cleavage is between the two BiO layers which
are van der Waals coupled. Thus, the act of cleavage
minimally disrupts the sample surface, as opposed to
YBCO where chain copper —apical oxygen bonds are
broken.

Recently, our group has measured the detailed momen-
tum dependence of the gap in Bi-2212 on very high-
quality samples employing a spectrometer with im-
proved energy resolution (described by a Gaussian of
standard deviation 8 meV). s These results are consistent
with the earlier work discussed above, but with improved
resolution, were able to demonstrate that the nodes in
the gap function were not along the (vr, m) directions as
one would have for a gap of A+2 y2 symmetry, but rather
displaced at an angle of 10 to both sides of the diagonal
direction. The purpose of this paper is to discuss the
detailed angle dependence of the gap, and see which the-
oretical models are consistent with such a gap function.

Our main results are summarized below.
(1) We give a tight-binding St to the normal-state dis-

persion data which reproduces the experimentally ob-
served Fermi surface.

(2) We note that there is no clear evidence for two CuO
bands, suggesting that the bilayer splitting is either weak

0163-1829/95/52{1)/615(8)/$06. 00 52 615 1995 The American Physical Society



NORMAN, RANDERIA, DING, AND CAMPUZANQ

or nonexistent.
(3) The occupied area of the Fermi surface corresponds

to a hole doping of 17%.
(4) We demonstrate that data in the Y quadrant are

consistent with the superlattice modulation observed in
structural studies.

(5) The observed momentum dependence of the su-
perconducting gap is not compatible with pure d 2

pairing. We also argue that the data are not consistent
with a dirty d-wave or a mixed (s + d, s + id, or d + g)
gap.

(6) The observed gap in the X quadrant is consistent
with an interplay between a pure d&& y2 state and the
superlattice modulation. However this interpretation is
not consistent with the data in the Y quadrant.

(7) A mixed s + d gap coming from pairing within a
bilayer can fit the data but at the expense of having two
gaps at each A: point. So far there is no evidence in our
data for such a two-gap spectrum.

(8) The simplest interpretation of the data is in terms
of anisotropic s-wave pairing. An 8 „gap function with
A(k) = Ao cos(k ) cos(k„) provides an excellent fit to the
data.

(9) s „pairing would arise within a BCS framework
from next-near-neighbor (Cu-Cu) attraction with weak
an-site repulsion.

(10) Several microscopic theories which lead to
anisotropic 8-wave pairing are discussed in relation to
the data, including models based on charge transfer, ex-
tended saddle points, and interlayer tunneling.

FIG. 1. Fermi surface points measured by ARPES. Open
circles were measurements in the normal state, crosses in
the superconducting state. The thick line represents a
tight-binding fit to the data as described in the text. The
thin lines are displaced from this by the superlattice Q vec-
tor, and are marked by +Q and —Q.

TABLE I. Tight-binding basis functions used in fitting the
experimental energy dispersions as described in the text. In
this notation, the Y point is (vr, vr). The first column lists the
coefficient of each term (eV), that is s(k) = P c,rl, (k).

ci n*(k)
1

z (cos k . + cos k„)
cos k cos k„

—(cos 2k + cos 2k„)
~ (cos 2k cos k„+cos k cos 2k„)

cos 2k~ cos 2k'

0.1305
-0.5951
0.1636
-0.0519
-0.1].17
0.0510

II. N(3B.MAL STATE

We use the notation M = (vr, 0), X = (a, —vr),
Y = (vr, vr), and I' = (0, 0) where I' —M is along the
CuO bond direction and (x, y) refers to the square lattice
reciprocal cell. X and Y are slightly inequivalent since
the average unit cell in Bi-2212 is orthorhombic, with
axes ~2 times the square lattice axes and rotated 45'
relative to them (the a and 6 axes differ by only 0.1%).
The X and Y quadrants, though, do difIer strongly be-
cause of the presence of an incommensurate superlattice
in the BiO planes directed along one of the orthorhombic
axes with a corresponding wave vector, Q along I —Y of
(0.21~, 0.21~).is

We turn now to the normal-state data. The circles and
crosses in Fig. 1 are the Fermi surface crossings in the
ARPES measurements in the normal and superconduct-
ing states, respectively, and the thick line is the Fermi
surface of the tight-binding fit described below. We used
six tight-binding functions to fit the normal-state disper-
sion data (the latter determined by the peak positions
of the ARPES spectra), with the functions and their co-
efIII.cients listed in Table I. The six conditions used to
determine the coeKcients were (1) two points from the
measured energy dispersion in the I'Y direction, (2) two
points from the measured dispersion in the I'M direction,
(3) the measured Fermi surface crossing in the MY direc-
tion, and (4) the energy at the Y point. The latter is not
experimentally determined (since it corresponds to an
unoccupied state) but is a necessary constraint to obtain
a good fit. The criteria used was to note that the energy
dispersion below the Fermi energy looks like that of band
theory, just reduced by a factor of 2, as previously noted
by Olson's group. s Therefore, we assumed the same (i.e. ,
half the band theory value) to be true above the Fermi
energy to obtain the energy at the Y point. The result-
ing energy dispersion fit is shown in Fig. 2. This looks
similar to that inferred by the Stanford group with two
difI'erences. First, the energy of the M point is definitely
below the Fermi energy (—34 meV), and, second, only
one Cuo band is seen, not the two that might have been
expected due to the two CuO planes/unit cell. These
difI'erences are primarily due to the increased energy res-
olution of the present experiments.

This indicates that the bilayer splitting is either very
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FIG. 2. Energy dispersion from the tight-binding fit. The
filled circles were data points used in the fit (the Y point
being obtained as described in the text). Note the extended
van Hove singularity at the M point.

III. SUPERCONDUCTING STATE

The method for extracting the gap has been d.iscussed
in detail in our earlier paper. The Ferxni momenta are

weak or nonexistent. Although this is consistent with
band theory results at the Fermi energy, band theory in
addition predicts a sizable splitting at the M point re-
lated to interactions with BiO bands. Such a splitting
and the existence of BiO bands below the Fermi energy
does not appear to be consistent with our data. Absence
of bilayer splitting, though, is consistent with theories
based on incoherent t"-axis transport. We contrast this
with Y-Ba-Cu-O, where significant bilayer splitting has
been seen in ARPES measurements2i (consistent with
band theory). This difference is due to the presence
of chains in Y-Ba-Cu-0 which couple differently to the
even and odd combinations of the bilayer, which together
with the buckling of the CuO layers, causes a sizable
split ting. ~2

We also note &om Fig. 1 the presence of side sheets
in the Y' quadrant. The Q vector connecting the side
sheets to the main sheet is within our resolution equal to
the superlattice Q vector, 0.21(7r, 7r), seen in structural
experiments. The lines going through the side sheets
are simply displacements of the tight-binding fit by this
Q vector. We find that all of the data is consistent with
this picture, and it is not necessary, at least at the Fermi
energy, to invoke the 2x 2 modulation proposed by Aebi
et al.2s (we note that the samples of that group come
from the same source as our own). In principle, more side
sheets than two will occur, but presumably the intensity
of these higher-order umklapps are reduced by matrix
element effects.

Finally, we note that the area occupied by the observed
Fermi surface is equivalent to a hole doping level of 17%,
the same as that for optimal T in La-Sr-Cu-O. Using
quoted values for the stoichiometries of the cations for our
samples (Big i7Sli 77Cai oiCu2 osOs+~) and the above
hole count, we estimate an x = 0.08, which is consistent
with a variety of published results.
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FIG. 3. Measured energy gap along the Fermi surface in
the A and Y quadrants. The data for each quadrant were
taken on a difFerent sample. In this notation, 0' corresponds
to the M —X, Y directions and 45' to the I' —X, Y directions,
with the angle measured with respect to an origin at the X, Y
points.

obtained by finding the minimum separation of the quasi-
particle peak from the chemical potential (operationally,
when the lead. ing edge of the energy distribution curve
has the maximum slope). Experimentally the peak in the
spectrum first approaches the chemical potential as k ap-
proaches k~, then disperses away as k goes beyond k~,
with the intensity decreasing rapidly as expected. from
the momentum dependence of the coherence factors in
BCS theory.

The spectral function is assumed to be that of BCS the-
ory with a phenomenological linewidth to broaden the b

functions. Fortunately, this linewidth does not enter the
fits at sufIiciently low temperatures since the experimen-
tal spectra are resolution limited at 13 K where the gaps
are measured (the gaps being determined by fitting the
leading edge of the spectra). The spectral function is
multiplied by the Fermi occupation factor and then inte-
grated over momenta using the +1 degree width of the
analyzer window and convolved with the observed energy
resolution function. The momentum integrations utilize
the dispersion derived from the tight-binding fit. The
background contribution affects the fits shown in Ref. 15
only at larger binding energies and thus does not in8u-
ence the gap determination.

Besides the overall intensity, representing unknown
matrix elements and normalization, this leaves only one
adjustable parameter in the fit: the absolute value (mag-
nitude) of the gap. The resulting gap values are plotted
in Fig. 3. The basic point to note is that the data are
consistent with nodes in the order parameter about 10
away &om, and on both sides of, the (7r, m) directions.

The data differ somewhat in the two quadrants, al-
though it should be noted. that the data in the two quad-
rants were taken on different samples since the analyzer
does not have enough angular range to cover both quad-
rants in the geometry used. Nonetheless, repeated mea-
surements on different samples yield consistent results for
the momentum dependence of the gap, with the location
of the nodes in the two quadrants being equivalent. We
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also note that in any particular quadrant, the measured
gap has some sample dependence, as found in all ARPES
work.

IV. d-WAVE AND R.ELATED MGDELS

In this section we discuss the extent to which our re-
sults are compatible or incompatible with d-wave pairing.
Some of the experimental evidence for and against d wave
in Y-Ba-Cu-O was described in the Introduction. Prom a
theoretical point of view it has been established that if
antiferromagnetic spin fluctuations med. iate pairing then
it must have d 2 y2 symmetry. Experimentally the spin
fIuctuations in Bi-2212 have not been studied as inten-
sively as in Y-Ba-Cu-O, nor are there any phase coher-
ence experiments in Bi-2212. Recent NMR experiments
show a rapidly decreasing Knight shift below T„giving
strong evidence for singlet pairing. The low-temperature
Knight-shift and relaxation data suggest a gapless state
which could arise from d-wave with impurity scattering,
but gapless s-wave due to magnetic impurities cannot be
ruled out.

Returning to the results of Fig. 3 we see that the data
are inconsistent with a simple d 2 &2 gap, since by def-
inition such a gap must vanish along the (n, vr) direc-
tions where k~ = k&. Of course, Bi-2212 has a small
orthorhombic distortion, which, even at T, can lead to
mixing of d~2 y2 with other symmetries. In Y-Ba-Cu-
O d 2 tI2 can mix with s wave, but in Bi-2212, it can
mix only with g wave [A2s representation of the form
(x —y~)xy], and thus would still have nodes along the
diagonal directions. The difference occurs since in Y-Ba-
Cu-O, the orthorhombic axes are along the CuO bond
directions, whereas in Bi-2212, they are along the diago-
nal directions (and thus, reHection symmetry about the
diagonal directions is preserved unlike in Y-Ba-Cu-O).
Of course, s-d mixing can still occur in the nonlinear gap
equations below T, but the above symmetry in Bi-2212
in a Ginzburg-I andau approach would imply two phase
transitions instead of one. We also note that an s+ d
gap simply moves the node to one side or the other of the
(m, 7r) direction; it cannot lead to nodes on both sides of
(a, vr), whereas an s + id gap is nodeless.

Another alternative to consider is the dirty d-wave
state which would produce a gapless region around (vr, m).
Even though we do not feel that the error bars on the gap
estimation allow for this possibility, let us for the sake of
argument assume that the small gaps in a +10 region
about the diagonal are all consistent with zero. Within
the dirty d-wave theory, when such a large region of gap-
lessness is produced around (vr, vr) the large gap (near the
M point here) would also be suppressed. Given that this
gap is experimentally found to be quite sizable is fur-
ther evidence against such an interpretation, although
we caution that the degree of suppression is dependent
on whether one assumes Born or unitary scattering. A
more definitive test of dirty d-wave would be to conduct
ARPES experiments as a function of disorder and. com-
pare to theoretical predictions.

Superlattice effects

Next we comment on a possible interplay between a
d-wave order parameter and the superlattice modulation
in the X quadrant. These considerations were motivated
by the fact that observed nodes in the X quadrant are
located at the same points where the main Fermi surface
sheet and the umklapped side sheets are predicted. to
cross. It should be noted at the outset that to the extent
the location of the nodes in the X and Y quadrants are
identical (within experimental resolution), the superlat-
tice cannot be argued to have anything to do with nodes.
Nevertheless, if one were to focus only on the X quad-
rant data, the coincidence noted above would require an
explanation.

At this time no firm evidence exists in the data for
superlattice efFects in the X quadrant, primarily because
the side sheets are not predicted to be well separated
as they are in the Y quadrant. Because of this we do
not know yet whether the superlattice modulation which
exists on the BiO layers infIuences the CuO electronic
structure causing a splitting of the sheets at the cross-
ing points. It is possible that the BiO layer primarily
acts as a diffraction grating for the outgoing photoelec-
trons (which would be sufHcient to explain the effects
seen in the Y quadrant). Nevertheless, since it will turn
out that only a small superlattice potential on the CuO
planes would give the efFect described below, it cannot
be a priori excluded.

At the crossing points, then, one has two bands and
thus a 4 x 4 secular matrix to diagonalize (instead of the
simple 2 x 2 secular matrix in BCS theory). Schematically
this is given by

V 0
V ~' sA 0
0 sA —e' —V

and its eigenvalues determine the quasiparticle energies
in the superconducting state. Here e and e' are the ener-
gies of the two bands measured from the chemical poten-
tial, V is the matrix element of the superlattice potential
mixing the two bands, and L is the order parameter. The
significance of the parameter s = +1 will become clear
below. It is instructive to focus on the analytically solv-
able case e = e' which corresponds to a locus in k space
where contours of constant energy of the two bands in-
tersect.

First consider a gap function (e.g. , an anisotropic
s-wave gap) which is even with respect to reHections
about the (vr, vr) direction. This corresponds to s
+1, since the gap is the same for the two sheets at
the crossing point. The eigenvalues (for e = e') are
E = g(e + V)2+ A2. Thus the superlattice potential
just acts to "shift" the normal-state band structure but
does not affect the nodes.

For the case of a d 2 y2 gap, though, the gaps for
the two sheets have opposite signs at the crossing points,
which corresponds to s = —1. In this case, the quasipar-
ticle energies are E = v'e2 + A2+ V. This is qualitatively
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FIG. 5. Calculated excitation gap in the X quadrant as-
suming a d 2 y2 order parameter with a coeKcient of 12.5
meV and a superlattice potential of 10 meV on the middle of
the three Fermi surface sheets shown in Fig. 4 (filled circles)
and on the inner sheet nearest l (open circles).

FIG. 4. Fermi surface determined by the tight-binding fit
with an additional superlattice potential of 10 meV. Data
points as in Fig. 1.

diferent from the previous case since the superlattice po-
tential can now acct the locations of the nodes: if V
exceeds 4, a node in E must occur for some value of e
where there was none previously.

To study the second case in more detail we solve the
6 x 6 secular equation describing the main band and the
two umklapped side bands using for each band the appro-
priate tight-binding energy dispersion in the X quadrant
discussed above. In Fig. 4, we show a plot of the re-
sulting Fermi surface assuming a superlattice potential
of 10 meV (this potential is assumed to be the same for
all oK-diagonal terms; we note that the potential term
connecting the two side bands to each other is in gen-
eral diferent from that connecting the main sheet to the
side sheets). In Fig. 5, we plot the resulting excitation
gap (minimum of E) on the middle of the three sheets,
assuming a cos(k ) —cos(k„) order parameter. We note
the dip in the excitation gap near the observed nodes.
The finite gap along the I —X direction occurs since the
middle sheet corresponds to one of the side sheets in this
case (the sheet nearest the I point along this direction
corresponds to the main sheet and has a node; its gap is
also shown in Fig. 5). Although Fig. 5 has remarkable
similarities to Fig. 3, the main problem for such a model
is that it predicts pure d-wave behavior for the excitation
gap in the Y quadrant with a single node along I' —Y,
in contrast to experiment. As noted above, although the
unusual anisotropy of the gap is more obvious in the X
quadrant, one still sees qualitatively similar behavior in
the Y quadrant.

Pairing within a bi1ayer
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FIG. 6. Fit of the experimental data in the X quadrant to
the smaller of the two gaps of the Ubbens and Lee model.
Filled circles are the data and pluses (+) the two gaps of this
model.

The final d-wave related scenario to consider is the
interlayer pairing model of Ubbens and I ee. In this
model, it is assumed that the two CuO bands coming
from the bilayer are degenerate (which is certainly con-
sistent with our data) and that the pairing within a layer
has d 2 y2 symmetry while that between the two layers
has an anisotropic 8-wave symmetry. Again, one has a
4 x 4 secular matrix to diagonalize for the quasiparticle
eigenvalues and the result is two excitation gaps of the
form d + 8. One of these gaps has a node on one side
of the diagonal direction, the other on the other side.
In Fig. 6, we show a fit of this theory to the data in
the X quadrant assuming the 8-wave component to be
isotropic (which is probably a reasonable approximation
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V. ANISOTROPIC s-WAVE MODELS

We now turn to a discussion of anisotropic s-wave
pairing, by which we mean an order parameter which
has the full symmetry of the lattice. While simple s-
wave pairing corresponds to a gap function independent
of k, i.e. , A(k) = Ao, more general s-wave gap func-
tions have the k dependence of the tight-binding func-
tions listed in Table I. [We will not discuss functions,
such as

] cos(k ) —cos(k„)~, which have a singular k de-
pendence at the node]. Examples of anisotropic s-wave
pairing are the "extended s-wave" pairing, denoted by s*

A(k) = Ao[cos(k ) + cos(k„)] (2)

on the Fermi surface). The smaller of the two gaps fits
the data quite well, however, there is no clear signature
in the data of the larger of the two gaps at any point on
the Fermi surface.

More specifically, all the spectra can be fit very well
assuming one gap. Two gap fits are possible, of course,
given the finite resolution, but our fits to the spectrum at
the maximum gap value (where the quasiparticle peaks
are the sharpest) indicates that the largest splitting be-
tween the two gaps that can be accommodated by the
data is about 10 meV. This should be contrasted with
the 18 meV splitting implied by the fit. So we would
conclude at this stage that the model of Ubbens and Lee
is not inconsistent with the data, but that, so far, our
data show no evidence for a second gap.

and s~y pairlilg

A(k) = Ao cos(k ) cos(k„),

corresponding to the first two nontrivial entries in Ta-
ble I, respectively. Note that for the purposes of this
discussion we shall treat Bi-2212 as being tetragonal ig-
noring the efI'ects of the superlattice. Figure 3 is clearly
consistent with this type of order parameter in that the
measured gap (a) appears to have an extrernum along the
diagonal directions which would require an order param-
eter which is even under re8ection symmetry about this
direction and (b) has nodes on both sides of the diagonal
directions which is also allowed for this symmetry.

One of the early microscopic examples of anisotropic
s-wave pairing was the s* solution obtained by Little-
wood, Varma, and Abrahams, in the context of charge
Huctuation mediated pairing in a three-band model. De-
pending on the precise shape of the Fermi surface an
s* gap has either no nodes (i.e. , fully gapped) or two
nodes per quadrant. A more general phenomenologi-

31cal analysis was presented by Chen and Tremblay who
also discussed, among other things, the nodal structure
of the s & state which will be shown to be relevant to the
ARPES data.

Before discussing microscopic models, we first describe
phenomenological fits to the ARPES gap data assuming
a sign change in the gap function at the node observed
in the experiment (so that the gap function is smooth at
the node). In Fig. 7, we plot the location of the nodes of
the s* and s & gap in the Brillouin zone. We note that
the nodes of the s & gap function are very close to the ex-
perimentally observed nodes in the excitation spectrum,
whereas those of the s* gap function are significantly fur-
ther &om the diagonal direction compared with the data.
This can be seen more clearly in Fig. 8 where we plot
these two functions over the observed Fermi surface. In
fact, we find, quite surprisingly, that a pure s & gap fits
the data very well in the X quadrant as shown in Fig. 9.
A least-squares fit of the form s* + s» gives only a 2%
admixture of s* and one of the form s+ s „gives only a
0.2% admixture of the constant (s) term. Alternatively
an s+ s* gap can also fit the location of the nodes, but at

' M
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XP ~ ~ ~ ~ ~ ~

++++

FIG. 7. Plots of the nodes of the 8 and 8 „ functions in
the Brillouin zone (dashed lines). The former run diagonally,
the latter horizontally and vertically. The solid line marks
the Fermi surface.

-1
I

-10 0 10 20 30 40 50 60

FIG. 8. Plots of the 8* and 8 „anisotropic 8-wave functions
along the Fermi surface in the X quadrant of the zone.



PHENOMENOLOGICAL MODELS FOR THE GAP ANISOTROPY. . . 621

30

10—
e e

0 I

-10 0

e
I

10 20 30 40 50 60

FIG. 9. Fit of the 8 „anisotropic 8-mave gap to the data
in the X quadrant. Filled circles are the data and pluses (+)
the fit.

the expense of having too small a gap along the diagonal
directions (this fit has the two terms comparable in size
but with opposite sign).

Within a simple, single band BCS framework, given
an effective electron-electron interaction —Vg g, the gap
function at a temperature T is determined by solving the
self-consistent equation

A(k) = ) Vg I, , tanh
A(k') E(k')

k'

where E(k) = ge2(k) + 42(k). Here we will "invert"
this procedure and infer some features of Vk g which.
would be consistent with the observed A(k). The sim-
plest potentials which give rise to 8, 8, and s & pairing
are attractive an-site, on the near-neighbor (NN) site,
and on the next-near-neighbor (NNN) site, respectively.

The fact that a constant (s) term is not needed in
the fit is significant in that it suggests that the large
Coulomb repulsion on the Cu site is substantially renor-
malized in the pairing interaction between quasiparti-
cles. We note that although the gap functions discussed
above, other than the simple 8 state, satisfy the condi-
tion P& A(k) = 0, it is not this condition which must
be satisfied to eliminate the effect of an on-site repul-
sion in the gap equations. Rather, it is the condition
g& A(k)/2E(k) tanh [E(k)/2T] = 0 which needs to be
satisfied. Clearly, a pure 8 & function violates this con-
dition which implies such a repulsive term in the gap
equations must be small.

The dominance of the NNN attraction in the singlet
channel suggested by the 8 „pairing is also very inter-
esting. To avoid any confusion, we emphasize that NNN
means the NNN Cu site, and not the pairing of holes
on neighboring oxygen sites. [The s „order parame-
ter cos(k ) cos(k„) Fourier transformed to real space has
peaks in the relative coordinate near the (+1,+1) prim-
itive lattice vectors. ] In most theories proposed to date,
NNN pairing terms are weak and would play a minor role;
in fact, we know of no theory where such terms determine
the symmetry of the gap.

We now turn to microscopic models. The charge-
transfer model of Varma and co-workers with 8* pairing
was already mentioned earlier. The valence fm.uctuation
model of Brandow also gives rise to anisotropic 8-wave
pairing where the existence and location of nodes de-
pends on the details of the input parameters and on the
Fermi surface.

We finally discuss two other theories: the interlayer
tunneling model of Chakravarty et al. and the recent
theory of Abrikosov ' based on a weakly screened
electron-phonon interaction in the presence of extended
saddle-point singularities. While the physics underlying
the two theories is completely different they share two
characteristics: first, the dominant part of the interac-
tions are "local in k space" (for entirely different reasons),
and second, both theories have the ability of having dif-
ferent order-parameter symmetries in different materials
with comparable T, unlike in simple BCS models.

In Abrikosov's theory the poor screening of the
electron-phonon interaction causes a sharp peak in the
forward scattering direction (small momentum transfers).
Further the local density of states is very large near the
extended saddle-point singularity or Hat band, around
the M point in Bi-2212, and small away from it. The so-
lution of the gap equation thus yields a highly anisotropic
gap function which is large near M point and small away
from it. An additional short-range Coulomb repulsion
is required to produce nodes as pointed out recently by
Abrikosov. This adds an overall negative constant to
the order parameter, thus causing the small order pa-
rameter along the diagonal direction to become negative,
with nodes on two sides of the diagonal in a tetrago-
nal material like Bi-2212. However in an orthorhombic
material like YBCO, which in this theory is modeled as
having an extended saddle point only along one direc-
tion, Abrikosov finds an 8 + d gap with a sign change
going from the a to the b axis.

The model of Chakravarty et al. is based on ideas of
Anderson that the elementary excitations, the holons
and spinons, are confined within a plane, and thus the
coherent transport of single electrons from one plane to
another is not possible (this is certainly consistent with
our observation of only one CuO band). The dominant
interaction is the tunneling of Cooper pairs between lay-
ers which lowers the kinetic energy dramatically and thus
acts to drive the superconducting transition. This pair
tunneling term, which is assumed to be completely local
in momentum space, leads to the high-T, but does not
constrain the symmetry of the order parameter. The in-
plane BCS interaction, which is a weak additive term, is
as usual nonlocal in momentum variables and thus de-
termines the symmetry of the gap, with the momentum
dependence of this gap being modulated by the k depen-
dence of the tunneling term t~(k). [In Bi-2212 electronic
structure calculations suggest that t~(k) is large along
the CuO bond direction and small along the diagonal~ «..I. .

rection. ] In the model of Chakravarty et al. , the largest,
of the weak in-plane BCS terms could differ from one
material to another, thus leading to the possibility men-
tioned in the beginning of this paper of different pairing
symmetries for different cuprates.
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VI. CONCLUSIONS

In conclusion, we have analyzed various theoretical
models in light of our measured gap anisotropy in Bi-
2212. We find that a simple d-wave model can be made
consistent with the data in the X quadrant, but not in
the Y quadrant, if the superlattice modulation is taken
into account. We find that the only d-wave model con-
sistent with the observed behavior in both quadrants is
an interlayer pairing model although we remark that
so far, we have no evidence for the two-gap spectrum re-
quired by such a model. The simplest gap function which
naturally explains the two nodes observed per quadrant
is an s „order parameter of the form Ao cos(k ) cos(k„).
Within a one-band BCS &amework such an order pa-

rameter is obtained f'rom a newt-near-neighbor (Cu-Cu)
interaction. Several microscopic theories 3 which
give rise to anisotropic 8-wave pairing were discussed in
this context.
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